Sustainable Sanitation in Cities

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Sanitation in Cities The demands of sustainable devel- opment require us to rethink the current approach towards the way in which we dispose of our waste. Considerable progress is being made in the areas of solid waste recycling and renew- able energy production but the sustainable manage- ment of human waste is an area that is still in its infancy. However, the need for sustainable sanitation is becoming critical due to the need to safeguard | A framework for action | A framework fresh water sources from contamination, recycle valuable nutrients contained in excreta for food production, and to conserve energy. Sustainable Sanitation in Cities seeks to define what sustainable sanitation means in the urban context and how this can be achieved within the constraints and complexities of the urban environ- ment. The authors redefine the relationship between sanitary engineering and urban planning and thus contribute to the ongoing debate on urban sustain- ability. The book is dedicated to innovative approaches to sanitation and illustrates what putting sustainable sanitation into action means in practice. Sustainable Sanitation in Cities is a joint open source publication of the Sustainable Sanitation Alliance and International Forum on Urbanism. This book can be downloaded from: www.susana.org and www.ifou.org SUSTAINABLE SANITATION IN CITIES SANITATION SUSTAINABLE The Sustainable Sanitation Alliance (SuSanA) is a loose network of over 120 organisations from 45 different countries working together to promote sustainable sanitation solutions in urban and rural contexts through knowledge sharing and joint publications. The International Forum on Urbanism (IFoU) is a network of universities, research institutes and knowledge centers with the task to strengthen the international and interdisciplinary collaboration in the field of Urbanism. International Forum on Urbanism Christoph Lüthi, Arne Panesar, Thorsten Schütze, Anna Norström, Jennifer McConville, Jonathan Parkinson, Darren Saywell, Rahul Ingle [P.] [P.] Sustainable Sanitation in Cities A framework for action Christoph Lüthi, Arne Panesar, Thorsten Schütze, Anna Norström, Jennifer McConville, Jonathan Parkinson, Darren Saywell, Rahul Ingle Sustainable Sanitation in Cities: A Framework for Action Christoph Lüthi, Arne Panesar, Thorsten Schütze, Anna Norström, Jennifer McConville, Jonathan Parkinson, Darren Saywell, Rahul Ingle (2011) ISBN: 978-90-814088-4-4 First Edition 2011 Published by Papiroz Publishing House | Rijswijk | The Netherlands www.papiroz.com Text editing: Christoph Lüthi & Thorsten Schütze Layout and cover design: Papiroz design | 2011 Foreword Sanitation is usually a forgotten problem in the low-income areas of our fast growing cities, where close to 5,000 children under 5 years old are dying every day because of lack of access to basic sanitation. As the World becomes progressively more urban, most of civilisation, who currently reside in small towns and large villages, will see their living environment change. The pace of urbanisation will impact many areas of their life, their living environment and their access to basic services. The challenges to provide basic sanitation services will play an essential part of the planning and management of these settlements. Without proper approaches, we risk more unplanned slums and the potential threat that the small urban settlements of today will become the haphazard and unplanned mega-cities of tomorrow. Planning sanitation for cities needs to give due attention to the diverse needs of all city residents, rich and poor, old and young. Integrated approaches must be developed where on-site systems and off-site systems work together. The International Year of Sanitation went a long way to raise the level of awareness and to provide a set of key messages, that all could follow in meeting the challenge. However this was a global call to action, which needs practical and realistic interventaions. Much of the developed world relies on piped, centralised sewerage systems, serving mainly the high income residents. These systems have their limitations including that: they need too much energy for transport and treatment of wastewater and; they waste precious elements in wastewater like phosphorus – a limited resource, badly needed as fertiliser. One issue is certain, without sustainable reuse of excreta, we are wasting a valuable resource. As we consider options for urban areas of all sizes, reuse of nutrients must be part of the plan. For urban areas, the challenge will be providing effective sanitary arrangements linked to sustainable collection and transport and treatment of the excreta to the point of re-use. In some smaller urban centres, closer to the rural hinterland, this will be more easily accomplished than in the mega cities. So-called “ecological approaches” to sanitation must be the main solution in a sustainable urban future. This book “Sustainable Sanitation in Cities” prepared by partners of the Sustainable Sanitation Alliance (SuSanA) network is a real eye-opener. It takes a look at some of the methods that have worked well in the past, to guide us in solving the problems of the future. By addressing sanitation as a key element of the urban metabolism, and by linking sanitation with urban planning and neighbouring sectors like solid waste management or waste recycling, it allows for a holistic approach. It is only through this comprehensive view that new solutions come to light and there are many opportunities. In the cities of tomorrow, we will need to focus more on recycling energy. A good example being biogas generation from wastewater and sludges. Water will also become an increasingly scarce commodity. Greywater (from showers and sinks) can be treated in urban constructed wetlands or used to water and fertilise urban green spaces. Such examples of productive sanitation systems will form an integral part of infrastructure in sustainable cities. “Sustainable Sanitation in Cities” is a call for action, as we battle against the challenges of an urbanising world, we have to start today to adapt and develop innovative solutions and approaches. This book provides guidance on concepts and sustainable solutions which are tried and tested. I hope this book will kick start a new approach to urban sanitation founded on sound ecological principles. It provides an inclusive approach and helps us to advance up the learning curve faster. Most importantly it reminds us that neglecting ecological approaches to sanitation is a missed opportunity, which will greatly improve the lives of future generations. Dr Graham Alabaster Chief of Section I Water Sanitation & Infrastructure Branch UN-Habitat Acknowledgements The authors would like to thank the following peer reviewers who took the time to provide critical inputs and/or original material that greatly improved the quality of the document: • Adrian Atkinson • Barbara Evans • Blanca Elena Jiménez Cisneros • Elisabeth Kvarnström • Duncan Mara • Kevin Tayler • Linda Gaulke • Members of the SuSanA secretariat at GIZ The authors acknowledge support from: • The Swiss National Centre of Competence in Research (NCCR) North-South: Research Partnerships for Mitigating Syndromes of Global Change, co-funded by the Swiss National Science Foundation (SNSF), the Swiss Agency for Development and Cooperation (SDC) and the participating institutions. • The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH with funding from the German Federal Ministry for Economic Cooperation and Development (BMZ). Disclaimer The authors are responsible for the content of this book. The content does not necessarily reflect the views of the reviewers, International Forum on Urbanism, the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eawag, Stockholm Environment Institute, TU Delft, International Water Association or the Swedish Water House. How to cite Lüthi, C., Panesar, A., Schütze, T., Norström, A., McConville, J., Parkinson, J., Saywell, D., Ingle, R. (2011). Sustainable Sanitation in Cities - A Framework for Action. Sustainable Sanitation Alliance (SuSanA) & International Forum on Urbanism (IFoU), Papiroz Publishing House, The Netherlands. Content 1. INTRODUCTION ....................................................................................................................10 Context .............................................................................................................................................................................................10 Rationale .........................................................................................................................................................................................10 Vision ................................................................................................................................................................................................12 Scope ................................................................................................................................................................................................12 Target Audience ............................................................................................................................................................................14 Structure ..........................................................................................................................................................................................15 2. STATE OF URBAN
Recommended publications
  • Constructing the Ecological Sanitation: a Review on Technology and Methods
    Journal of Cleaner Production 125 (2016) 1e21 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Review Constructing the ecological sanitation: a review on technology and methods * Ming Hu, Bin Fan , Hongliang Wang, Bo Qu, Shikun Zhu State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China article info abstract Article history: Wastewater often contains valuable resources (e.g. organic matter and nutrients). Different from con- Received 29 April 2014 ventional sanitation approaches, the ecological sanitation (Eco-San) system is based on the closure of Received in revised form material flow cycles to recover resources with minimized demands on other resources. The review 29 February 2016 comprehensively summarized the main components of the Eco-San system (user interface, collection Accepted 2 March 2016 and conveyance, storage and primary treatment, and reuse/disposal), the frequently-used evaluation Available online 15 March 2016 methods, and the framework of evaluation index system. Some typical practical cases were discussed to demonstrate the managerial implications and popularize the applications of the Eco-San system. The Keywords: fi fi Ecological sanitation results show that the Eco-San systems are bene cial to resource ef ciency, agricultural use of the organic Evaluation matters and nutrients, and energy recovery although some shortages exist (e.g. high cost, cultural Wastewater treatment constraints, and complex operation and management). The evaluation methods can help to identify the Sustainability restriction factors, contributing factors and measures to improve the efficiency of the future Eco-San Rural system.
    [Show full text]
  • Global Nomads: Techno and New Age As Transnational Countercultures
    1111 2 Global Nomads 3 4 5 6 7 8 9 1011 1 2 A uniquely ‘nomadic ethnography,’ Global Nomads is the first in-depth treat- 3111 ment of a counterculture flourishing in the global gulf stream of new electronic 4 and spiritual developments. D’Andrea’s is an insightful study of expressive indi- vidualism manifested in and through key cosmopolitan sites. This book is an 5 invaluable contribution to the anthropology/sociology of contemporary culture, 6 and presents required reading for students and scholars of new spiritualities, 7 techno-dance culture and globalization. 8 Graham St John, Research Fellow, 9 School of American Research, New Mexico 20111 1 D'Andrea breaks new ground in the scholarship on both globalization and the shaping of subjectivities. And he does so spectacularly, both through his focus 2 on neomadic cultures and a novel theorization. This is a deeply erudite book 3 and it is a lot of fun. 4 Saskia Sassen, Ralph Lewis Professor of Sociology 5 at the University of Chicago, and Centennial Visiting Professor 6 at the London School of Economics. 7 8 Global Nomads is a unique introduction to the globalization of countercultures, 9 a topic largely unknown in and outside academia. Anthony D’Andrea examines 30111 the social life of mobile expatriates who live within a global circuit of counter- 1 cultural practice in paradoxical paradises. 2 Based on nomadic fieldwork across Spain and India, the study analyzes how and why these post-metropolitan subjects reject the homeland to shape an alternative 3 lifestyle. They become artists, therapists, exotic traders and bohemian workers seek- 4 ing to integrate labor, mobility and spirituality within a cosmopolitan culture of 35 expressive individualism.
    [Show full text]
  • Table of Contents
    editorial note index amber 832, 1028 American Dream 753 American Institute of Architects “a major modification of the human organism, 21 Club 601, 697 (AIA) 106, 150, 695, 816, 858, 869, 1066, namely its ability to pay attention, occurred when 3D printing 114, 159, 1449 2159, 2277 a major cultural innovation, domestication, was 9/11 676, 685, 844, 918–919, 1382, 1387, American Restroom Association adopted. … the house … should be viewed as 1760–1761, 2130 641, 695, 1646 Aalto, Alvar 639, 762, 772–773, 859 American Society of Heating a technical and cognitive instrument, a tool for aboriginal 1058, 1430 Refrigeration and Air Conditioning thought as well as a technology of shelter.” Abraj Al-Bait tower, Mecca 703, 786 Engineers 814, 825, 858 absolutism 900–901 American Society of Mechanical — Peter J. Wilson, The Domestication of Abu Dhabi 125, 480, 537, 1047, 1430, Engineers 290, 380, 2041, 2117 1551, 2288 American Standard 785, 1601, 1624, the Human Species (Yale, 1988). Acconci, Vito 59, 63 1673, 1675, 1680, 2279, 2281, 2286 Ackerman, James 898, 2333 American Standards Association 183 When our species domesticated itself – started acoustics 150, 203, 223, 260–261, Americans with Disabilities Act, living in permanent dwellings rather than 264–265, 267–269, 272, 274, 279, 304, 1990 1648, 1721, 1764 temporary encampments – architecture remade 348, 352, 360, 380, 485, 825, 1150 Ammannati, Bartolomeo 1936, 1963 Acropolis 900 amphitheater 1094, 1166, 1247, 2136, our sensory world in a revolution never seen acrylic 813, 842, 949, 1016, 1394
    [Show full text]
  • Valuing Wastes an Integrated System Analysis of Bioenergy, Ecological Sanitation, and Soil Fertility Management in Smallholder Farming in Karagwe, Tanzania
    Valuing wastes An Integrated System Analysis of Bioenergy, Ecological Sanitation, and Soil Fertility Management in Smallholder Farming in Karagwe, Tanzania vorgelegt von Dipl.-Ing. Ariane Krause geb. in Freiburg i. Brsg. von der Fakult¨at VI – Planen Bauen Umwelt der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktorin der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Eva Nora Paton Gutachter: Prof. Dr. Johann K¨oppel Gutachterin: Prof. Dr. Vera Susanne Rotter (Fak. III) Gutachterin: Prof. Dr. Friederike Lang (Albert-Ludwigs-Universit¨at Freiburg) Tag der wissenschaftlichen Aussprache: 26. Januar 2018 Berlin 2019 make compost not war Abstract My dissertation had as its starting point the intention of two Tanzanian farmer’s initiatives and their German partners to disseminate sustainable cooking and sanitation technologies to smallholder households in Karagwe District, in northwest Tanzania (TZ). These locally developed and adapted technologies include improved cook stoves (ICS), such as microgasifiers, and a system combining biogas digesters and burners for cooking, as well as urine-diverting dry toilets and thermal sterilization/pasteurization for ecological sanitation (EcoSan). Currently, the most common combination of technologies used for cooking and sanitation in Karagwe smallholdings is a three-stone fire and pit latrine. Switching to the new alternatives could potentially lead to (i) optimized resource consumption, (ii) lower environmental emissions, and (iii) a higher availability of domestic residues for soil fertility management. The latter include biogas slurry from anaerobic digestion, powdery biochar from microgasifiers, and sanitized human excreta from EcoSan facilities. These residues are ‘locally available resources’ that can be used for on-farm material cycling.
    [Show full text]
  • Ecological Sanitation - for Mankind and Nature
    Ecosan Norway Ecological Sanitation - for mankind and nature NLHNORGES The Norwegian University of Life Sciences LANDBRUKSHØGSKOLE Foreword Last year the Norwegian University of Life Sciences (UMB) was commis- sioned to write a “Think piece” on Ecological sanitation by the Norwegian Ministry of Environment as part of the preparations for 12th Session of the UN Commission on Sustainable Development (CSD). This year the Univer- sity of Life Sciences is supported by the Norwegian Ministry of Foreign Affairs to contribute to the 13th Session of the UN Commission on Sustain- able Development in New York, with a focus on “water, sanitation and settlement”. The Norwegian University of Life Sciences is in the forefront in the development of so called ecological sanitation in Norway. Ecological sanitation is part of ecological engineering that was defined by last year’s Stockholm Water Prize laureates professor W. J. Mitch and professor S. E. Jørgensen as: “Development of human society with nature for the benefit of both”. The essence of this sentence is sustainability and this is also the main philosophy guiding the activities at the Norwegian University of Life Sciences. It is unlikely that one single system can solve all current and future sanitation needs. Large investments have been made in conventional cen- tralized sewage systems that will be in operation for decades, but conven- tional systems will evolve as the principles of ecological engineering are communicated throughout the engineering society. Totally new systems, as well as hybrid or combination systems, will appear. With the present and growing focus on water and sanitation and their importance to human health and environmental quality, the interest in ecological engineering is rapidly growing.
    [Show full text]
  • Sustainable Sanitation Systems: Health, Environment and Governance Challenges
    Sustainable Sanitation Systems: Health, Environment and Governance Challenges The Case of Human Rights-Based Policy Reform in Alternative Wastewater Management Strategies Florian Thevenon WaterLex Highlights WaterLex is an international public interest development Context: About 2.5 billion people Limits: Field awareness campaigns Policy reform: Integrating the Human organization based in Geneva, Switzerland. It is a UN- do not use an improved sanitation and advocacy actions are Rights to Water and Sanitation Water Partner with UN ECOSOC special consultative status. facility, and about 1 billion people encouraged to improve and monitor into policies and regulations, Its mission is to develop sustainable solutions based on practise open defaecation which is water quality and hygiene practices; including for service providers and human rights to improve water governance worldwide, one of the main causes of drinking because wastewater, even when regulators, could therefore be used particularly in regard to consistent water law and policy water pollution and diarrhoea treated, is highly enriched in to increase the access to safely frameworks. It works with an alliance of interested parties incidences. There is an urgent hazardous pollutants. Wastewater managed sanitation services and to improve water-governance frameworks, bringing them need to increase the access to recycling, safe water reclamation achievement of SDG 6. Local and in line with country obligations under international human safely managed sanitation services, and reuse must therefore be national governments therefore rights law. It is an official member of the UN Environment and a need for a paradigm shift regulated and aligned with national need to integrate their national Global Wastewater Initiative.
    [Show full text]
  • Toilets and Night Soil (Types, Treatment & a Bit of History)
    Toilets and Night Soil (Types, Treatment & A Bit of History) May 2006 Japan Association of Drainage and Environment Night Soil and Sewerage Research Group Preface Night Soil and Sewerage Research Group is a substructure of Japan Association of Drain- age and Environment. This Group conducts research mainly on culture and history of toi- lets/night soil, and has been planning lecture meetings or field visits for seven years now. In 2003, in an effort to encapsulate our activities, we wrote a book called What do you think Toilets and Night Soil? published by Gihoudou Publishing Co. We have also written arti- cles for specialized field magazines to supply information on this field. Night Soil had been used as fertilizer for farms until quite recently. A result of this practice was the affliction of a large number of people with parasites. Flush Toilets using sewerage system, which is the most popular type, community treatment plants, Johkasou (private treatment facility), had been effective in the eradication of parasite disease in a short period of time. This booklet is intended to inform people of other countries about toilet history in Japan. At first glance, you might ask: Why should I bother reading about toilets (and other delicate matters) at all? Well, the convenient water-flushed toilets were not always available, you know. Then, your next question might be: Hmmm…what did they use in those days? There are seven chapters in this booklet. I’m sure you will find a selection that interests you. To make the presentation more appealing and easily understood, we have carefully chosen the photos to include here.
    [Show full text]
  • Ecological Sanitation and Sustainable Nutrient Recovery Education: Considering the Three Fixes for Environmental Problem-Solving
    sustainability Article Ecological Sanitation and Sustainable Nutrient Recovery Education: Considering the Three Fixes for Environmental Problem-Solving Julian Junghanns 1,* and Thomas Beery 2 1 Faculty of Natural Sciences, Kristianstad University, SE-291 88 Kristianstad, Sweden 2 Faculty of Education, Kristianstad University, SE-291 88 Kristianstad, Sweden; [email protected] * Correspondence: [email protected] Received: 30 March 2020; Accepted: 25 April 2020; Published: 28 April 2020 Abstract: In the context of phosphorus as a finite resource and the unsustainable character of current sanitation in Europe, this paper examined social factors in a technological transition towards sustainable sanitation. The evaluation is based on the idea of cognitive, structural, and technological fixes to achieve environmental protection. The cognitive fix has been evaluated through literature and a European-wide survey with universities that offer civil and environmental engineering programs. Contrary to an initial hypothesis, ecological sanitation and nutrient recycling are taught by the majority (66%) of responding programs. There are, however, local differences in terms of context and detail of the education. The main impediments for teaching were identified as academic resources (especially in Belgium, Germany and Denmark) and the technological status quo (Ireland, Italy, Spain and some programs of the United Kingdom). Instructors’ personal commitment and experience was evaluated to be a key factor for an extensive coverage of sustainable sanitation in higher education programs. The role of higher education has a critical role to play in changing sanitation practices, given the unique professional developmental stage of students and the potential for a cognitive fix to contribute to meaningful change.
    [Show full text]
  • Recycling Improves Soil Fertility Management in Smallholdings in Tanzania
    agriculture Article Recycling Improves Soil Fertility Management in Smallholdings in Tanzania Ariane Krause 1,* ID and Vera Susanne Rotter 2 1 Postgraduate program ‘Microenergy Systems Research Group’, Center for Technology & Society, Technische Universität (TU) Berlin, 10623 Berlin, Germany 2 Department of Environmental Technology, Chair of Circular Economy and Recycling Technology, TU Berlin, 10623 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-179-3274543 Received: 21 December 2017; Accepted: 21 February 2018; Published: 26 February 2018 Abstract: Residues from bioenergy and ecological sanitation (EcoSan) can be utilized to sustain soil fertility and productivity. With regard to certain cooking and sanitation technologies used in smallholder households (hh), we systematically analyzed how utilization of the respective potentials to recover residues for farming affects (i) soil nutrient balances, (ii) the potential for subsistence production of composts, and (iii) environmental emissions. On the example of an intercropping farming system in Karagwe, Tanzania, we studied specific farming practices including (1) current practices of using standard compost only; (2) a combination of using biogas slurry, urine, and standard compost; (3) a combination of using so-called “CaSa-compost” (containing biochar and sanitized human excreta, Project “Carbonization and Sanitation”), urine, and standard compost. The system analysis combines a soil nutrient balance (SNB) with material flow analysis (MFA). Currently, nitrogen (N) and phosphorus (P) are depleted by −54 ± 3 and −8 ± 1 kg·ha−1·year−1, respectively. Our analysis shows, however, a clear potential to reduce depletion rates of N, and to reverse the SNB of P, to bring about a positive outcome.
    [Show full text]
  • An Ecological Approach to Sanitation in Africa
    An Ecological Approach to Sanitation in Africa A compilation of experiences Peter Morgan (2004) Table of Contents Table of contents .......................................................................................................1 Acknowledgements ………………………………………………………………....2 Part 1. An Introduction 1. An Introduction - Understanding the concept of ecological sanitation……………..1 2. The Answer lies in the soil……………………………………………………………..6 3. Modifications of the pit toilet …………………………………………………………12 Part 2. The toilets 4. The Arborloo – the single pit compost toilet…………………………………………14 5. The Fossa alterna – the double pit compost toilet………………………………...…46 6. The urine diverting toilet…………………………………………………………...…90 7. Upgrading the toilet system……………………………………………………….…105 8. Odour and fly control……………………………………………………………...…108 Part 3. Toilets and agriculture 9. The eco-toilet and agriculture…………………………………………………….…110 10. The value of Fossa alterna compost ………………………………………….……115 11. Methods of using Fossa alterna compost in the garden …………………….…….127 12. Growing trees on composted toilet pits……………………………………….……142 13. Plant trials using Fossa alterna compost …………………………………….….…154 14. The usefulness of urine……………………………………………………….…..…173 15. Further plant trials using urine as a liquid feed…………………………..………190 16. Gardening techniques that assist eco-san supported food production………..…228 17. Some special constructional techniques related to eco-san activities……………245 Part 4. Eco-san and Health 18. Health implications of handling compost derived from
    [Show full text]
  • Ecological Sanitation- an Overview
    Ecological sanitation- an overview Professor Dr. Petter D. Jenssen The Norwegian University of Life Sciences Course: ”Appropriate sanitation for the developing world”, August 15. 2005 Ecosan toilet center Bangalore India Faeces Urine Wash water Ecosan toilet center Bangalore India • Serves 800 people • Produces 50 tonn bananas/year • Produces compost for sale • Employs 10 people • Annual cost 10 US$/user Experience from Bangalore • Application of compost increases the plants tolerance to water stress • Application of compost is essential for nutrient utilization in weathered (red) tropical soil 1st. generation 2nd. generation Bangalore - India design: Lin Jiang, China 20 - 40% water consumption in sewered cities is due to the water toilet (Gardner 1997) Ecological engineering The development of human society with nature for the benefit of both. (W.J. Mitsch and S.E. Jørgensen in Ecological engineering, 1989) Design of ecological sanitation systems • System approach (Urban Water 2001) Resources in wastewater Annual discharge from one person • Nitrogen (N) 4.5 kg • Phosphorus (P) 0.6 kg • Potassium (K) 1.0 kg • Organic matter (BOD) 35 kg Loss of Soil Fertility (slow but dramatic, global scale) Can be counteracted by returning treated biowaste (Map from WWW.FAO.ORG) The wastewater resource The fertilizer value of the nutrients dicharged to the sewer systems in Norway 30 million USD per year The wastewater resource The fertilizer value of the blackwater from 900 Mio people in rural China 2.5 billion USD per year (UNESCO 2001) Phosphorus is a limited resource. Present mineral P-sources Recycle? will last 100 - 200 years. (Bøckman et al. 1991) Production of 1kg mineral nitrogen fertilizer requires 38 MJ = 10.5kWh of energy.
    [Show full text]
  • Infrastructure and Sanitation in Colonial and Postcolonial Bombay.', International Journal of Urban and Regional Research., 32 (2)
    Durham Research Online Deposited in DRO: 07 August 2009 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: McFarlane, C. (2008) 'Governing the contaminated city : infrastructure and sanitation in colonial and postcolonial Bombay.', International journal of urban and regional research., 32 (2). pp. 415-435. Further information on publisher's website: http://dx.doi.org/10.1111/j.1468-2427.2008.00793.x Publisher's copyright statement: The denitive version is available at www.blackwell-synergy.com. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Governing the Contaminated City: Infrastructure and Sanitation in Colonial and Postcolonial Bombay International Journal of Urban and Regional Research Colin McFarlane Department of Geography Science Site Durham University Durham DH13LE Tel: 00 44 (0)191-334-1959 Fax: 00 44 (0)191-334-1801 Email: [email protected] Acknowledgements For their helpful comments on an earlier version of this paper, I am grateful to Jonathan Anjaria, Amita Baviskar, Matthew Gandy, Steve Graham, Jonathan Rutherford, Jeremy Seekings, to members of the School of Geography, University of Nottingham for useful feedback during a seminar, and to two anonymous referees.
    [Show full text]