Ecological Sanitation and Sustainable Nutrient Recovery Education: Considering the Three Fixes for Environmental Problem-Solving
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reducing the Food Wastage Footprint
toolkit.xps:Layout 1 13/06/13 11.44 Pagina 3 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-107741-2 (print) E-ISBN 978-92-5-107743-6 (PDF) © FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact- us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications- [email protected]. -
“Sustainable” Sanitation: Challenges and Opportunities in Urban Areas
sustainability Review Towards “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas Kim Andersson *, Sarah Dickin and Arno Rosemarin Stockholm Environment Institute, Linnégatan 87D, 115 23 Stockholm, Sweden; [email protected] (S.D.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-73-707-8609 Academic Editors: Philipp Aerni and Amy Glasmeier Received: 8 June 2016; Accepted: 2 December 2016; Published: 8 December 2016 Abstract: While sanitation is fundamental for health and wellbeing, cities of all sizes face growing challenges in providing safe, affordable and functional sanitation systems that are also sustainable. Factors such as limited political will, inadequate technical, financial and institutional capacities and failure to integrate safe sanitation systems into broader urban development have led to a persistence of unsustainable systems and missed opportunities to tackle overlapping and interacting urban challenges. This paper reviews challenges associated with providing sanitation systems in urban areas and explores ways to promote sustainable sanitation in cities. It focuses on opportunities to stimulate sustainable sanitation approaches from a resource recovery perspective, generating added value to society while protecting human and ecosystem health. We show how, if integrated within urban development, sustainable sanitation has great potential to catalyse action and contribute to multiple sustainable development goals. Keywords: urbanization; sustainable sanitation; resource recovery; urban planning and development; public health 1. Introduction Sanitation is fundamental to healthy and productive urban life, and the provision of sanitation services for fast-growing urban populations is one of the world’s most urgent challenges. Currently, more than 700 million urban residents lack improved sanitation access globally, including 80 million who practise open defecation [1]. -
Constructing the Ecological Sanitation: a Review on Technology and Methods
Journal of Cleaner Production 125 (2016) 1e21 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Review Constructing the ecological sanitation: a review on technology and methods * Ming Hu, Bin Fan , Hongliang Wang, Bo Qu, Shikun Zhu State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China article info abstract Article history: Wastewater often contains valuable resources (e.g. organic matter and nutrients). Different from con- Received 29 April 2014 ventional sanitation approaches, the ecological sanitation (Eco-San) system is based on the closure of Received in revised form material flow cycles to recover resources with minimized demands on other resources. The review 29 February 2016 comprehensively summarized the main components of the Eco-San system (user interface, collection Accepted 2 March 2016 and conveyance, storage and primary treatment, and reuse/disposal), the frequently-used evaluation Available online 15 March 2016 methods, and the framework of evaluation index system. Some typical practical cases were discussed to demonstrate the managerial implications and popularize the applications of the Eco-San system. The Keywords: fi fi Ecological sanitation results show that the Eco-San systems are bene cial to resource ef ciency, agricultural use of the organic Evaluation matters and nutrients, and energy recovery although some shortages exist (e.g. high cost, cultural Wastewater treatment constraints, and complex operation and management). The evaluation methods can help to identify the Sustainability restriction factors, contributing factors and measures to improve the efficiency of the future Eco-San Rural system. -
Valuing Wastes an Integrated System Analysis of Bioenergy, Ecological Sanitation, and Soil Fertility Management in Smallholder Farming in Karagwe, Tanzania
Valuing wastes An Integrated System Analysis of Bioenergy, Ecological Sanitation, and Soil Fertility Management in Smallholder Farming in Karagwe, Tanzania vorgelegt von Dipl.-Ing. Ariane Krause geb. in Freiburg i. Brsg. von der Fakult¨at VI – Planen Bauen Umwelt der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktorin der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Eva Nora Paton Gutachter: Prof. Dr. Johann K¨oppel Gutachterin: Prof. Dr. Vera Susanne Rotter (Fak. III) Gutachterin: Prof. Dr. Friederike Lang (Albert-Ludwigs-Universit¨at Freiburg) Tag der wissenschaftlichen Aussprache: 26. Januar 2018 Berlin 2019 make compost not war Abstract My dissertation had as its starting point the intention of two Tanzanian farmer’s initiatives and their German partners to disseminate sustainable cooking and sanitation technologies to smallholder households in Karagwe District, in northwest Tanzania (TZ). These locally developed and adapted technologies include improved cook stoves (ICS), such as microgasifiers, and a system combining biogas digesters and burners for cooking, as well as urine-diverting dry toilets and thermal sterilization/pasteurization for ecological sanitation (EcoSan). Currently, the most common combination of technologies used for cooking and sanitation in Karagwe smallholdings is a three-stone fire and pit latrine. Switching to the new alternatives could potentially lead to (i) optimized resource consumption, (ii) lower environmental emissions, and (iii) a higher availability of domestic residues for soil fertility management. The latter include biogas slurry from anaerobic digestion, powdery biochar from microgasifiers, and sanitized human excreta from EcoSan facilities. These residues are ‘locally available resources’ that can be used for on-farm material cycling. -
REFERENCE LIST Status Report: Focus on Staple Crops
AGRA (Alliance for a Green Revolution in Africa). 2013. Africa Agriculture REFERENCE LIST Status Report: Focus on Staple Crops. Nairobi: AGRA. http://agra-alliance.org/ AAAS (American Association for the Advancement of Science). 2012. download/533977a50dbc7/. “Statement by the AAAS Board of Directors on Labeling of Genetically AgResearch. 2016. “Shortlist of Five Holds Key to Reduced Methane Modified Foods.” Emissions from Livestock.” AgResearch News Release. http://www. Abalos, D., S. Jeffery, A. Sanz-Cobena, G. Guardia, and A. Vallejo. 2014. agresearch.co.nz/news/shortlist-of-five-holds-key-to-reduced-methane- “Meta-analysis of the Effect of Urease and Nitrification Inhibitors on Crop emissions-from-livestock/. Productivity and Nitrogen Use Efficiency.” Agriculture, Ecosystems, and AHDB (Agriculture and Horticulture Development Board). 2017. “Average Milk Environment 189: 136–144. Yield.” Farming Data. https://dairy.ahdb.org.uk/resources-library/market- Abalos, D., S. Jeffery, C.F. Drury, and C. Wagner-Riddle. 2016. “Improving information/farming-data/average-milk-yield/#.WV0_N4jyu70. Fertilizer Management in the U.S. and Canada for N O Mitigation: 2 Ahmed, S.E., A.C. Lees, N.G. Moura, T.A. Gardner, J. Barlow, J. Ferreira, and R.M. Understanding Potential Positive and Negative Side-Effects on Corn Yields.” Ewers. 2014. “Road Networks Predict Human Influence on Amazonian Bird Agriculture, Ecosystems, and Environment 221: 214–221. Communities.” Proceedings of the Royal Society B 281 (1795): 20141742. Abbott, P. 2012. “Biofuels, Binding Constraints and Agricultural Commodity Ahrends, A., P.M. Hollingsworth, P. Beckschäfer, H. Chen, R.J. Zomer, L. Zhang, Price Volatility.” Paper presented at the National Bureau of Economic M. -
Ecological Sanitation - for Mankind and Nature
Ecosan Norway Ecological Sanitation - for mankind and nature NLHNORGES The Norwegian University of Life Sciences LANDBRUKSHØGSKOLE Foreword Last year the Norwegian University of Life Sciences (UMB) was commis- sioned to write a “Think piece” on Ecological sanitation by the Norwegian Ministry of Environment as part of the preparations for 12th Session of the UN Commission on Sustainable Development (CSD). This year the Univer- sity of Life Sciences is supported by the Norwegian Ministry of Foreign Affairs to contribute to the 13th Session of the UN Commission on Sustain- able Development in New York, with a focus on “water, sanitation and settlement”. The Norwegian University of Life Sciences is in the forefront in the development of so called ecological sanitation in Norway. Ecological sanitation is part of ecological engineering that was defined by last year’s Stockholm Water Prize laureates professor W. J. Mitch and professor S. E. Jørgensen as: “Development of human society with nature for the benefit of both”. The essence of this sentence is sustainability and this is also the main philosophy guiding the activities at the Norwegian University of Life Sciences. It is unlikely that one single system can solve all current and future sanitation needs. Large investments have been made in conventional cen- tralized sewage systems that will be in operation for decades, but conven- tional systems will evolve as the principles of ecological engineering are communicated throughout the engineering society. Totally new systems, as well as hybrid or combination systems, will appear. With the present and growing focus on water and sanitation and their importance to human health and environmental quality, the interest in ecological engineering is rapidly growing. -
Sustainable Sanitation Systems: Health, Environment and Governance Challenges
Sustainable Sanitation Systems: Health, Environment and Governance Challenges The Case of Human Rights-Based Policy Reform in Alternative Wastewater Management Strategies Florian Thevenon WaterLex Highlights WaterLex is an international public interest development Context: About 2.5 billion people Limits: Field awareness campaigns Policy reform: Integrating the Human organization based in Geneva, Switzerland. It is a UN- do not use an improved sanitation and advocacy actions are Rights to Water and Sanitation Water Partner with UN ECOSOC special consultative status. facility, and about 1 billion people encouraged to improve and monitor into policies and regulations, Its mission is to develop sustainable solutions based on practise open defaecation which is water quality and hygiene practices; including for service providers and human rights to improve water governance worldwide, one of the main causes of drinking because wastewater, even when regulators, could therefore be used particularly in regard to consistent water law and policy water pollution and diarrhoea treated, is highly enriched in to increase the access to safely frameworks. It works with an alliance of interested parties incidences. There is an urgent hazardous pollutants. Wastewater managed sanitation services and to improve water-governance frameworks, bringing them need to increase the access to recycling, safe water reclamation achievement of SDG 6. Local and in line with country obligations under international human safely managed sanitation services, and reuse must therefore be national governments therefore rights law. It is an official member of the UN Environment and a need for a paradigm shift regulated and aligned with national need to integrate their national Global Wastewater Initiative. -
ENSURE HEALTHY LIVES and PROMOTE WELL-BEING for ALL Experiences of Community Health, Hygiene, Sanitation and Nutrition
INNOVATION IN LOCAL AND GLOBAL LEARNING SYSTEMS FOR SUSTAINABILITY ENSURE HEALTHY LIVES AND PROMOTE WELL-BEING FOR ALL Experiences of Community Health, Hygiene, Sanitation and Nutrition LEARNING CONTRIBUTIONS OF REGIONAL CENTRES OF EXPERTISE ON EDUCATION FOR SUSTAINABLE DEVELOPMENT Editors: Unnikrishnan Payyappallimana Zinaida Fadeeva www.rcenetwork.org CONTENTS Contents Foreword by UNU-IAS 2 Foreword by UNU-IIGH 3 List of Abbreviations 4 About RCEs 6 Editorial 8 COMMUNITY HEALTH 1. RCE Grand Rapids 20 2. RCE Central Semenanjung 28 3. RCE Borderlands México-USA 38 4. RCE Greater Dhaka 48 5. RCE Yogyakarta 56 6. RCE Srinagar 62 WATER, SANITATION, HYGIENE 7. RCE Central Semenanjung 72 8. RCE Kunming 82 This document should be cited as: Innovation in Local and Global Learning Systems for Sustainability 9. RCE Bangalore 90 Ensure Healthy Lives and Promote Well-being for All Experiences of Community Health, Hygiene, Sanitation and Nutrition 10. RCE Goa 98 Learning Contributions of the Regional Centres of Expertise on Education for Sustainable Development, UNU-IAS, Tokyo, Japan, 2018 11. RCE Srinagar 104 Editing: Unnikrishnan Payyappallimana NUTRITION Zinaida Fadeeva 12. RCE CREIAS-Oeste 112 Technical Editors: Hanna Stahlberg 13. RCE Munich 122 Kiran Chhokar 14. RCE Mindanao 136 Coordination: Hanna Stahlberg Nancy Pham Way Forward 142 Design and layout: Fraser Biscomb Acknowledgements 147 © The United Nations University 2018 Contacts 148 Published by: United Nations University, Institute for the Advanced Study of Sustainability (UNU-IAS) 5-53-70, Jingumae, Shibuya Tokyo 150-8925, Japan Email: [email protected] Web: www.rcenetwork.org/portal The designations employed and the presentation of material throughout the publication do not imply the expression of any opinion whatsoever on the part of UNU-IAS concerning the legal status of any country, territory, city or area or of its authorities, or concerning its frontiers or boundaries. -
Recycling Improves Soil Fertility Management in Smallholdings in Tanzania
agriculture Article Recycling Improves Soil Fertility Management in Smallholdings in Tanzania Ariane Krause 1,* ID and Vera Susanne Rotter 2 1 Postgraduate program ‘Microenergy Systems Research Group’, Center for Technology & Society, Technische Universität (TU) Berlin, 10623 Berlin, Germany 2 Department of Environmental Technology, Chair of Circular Economy and Recycling Technology, TU Berlin, 10623 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-179-3274543 Received: 21 December 2017; Accepted: 21 February 2018; Published: 26 February 2018 Abstract: Residues from bioenergy and ecological sanitation (EcoSan) can be utilized to sustain soil fertility and productivity. With regard to certain cooking and sanitation technologies used in smallholder households (hh), we systematically analyzed how utilization of the respective potentials to recover residues for farming affects (i) soil nutrient balances, (ii) the potential for subsistence production of composts, and (iii) environmental emissions. On the example of an intercropping farming system in Karagwe, Tanzania, we studied specific farming practices including (1) current practices of using standard compost only; (2) a combination of using biogas slurry, urine, and standard compost; (3) a combination of using so-called “CaSa-compost” (containing biochar and sanitized human excreta, Project “Carbonization and Sanitation”), urine, and standard compost. The system analysis combines a soil nutrient balance (SNB) with material flow analysis (MFA). Currently, nitrogen (N) and phosphorus (P) are depleted by −54 ± 3 and −8 ± 1 kg·ha−1·year−1, respectively. Our analysis shows, however, a clear potential to reduce depletion rates of N, and to reverse the SNB of P, to bring about a positive outcome. -
An Ecological Approach to Sanitation in Africa
An Ecological Approach to Sanitation in Africa A compilation of experiences Peter Morgan (2004) Table of Contents Table of contents .......................................................................................................1 Acknowledgements ………………………………………………………………....2 Part 1. An Introduction 1. An Introduction - Understanding the concept of ecological sanitation……………..1 2. The Answer lies in the soil……………………………………………………………..6 3. Modifications of the pit toilet …………………………………………………………12 Part 2. The toilets 4. The Arborloo – the single pit compost toilet…………………………………………14 5. The Fossa alterna – the double pit compost toilet………………………………...…46 6. The urine diverting toilet…………………………………………………………...…90 7. Upgrading the toilet system……………………………………………………….…105 8. Odour and fly control……………………………………………………………...…108 Part 3. Toilets and agriculture 9. The eco-toilet and agriculture…………………………………………………….…110 10. The value of Fossa alterna compost ………………………………………….……115 11. Methods of using Fossa alterna compost in the garden …………………….…….127 12. Growing trees on composted toilet pits……………………………………….……142 13. Plant trials using Fossa alterna compost …………………………………….….…154 14. The usefulness of urine……………………………………………………….…..…173 15. Further plant trials using urine as a liquid feed…………………………..………190 16. Gardening techniques that assist eco-san supported food production………..…228 17. Some special constructional techniques related to eco-san activities……………245 Part 4. Eco-san and Health 18. Health implications of handling compost derived from -
Environmental Sanitation “Reflections from Practice” a Module for Community Health Practitioners
Environmental Sanitation “Reflections from Practice” A Module for Community Health Practitioners March 2015 PRAHLAD IM With the Team SOCIETY FOR COMMUNITY HEALTH AWARNESS, RESEARCH AND ACTION (SOCHARA) SOCIETY FOR COMMUNITY HEALTH AWARENESS RESEARCH AND ACTION 359, 1st Main, 1st Block, Koramangala, Bangalore - 560 034 E mail:[email protected] Web: www.sochara.org SOCHARA - Environmental Sanitation 1 2 SOCHARA - Environmental Sanitation CONTENT S No. Chapters Page Acknowledgments 4 List of Figures & Tables 5-6 Abbreviations 7 Foreword 8 Part A – Perspectives on Sanitation and Health 1 Introduction 11 2 History of Sanitation 17 3 Millennium Development Goals and Sanitation 22 4 Sanitation and Gender Perspectives 25 Part B – Understanding of Sanitation & its Interlinkages 5 Determinants of Sanitation – SEPCE analysis 29 6 Sanitation and Response to Disasters 33 7 Appropriate Technology for Sanitation 36 8 Ecological Sanitation 42 9 Fluorosis and Health 46 10 Occupational Health and Safety of Sanitation and Allied Workers 49 11 Solid and Liquid Waste Management 51 12 Toilet with Biogas plants 55 Part C – Building Theory from Practice 13 An Overview of SOCHARA’s Involment in Environmental Sanitation 59 Part D – Sustainable Sanitation 14 Sustainable Sanitation 71 References 74 SOCHARA - Environmental Sanitation 3 ACKNOWLEDGEMENT I thank the network partners, individuals, alumni fellows of SOCHARA, rural and urban communities and Panchayati Raj institution for the trust they had in me and the experience they have given me to grow as a community health worker. I would like to thank my mentors and guides Dr. Thelma Narayan and Dr. Ravi Narayan for their continued support through technical exposure, resources and guidance during our work on environmental sanitation and in preparing this module. -
Eco-Friendly Toilet for Sustainable Wastewater Management in Tourism Area
E3S Web of Conferences 211, 01009 (2020) https://doi.org/10.1051/e3sconf/202021101009 The 1st JESSD Symposium 2020 Eco-friendly toilet for sustainable wastewater management in tourism area Firdaus Ali1,2*, Dwi Lintang Lestari2 and Marsya Dyasthi Putri2 1Department of Civil and Environmental Engineering, Universitas Indonesia, Depok, 16424, Indonesia 2Indonesia Water Institute, Tanjung Barat Indah F2, Jakarta Selatan, 12530, Indonesia Abstract. Indonesia has implemented sustainable tourism through many programs and ecotourism is one of the issues that most talked about. Ecotourism in Indonesia defined as activities of responsible traveling in intact areas or in areas which are named according to the role of nature. The presence of sustainable tourism should be minimum negative impacts, both on the environmental resources and on social culture local values. The tourism carrying capacity has been influenced by numerous factors of the environmental properties and tourist motivation in the ecotourism locations. One of the keys in environmental properties is sanitation facility as now tourist has voiced concern over the hygiene and quality of the facilities. In tourism area, sometimes with lack of fresh water, a huge amount of fresh water is needed for the sanitation system often caused by the wasteful use of water habit that still done by many tourists. In terms of eco-efficiency, this paper focuses on eco-friendly design in an environmentally manner and analyzing wastewater management an eco- friendly toilet in tourism area. The concept of eco-friendly toilet is maximizing the recycling cycle of water, rain water, and wastewater for later reuse in accordance with the needs of water use in the sanitation system.