Behavioral Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Behavioral Genetics Behavioral Genetics An introduction to how genes and environments interact through development to shape differences in mood, personality, and intelligence BY CATHERINE BAKER A tool to inform public discussion of behavioral genetic research and its broader social implications Prepared for a project conducted by the American Association for the Advancement of Science and The Hastings Center For Carolyn, my genetic equivalent Printed in the United States of America Additional copies of this report are available from: ISBN 0-87168-697-X AAAS Scientific Freedom, Responsibility and Law Program Copyright 2004 1200 New York Avenue, NW American Association for the Washington, D.C. 20005, USA Advancement of Science Telephone: USA +1-202-326-6606 Directorate for Science & Fax: USA +1-202-289-4950 Policy Programs E-mail: [email protected] 1200 New York Ave., NW Web: www.aaas.org/spp/bgenes/ Washington, D.C. 20005 This report is also available on the Web: Layout and cover design by http://www.aaas.org/spp/bgenes/ AAAS Publication Services. publications.shtml Preparation and publication of this volume was supported by a grant from the National Human Genome Research Institute (RO1 HG001873) and by contributions to the AAAS Fund for Excellence designated for the Directorate for Science & Policy Porgrams. II BEHAVIORAL GENETICS TABLE OF CONTENTS Preface. VI–VII Introduction . VII–X Acknowledgements . XI 1. What is behavioral genetics? . 1 Margaret, an ambitious mother . 1 Defining behavior . 2–3 Forms of behavior . 3–4 Behavioral genetics . 4–5 Margaret’s ambition . 5–6 Science in society . 6 2. How do genes work within their environments? . 9 Hoda, a perplexed nurse . 9 The human genome . 10 Function of the human genome . 10–13 Variety within the human genome. 13–14 Similarity across genomes. 14–15 Imagining the genome . 16–17 Behavior and the genome . 17–18 Hoda’s perplexity . 18–20 Some caveats . 20–21 3. How do environments impinge upon genes? . 25 Skip, a regretful man. 25 Environment illustrated. 26–28 Gene/environment interactions . 28–29 Developmental noise . 30 Gene/environment correlations . 31 Shared and nonshared environments . 31–33 Heritability (and environmentability) . 33–34 Skip’s regrets. 34–35 Developmental pathways . 36 TABLE OF CONTENTS III 4. How is genetic research on behavior conducted? . 39 Anja, an identical twin . 39 Animal studies . 40–41 Family studies. 42 Twin studies . 42–44 Adoption studies . 44–45 Combined studies. 45 Linkage analysis. 45–47 Association studies . 48 Microarray analysis . 48–49 Knockout studies . 49–50 Anja’s question. 50–51 Concerns about non-molecular research . 51–53 Concerns about molecular research . 54–55 Overcoming the research concerns . 55–56 5. How do mental disorders emerge from the mix of genes and environments? . 59 Lamar, a man with bad news . 59 Genotype/phenotype complexity . 60–62 More genotype/phenotype complexity . 62–63 Polygenic disorders: complexity multiplied . 63–64 Schizophrenia, a polygenic disorder . 64–65 Bipolar disorder, also polygenic . 66–67 Research challenges. 67–68 Lamar’s dilemma. 68–70 Normal and abnormal traits. 71 IV BEHAVIORAL GENETICS 6. How is the ability to control impulses affected by genes and environments? . 75 Trevor, in trouble with the law . 75 Impulsive behavior and ADHD . 76–78 Is ADHD a disorder or a trait? . 78–79 Novelty-seeking: a positive impulsive trait . ..
Recommended publications
  • AIH Chapter 2: Human Behavior
    Aviation Instructor's Handbook (FAA-H-8083-9) Chapter 2: Human Behavior Introduction Derek’s learner, Jason, is very smart and able to retain a lot of information, but has a tendency to rush through the less exciting material and shows interest and attentiveness only when performing tasks that he finds to be interesting. This concerns Derek because he is worried that Jason will overlook many important details and rush through procedures. For a homework assignment Jason was told to take a very thorough look at Preflight Procedures and that for his next flight lesson they would discuss each step in detail. As Derek predicted, Jason found this assignment to be boring and was not prepared. Derek knows that Jason is a “thrill seeker” as he talks about his business, which is a wilderness adventure company. Derek wants to find a way to keep Jason focused and help him find excitement in all areas of learning so that he will understand the complex art of flying and aircraft safety. Learning is the acquisition of knowledge or understanding of a subject or skill through education, experience, practice, or study. This chapter discusses behavior and how it affects the learning process. An instructor seeks to understand why people act the way they do and how people learn. An effective instructor uses knowledge of human behavior, basic human needs, the defense mechanisms humans use that prevent learning, and how adults learn in order to organize and conduct productive learning activities. Definitions of Human Behavior The study of human behavior is an attempt to explain how and why humans function the way they do.
    [Show full text]
  • Special Issues on Advances in Quantitative Genetics: Introduction
    Heredity (2014) 112, 1–3 & 2014 Macmillan Publishers Limited All rights reserved 0018-067X/14 www.nature.com/hdy EDITORIAL Special issues on advances in quantitative genetics: introduction Heredity (2014) 112, 1–3; doi:10.1038/hdy.2013.115 Fisher’s (1918) classic paper on the inheritance of complex traits not While much of the focus was on standard biometrical applications only founded the field of quantitative genetics, but also coined the (for example, variance components), hints of things to come were term variance and introduced the powerful statistical method of foreshadowed by papers on the relevance of molecular biology to analysis of variance. This was a watershed paper, reconciling the breeding and applications of mixed models (models including both Mendelian’s discrete and saltatorial view of trait evolution with the fixed and random effects, for example, BLUP and REML). Much of gradual and continuous view of Darwin’s followers, the biometricians the emphasis was on breeding or laboratory populations. A decade (Provine, 1971). This fusion of Mendelian genetics with Darwinian later, the second ICQG held at Raleigh, North Carolina in 1987 natural selection was the start of the modern evolutionary synthesis. (Weir et al., 1988), reflected explosive growth in new tools (low- Fisher’s paper also marked a critical point in modern statistics, and density molecular markers for early quantitative trait locus (QTL) this synergism between the development of new statistical methods mapping), a continued expansion of the importance of mixed-model and the ever-increasing complexity of genetic/genomic data sets methodology for complex estimation issues, and a growing fusion of continues to this day.
    [Show full text]
  • New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype
    PP68CH16-Loudet ARI 6 April 2017 9:43 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations New Strategies and Tools in • Explore related articles • Search keywords Quantitative Genetics: How to Go from the Phenotype to the Genotype Christos Bazakos, Mathieu Hanemian, Charlotte Trontin, JoseM.Jim´ enez-G´ omez,´ and Olivier Loudet Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universite´ Paris-Saclay, 78026 Versailles Cedex, France; email: [email protected] Annu. Rev. Plant Biol. 2017. 68:435–55 Keywords First published online as a Review in Advance on genetic architecture, QTL, RIL, GWAS, phenotype February 6, 2017 The Annual Review of Plant Biology is online at Abstract plant.annualreviews.org Quantitative genetics has a long history in plants: It has been used to study https://doi.org/10.1146/annurev-arplant-042916- specific biological processes, identify the factors important for trait evolu- 040820 Annu. Rev. Plant Biol. 2017.68:435-455. Downloaded from www.annualreviews.org tion, and breed new crop varieties. These classical approaches to quantitative Copyright c 2017 by Annual Reviews. trait locus mapping have naturally improved with technology. In this review, All rights reserved we show how quantitative genetics has evolved recently in plants and how new developments in phenotyping, population generation, sequencing, gene Access provided by INRA Institut National de la Recherche Agronomique on 05/05/17. For personal use only. manipulation, and statistics are rejuvenating both the classical linkage map- ping approaches (for example, through nested association mapping) as well as the more recently developed genome-wide association studies.
    [Show full text]
  • The Psychology of Music Haverford College Psychology 303
    The Psychology of Music Haverford College Psychology 303 Instructor: Marilyn Boltz Office: Sharpless 407 Contact Info: 610-896-1235 or [email protected] Office Hours: before class and by appointment Course Description Music is a human universal that has been found throughout history and across different cultures of the world. Why, then, is music so ubiquitous and what functions does it serve? The intent of this course is to examine this question from multiple psychological perspectives. Within a biological framework, it is useful to consider the evolutionary origins of music, its neural substrates, and the development of music processing. The field of cognitive psychology raises questions concerning the relationship between music and language, and music’s ability to communicate emotive meaning that may influence visual processing and body movement. From the perspectives of social and personality psychology, music can be argued to serve a number of social functions that, on a more individual level, contribute to a sense of self and identity. Lastly, musical behavior will be considered in a number of applied contexts that include consumer behavior, music therapy, and the medical environment. Prerequisites: Psychology 100, 200, and at least one advanced 200-level course. Biological Perspectives A. Evolutionary Origins of Music When did music evolve in the overall evolutionary scheme of events and why? Does music serve any adaptive purposes or is it, as some have argued, merely “auditory cheesecake”? What types of evidence allows us to make inferences about the origins of music? Reading: Thompson, W.F. (2009). Origins of Music. In W.F. Thompson, Music, thought, and feeling: Understanding the psychology of music.
    [Show full text]
  • Quantitative Genetics of Gene Expression and Methylation in the Chicken
    Andrey Höglund Linköping Studies In Science and Technology Dissertation No. 2097 FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertation No. 2097, 2020 Quantitative genetics Department of Physics, Chemistry and Biology Linköping University SE-581 83 Linköping, Sweden of gene expression Quantitative genetics of gene expression and methylation the in chicken www.liu.se and methylation in the chicken Andrey Höglund 2020 Linköping studies in science and technology, Dissertation No. 2097 Quantitative genetics of gene expression and methylation in the chicken Andrey Höglund IFM Biology Department of Physics, Chemistry and Biology Linköping University, SE-581 83, Linköping, Sweden Linköping 2020 Cover picture: Hanne Løvlie Cover illustration: Jan Sulocki During the course of the research underlying this thesis, Andrey Höglund was enrolled in Forum Scientium, a multidisciplinary doctoral program at Linköping University, Sweden. Linköping studies in science and technology, Dissertation No. 2097 Quantitative genetics of gene expression and methylation in the chicken Andrey Höglund ISSN: 0345-7524 ISBN: 978-91-7929-789-3 Printed in Sweden by LiU-tryck, Linköping, 2020 Abstract In quantitative genetics the relationship between genetic and phenotypic variation is investigated. The identification of these variants can bring improvements to selective breeding, allow for transgenic techniques to be applied in agricultural settings and assess the risk of polygenic diseases. To locate these variants, a linkage-based quantitative trait locus (QTL) approach can be applied. In this thesis, a chicken intercross population between wild and domestic birds have been used for QTL mapping of phenotypes such as comb, body and brain size, bone density and anxiety behaviour.
    [Show full text]
  • Social Psychology Glossary
    Social Psychology Glossary This glossary defines many of the key terms used in class lectures and assigned readings. A Altruism—A motive to increase another's welfare without conscious regard for one's own self-interest. Availability Heuristic—A cognitive rule, or mental shortcut, in which we judge how likely something is by how easy it is to think of cases. Attractiveness—Having qualities that appeal to an audience. An appealing communicator (often someone similar to the audience) is most persuasive on matters of subjective preference. Attribution Theory—A theory about how people explain the causes of behavior—for example, by attributing it either to "internal" dispositions (e.g., enduring traits, motives, values, and attitudes) or to "external" situations. Automatic Processing—"Implicit" thinking that tends to be effortless, habitual, and done without awareness. B Behavioral Confirmation—A type of self-fulfilling prophecy in which people's social expectations lead them to behave in ways that cause others to confirm their expectations. Belief Perseverance—Persistence of a belief even when the original basis for it has been discredited. Bystander Effect—The tendency for people to be less likely to help someone in need when other people are present than when they are the only person there. Also known as bystander inhibition. C Catharsis—Emotional release. The catharsis theory of aggression is that people's aggressive drive is reduced when they "release" aggressive energy, either by acting aggressively or by fantasizing about aggression. Central Route to Persuasion—Occurs when people are convinced on the basis of facts, statistics, logic, and other types of evidence that support a particular position.
    [Show full text]
  • An Introduction to Quantitative Genetics I Heather a Lawson Advanced Genetics Spring2018 Outline
    An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline • What is Quantitative Genetics? • Genotypic Values and Genetic Effects • Heritability • Linkage Disequilibrium and Genome-Wide Association Quantitative Genetics • The theory of the statistical relationship between genotypic variation and phenotypic variation. 1. What is the cause of phenotypic variation in natural populations? 2. What is the genetic architecture and molecular basis of phenotypic variation in natural populations? • Genotype • The genetic constitution of an organism or cell; also refers to the specific set of alleles inherited at a locus • Phenotype • Any measureable characteristic of an individual, such as height, arm length, test score, hair color, disease status, migration of proteins or DNA in a gel, etc. Nature Versus Nurture • Is a phenotype the result of genes or the environment? • False dichotomy • If NATURE: my genes made me do it! • If NURTURE: my mother made me do it! • The features of an organisms are due to an interaction of the individual’s genotype and environment Genetic Architecture: “sum” of the genetic effects upon a phenotype, including additive,dominance and parent-of-origin effects of several genes, pleiotropy and epistasis Different genetic architectures Different effects on the phenotype Types of Traits • Monogenic traits (rare) • Discrete binary characters • Modified by genetic and environmental background • Polygenic traits (common) • Discrete (e.g. bristle number on flies) or continuous (human height)
    [Show full text]
  • Quantitative Genetics and Heritability of Growth-Related Traits in Hybrid Striped Bass (Morone Chrysops ♀×Morone Saxatilis ♂)
    Aquaculture 261 (2006) 535–545 www.elsevier.com/locate/aqua-online Quantitative genetics and heritability of growth-related traits in hybrid striped bass (Morone chrysops ♀×Morone saxatilis ♂) Xiaoxue Wang a, Kirstin E. Ross b, Eric Saillant a, ⁎ Delbert M. Gatlin III a, John R. Gold a, a Center for Biosystematics and Biodiversity, Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258, USA b Department of Environmental Health, Flinders University, Adelaide, SA, 5001, Australia Received 30 November 2005; received in revised form 19 July 2006; accepted 21 July 2006 Abstract Commercially farmed, hybrid striped bass – female white bass (Morone chrysops) crossed with male striped bass (Morone saxatilis) – represent a rapidly growing industry in the United States. Expanded production of hybrid striped bass, however, is limited because of uncontrolled variation in performance of fish derived from undomesticated broodstock. A 10×10 factorial mating design was employed to examine genetic effects and heritability of growth-related traits based on dam half-sib and sire half- sib families. A total of 881 offspring were raised in a common environment and body weight and length were recorded at three different times post-fertilization; parentage of each fish was inferred from genotypes at 10 nuclear-encoded microsatellites. Dam and sire effects on juvenile growth (weight and length) and growth rate were significant, whereas dam by sire interaction effect was not. The dam and sire components of variance for weight and length (at age) and growth rate were estimated using a Restricted Maximum Likelihood algorithm. Estimates of broad-sense heritability of weight, using a family-mean basis, ranged from 0.67± 0.17 to 0.85±0.07 for dams; estimates for sires ranged from 0.43±0.20 to 0.77±0.10.
    [Show full text]
  • Contribution and Perspectives of Quantitative Genetics to Plant Breeding in Brazil
    Contribution and perspectives of quantitative genetics to plant breeding in Brazil Crop Breeding and Applied Biotechnology S2: 7-14, 2012 Brazilian Society of Plant Breeding. Printed in Brazil Contribution and perspectives of quantitative genetics to plant breeding in Brazil Roland Vencovsky1, Magno Antonio Patto Ramalho2* and Fernando Henrique Ribeiro Barrozo Toledo1 Received 15 September 2012 Accepted 03 October 2012 Abstract – The purpose of this article is to show how quantitative genetics has contributed to the huge genetic progress obtained in plant breeding in Brazil in the last forty years. The information obtained through quantitative genetics has given Brazilian breeders the possibility of responding to innumerable questions in their work in a much more informative way, such as the use or not of hybrid cultivars, which segregating population to use, which breeding method to employ, alternatives for improving the efficiency of selec- tion programs, and how to handle the data of progeny and/or cultivars evaluations to identify the most stable ones and thus improve recommendations. Key words: Genetic parameters, genotype by environment interaction, hybrid cultivars, stability and adaptability. INTRODUCTION Therefore, this article was written up with the purpose of commenting some of the innumerable aspects of quantitative Plant breeding has been conceptualized in different genetics in Brazil that contributed to decision-making of manners throughout its history. In the concept proposed by breeders, creating good managers and, above all, showing Kempthorne (1957) “plant breeding is applied quantitative that in recent decades, many decisions of Brazilian breeders genetics.” Considering that he was a biometrician, it is easy have been based on knowledge from quantitative genetics.
    [Show full text]
  • Glossary of Terms Related to Patient and Medication Safety
    Committee of Experts on Management of Safety and Quality in Health Care (SP-SQS) Expert Group on Safe Medication Practices Glossary of terms related to patient and medication safety Terms Definitions Comments A R P B and translations and references and synonyms accident accident : an unplanned, unexpected, and undesired event, usually with adverse “For many years safety officials and public health authorities have Xconsequences (Senders, 1994). discouraged use of the word "accident" when it refers to injuries or the French : accident events that produce them. An accident is often understood to be Spanish : accidente unpredictable -a chance occurrence or an "act of God"- and therefore German : Unfall unavoidable. However, most injuries and their precipitating events are Italiano : incidente predictable and preventable. That is why the BMJ has decided to ban the Slovene : nesreča word accident. (…) Purging a common term from our lexicon will not be easy. "Accident" remains entrenched in lay and medical discourse and will no doubt continue to appear in manuscripts submitted to the BMJ. We are asking our editors to be vigilant in detecting and rejecting inappropriate use of the "A" word, and we trust that our readers will keep us on our toes by alerting us to instances when "accidents" slip through.” (Davis & Pless, 2001) active error X X active error : an error associated with the performance of the ‘front-line’ operator of Synonym : sharp-end error French : erreur active a complex system and whose effects are felt almost immediately. (Reason, 1990, This definition has been slightly modified by the Institute of Medicine : “an p.173) error that occurs at the level of the frontline operator and whose effects are Spanish : error activo felt almost immediately.” (Kohn, 2000) German : aktiver Fehler Italiano : errore attivo Slovene : neposredna napaka see also : error active failure active failures : actions or processes during the provision of direct patient care that Since failure is a term not defined in the glossary, its use is not X recommended.
    [Show full text]
  • Genetics and Human Behaviour
    Cover final A/W13657 19/9/02 11:52 am Page 1 Genetics and human behaviour : Genetic screening: ethical issues Published December 1993 the ethical context Human tissue: ethical and legal issues Published April 1995 Animal-to-human transplants: the ethics of xenotransplantation Published March 1996 Mental disorders and genetics: the ethical context Published September 1998 Genetically modified crops: the ethical and social issues Published May 1999 The ethics of clinical research in developing countries: a discussion paper Published October 1999 Stem cell therapy: the ethical issues – a discussion paper Published April 2000 The ethics of research related to healthcare in developing countries Published April 2002 Council on Bioethics Nuffield The ethics of patenting DNA: a discussion paper Published July 2002 Genetics and human behaviour the ethical context Published by Nuffield Council on Bioethics 28 Bedford Square London WC1B 3JS Telephone: 020 7681 9619 Fax: 020 7637 1712 Internet: www.nuffieldbioethics.org Cover final A/W13657 19/9/02 11:52 am Page 2 Published by Nuffield Council on Bioethics 28 Bedford Square London WC1B 3JS Telephone: 020 7681 9619 Fax: 020 7637 1712 Email: [email protected] Website: http://www.nuffieldbioethics.org ISBN 1 904384 03 X October 2002 Price £3.00 inc p + p (both national and international) Please send cheque in sterling with order payable to Nuffield Foundation © Nuffield Council on Bioethics 2002 All rights reserved. Apart from fair dealing for the purpose of private study, research, criticism or review, no part of the publication may be produced, stored in a retrieval system or transmitted in any form, or by any means, without prior permission of the copyright owners.
    [Show full text]
  • Quantitative and Population Genetics
    Genome 371, 8 March 2010, Lecture 15 Quantitative and Population Genetics • What are quantitative traits and why do we care? - genetic basis of quantitative traits - heritability • Basic concepts of population genetics Final is Monday, March 15 8:30 a.m. Hogness Auditorium - in Health Sciences room A420 What Phenotypes/Diseases Do You Find Most Interesting? Quantitative Genetics • Concerned with the inheritance of differences between individuals that are a matter of degree rather than kind (i.e., quantitative not qualitative) Mice Fruit Flies In:Introduction to Quantitative Genetics Falconer & Mackay 1996 Many Discrete Traits Have an Underlying Quantitative Basis Serum Glucose Levels Some Puzzling Aspects of Quantitative Traits • Legendary debate in the early 1900’s on the genetic basis of quantitative traits -vs- “Mendelian” “Biometrician” • Genes are discrete and should lead to discrete phenotypes R- r r Sir Ronald Fisher To the Rescue 1918 paper “The Correlation Between Relatives on the Supposition of Mendelian Inheritance” reconciled this conflict Showed that inherently discontinuous variation caused by genetic segregation is translated into the continuous variation of quantitative characters Genetic Basis of Quantitative Traits First, we need a model: single locus with alleles A and a Familiar model Additive model one allele is dominant (uppercase) Active allele (uppercase) other allele is recessive (lowercase) Inactive allele (lower case) aa AA, Aa aa Aa AA 6 gms 14 gms 6 gms 10 gms 14 gms A General Additive Single Locus Model If
    [Show full text]