The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States: 2002

Total Page:16

File Type:pdf, Size:1020Kb

The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States: 2002 Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Reports Department of Marine and Environmental Sciences 1-1-2003 The tS ate of Coral Reef Ecosystems of the United States and Pacific rF eely Associated States: 2002 Donna D. Turgeon Rebecca G. Asch Billy Causey Florida Keys National Marine Sanctuary Richard E. Dodge Nova Southeastern University Oceanographic Center, [email protected] Walter Jaap Florida Marine Research Institute See next page for additional authors Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facreports Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Turgeon, D.D., R.G. Asch, B.D. Causey, R.E. Dodge, W. Jaap, K. Banks, J. Delaney, B.D. Keller, R. Speiler, C.A. Matos, J.R. Garcia, E. Diaz, D. Catanzaro, C.S. Rogers, Z. Hillis-Starr, R. Nemeth, M. Taylor, G.P. Schmahl, M.W. Miller, D.A. Gulko, J.E. Maragos, A.M. Friedlander, C.L. Hunter, R.S. Brainard, P. Craig, R.H. Richond, G. Davis, J. Starmer, M. Trianni, P. Houk, C.E. Birkeland, A. Edward, Y. Golbuu, J. Gutierrez, N. Idechong, G. Paulay, A. Tafileichig, and N. Vander Velde. 2002. The tS ate of Coral Reef Ecosystems of the United States and Pacific rF eely Associated States: 2002. National Oceanic and Atmospheric Administration/National Ocean Service/ National Centers for Coastal Ocean Science, Silver Spring, MD. 265 pp. This Book is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Reports by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors Donna D. Turgeon, Rebecca G. Asch, Billy Causey, Richard E. Dodge, Walter Jaap, Kenneth Banks, Joanne Delaney, Brian Keller, Richard E. Spieler, Cruz A. Matos, Jorge R. Garcia, Ernesto Diaz, Don Catanzaro, Caroline Rogers, Zandy Hillis-Starr, Richard Nemeth, Herman Taylor, Marcia Taylor, George P. Schmahl, Margaret W. Miller, David A. Gulko, James E. Maragos, Alan Friedlander, Cynthia L. Hunter, Russell E. Brainard, Peter Craig, Robert H. Richmond, Gerry W. Davis, John Starmer, Michael Trianni, Peter Houk, Charles E. Birkeland, Ahser Edward, Yimnang Golbuu, Jay Gutierrez, Noah Idechong, James E. Maragos, Gustav Paulay, Andrew Tafileichig, and Nancy Vander Velde This book is available at NSUWorks: https://nsuworks.nova.edu/occ_facreports/8 THETHE STATESTATE OFOF CORALCORAL REEFREEF ECOSYSTEMSECOSYSTEMS OFOF THETHE UNITEDUNITED STATESSTATES ANDAND PACIFICPACIFIC FREELYFREELY ASSOCIATEDASSOCIATED STATES:STATES: 20022002 ATMOSPH ND ER A IC IC N A National Oceanic and Atmospheric Administration D National Oceanic and Atmospheric Administration A M E I C N O I S L T A R N A In Cooperation with Partners from Federal, T O I I O T N N A N U . E State, Territorial, and Commonwealth Agencies, S State, Territorial, and Commonwealth Agencies, . C D R E E P M A M RT O MENT OF C and the Pacific Freely Associated States About This Document Called for by the U.S. Coral Reef Task Force’s (USCRTF) National Action Plan to Conserve Coral Reefs, this is the first biennial report on the condition of coral reefs. It is the scientific baseline for subsequent reports on the health of U.S. coral reef ecosystems that are to be used by NOAA and others to evaluate the efficacy of coral reef conservation and management practices. The National Oceanic and Atmospheric Administration’s National Ocean Service led the development of this report. It was authored by 38 experts and supported by 79 contributors from government agencies and non-governmental organizations across the nation and internationally. Over 100 Task Force members and other notable scientists have reviewed this document. Acknowledgments – This document was prepared and printed under the auspices of NOAA’s National Ocean Service in cooperation with federal and non-federal (State, Territory, and Commonwealth) members and staff of the USCRTF, and other eminent coral reef scientists and managers. The authors thank the many individuals that helped make this document what it is. We are especially grateful to Ruth Rowe for all her assistance in editing and formatting this report. Kevin McMahon as­ sembled the sizable bibliography. Special thanks are due all the photographers who contributed their high quality art to this report. They made the story come alive. Photo Credits – Front cover: Palmyra Atoll, James Maragos, USFWS; Back cover: Midway Atoll, James Maragos, USFWS; Inset photos: Kip Evans, Fagatele Bay NMS; William Harrigan, Florida Keys NMS; Matt Kendall, NOS; James Maragos, USFWS; Title Page: Donna Turgeon, NOS. All others are credited under the graphics they contributed. All pictures of Hawaiian monk seals and green sea turtles that were taken in the Northwestern Hawaiian Islands are printed with the permission of NOAA’s National Marine Fisheries Service. CitationCitationCitation – Please cite this report as follows. Turgeon, D.D., R.G. Asch, B.D. Causey, R.E. Dodge, W. Jaap, K. Banks, J. Delaney, B.D. Keller, R. Speiler, C.A. Matos, J.R. Garcia, E. Diaz, D. Catanzaro, C.S. Rogers, Z. Hillis-Starr, R. Nemeth, M. Taylor, G.P. Schmahl, M.W. Miller, D.A. Gulko, J.E. Maragos, A.M. Friedlander, C.L. Hunter, R.S. Brainard, P. Craig, R.H. Richond, G. Davis, J. Starmer, M. Trianni, P. Houk, C.E. Birkeland, A. Edward, Y. Golbuu, J. Gutierrez, N. Idechong, G. Paulay, A. Tafileichig, and N. Vander Velde. 2002. The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States: 2002. National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, Silver Spring, MD. 265 pp. THETHE STATESTATE OFOF CORALCORAL REEFREEF ECOSYSTEMSECOSYSTEMS OFOF THETHE UNITEDUNITED STATESSTATES ANDAND PACIFICPACIFIC FREELYFREELY ASSOCIATEDASSOCIATED STATES:STATES: 20022002 Executive Summary and National Summary by Donna D. Turgeon and Rebecca G. Asch Status Reports by Jurisdiction: FloridaFloridaFlorida by Billy D. Causey, Richard E. Dodge, Walter Jaap, Ken Banks, Joanne Delaney, Brian D. Keller, and Richard Spieler Puerto Rico by Cruz A. Matos, Jorge R. Garcia, and Ernesto Diaz U.S. Virgin Islands by Don Catanzaro, Caroline S. Rogers, Zandy Hillis-Starr, Richard Nemeth, and Marcia Taylor Flower Garden Banks National Marine Sanctuary by George P. Schmahl Navassa Island by Margaret W. Miller Hawai’iHawai’iHawai’i by David A. Gulko, James E. Maragos, Alan M. Friedlander, Cynthia L. Hunter, and Russell E. Brainard American Samoa by Peter Craig GuamGuamGuam by Robert H. Richmond and Gerry W. Davis Commonwealth of the Northern Mariana Islands by John Starmer, Michael Trianni, and Peter Houk Pacific Freely Associated States by Charles E. Birkeland, Ahser Edward, Yimnang Golbuu, Jay Gutierrez, Noah Idechong, James E. Maragos, Gustav Paulay, Robert Richmond, Andrew Tafileichig, and Nancy Vander Velde ContributorsContributors Paula Allen, Florida Department of Reef Institute for Caribbean Coral Reef Research Environmental Protection Alan M. Friedlander, The Oceanic James Mcvey, NOAA Office of Institute Oceanic and Atmospheric Re­ Larry Basch, National Park Service CDR Matthew Gagelin, U.S. Navy search Jim Beets, Jacksonville University Ginger Garrison, U.S. Geological Jill Meyer, National Ocean Service Antonio Betivoglio, U.S. Fish and Survey Katherine E. Miller, formerly with Wildlife Service Michael Gelardi, Undersea Video the CNMI Division of Fish and Jim Bohnsack, National Marine Productions Wildlife Fisheries Service Cynthia Gerstner, Shedd Aquarium Steven Miller, National Undersea Rafe Boulon, National Park Service Steven Gittings, National Marine Research Center Eric Brown, University of Hawai‘i Sanctuaries Office Mark Monaco, National Ocean Andrew Bruckner, National Marine Carmen Gonzalez, Puerto Rico Service Fisheries Service Department of Natural and John C. Ogden, Florida Institute of Leah Bunce, National Ocean Environmental Resources Oceanography Service Mark Grace, National Marine Arthur Paterson, National Ocean John Christensen, National Ocean Fisheries Service Service Service Ben Graham, Department of Interior Brendalee Phillips, National Park Gil Cintron, U.S. Fish and Wildlife Office of Insular Affairs Service Service Felix Grana, Puerto Rico Anthony R. Picciolo, National Athline Clark, Hawai‘i Division of Department of Natural and Environmental Satellite, Data, and Aquatic Resources Environmental Resources Information Service Rick Clark, Biscayne National Park Roger Griffis, National Ocean Michelle Pugh, Dive Experience, Andrew Cornish, American Samoa Service St. Croix Coral Reef Initiative Emma Hickerson, Flower Garden Ku‘ulei Rodgers, University of Richard Curry, Biscayne National Banks National Marine Sanctuary Hawai‘i Park Thomas F. Hourigan, National Paige Rothenberger, University of Nancy Daschbach, Fagatele Bay Marine Fisheries Service the Virgin Islands National Marine Sanctuary Paul Jokiel, University of Hawai‘i Rojeanne Salles, Puerto Rico LCDR John Davis, U.S. Coast Matt Kendall, National Ocean Department of Natural and Guard Service Environmental Resources Damaris Delgado, Puerto Rico Barbara Kojis, Virgin Islands Joseph Schwagerl, U.S. Fish and Department of Natural and Department of Planning and Wildlife Service Environmental Resources Natural Resources Robert Shallenberger, U.S.
Recommended publications
  • Australia's Coral Sea - How Much Do We Know?
    Proceedings of the 12 th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 18E The management of the Coral Sea reefs and sea mounts Australia's Coral Sea - how much do we know? Daniela M. Ceccarelli 1 1PO Box 215, Magnetic Island QLD 4819 Australia Corresponding author: [email protected] Abstract. Recent efforts to implement management zoning to Australia’s portion of the Coral Sea have highlighted the need for a synthesis of information about the area’s physical structure, oceanography and ecology. Current knowledge is hampered by large geographic and temporal gaps in existing research, but nevertheless underpins the determination of areas of ecological value and conservation significance. This review draws together existing research on the Coral Sea’s coral reefs and seamounts and evaluates their potential function at a regional scale. Only four coral reefs, out of a potential 36, have been studied to the point of providing information at a community level; this information exists for none of the 14 mapped seamounts. However, the research volume has increased exponentially in the last decade, allowing a more general analysis of likely patterns and processes. Clear habitat associations are emerging and each new study adds to the’ Coral Sea species list’. Broader research suggests that the reefs and seamounts serve as dispersal stepping stones, potential refugia from disturbances and aggregation hotspots for pelagic predators. Key words: Isolated reefs, Dispersal, Community structure, Refugia. Introduction Australia’s Coral Sea lies to the east of the Great Barrier Reef (GBR) within the Australian EEZ boundaries. Geologically, it is dominated by large plateaux that rise from the abyssal plain and cover approximately half of the seabed area (Harris et al.
    [Show full text]
  • To View Fulltext
    A CONTRIBUTION TO THE EMBRYOLOGY OF SONNERATIACEAE. BY JILLELLA VENKATESWARLU. (From the Department of Botany, Benares Hi~,du U~iz,ersity, Benares.) Received April 14, 1937. (Communicated by iV[r. A. C. Joshi, M.sc.) SONNERATIACEm iS a small family of the Myrtifloreae. According to Engler and Prantl (1898, 1908), it includes four genera, Sonneratia, Duabanga, Xenodendron and Crypteronia, comprising about a dozen species. All these are found in the tropics, the monotypic genus Xenodendron being confin6d to New Guinea and the rest being mostly restricted to the Indo-Malayan region. Hutchinson (1926) in his recent system of classification has sepa- rated the genus Crypteronia into a separate family Crypteroniacem and the family Sonneratiaeem as defined by him includes only three genera. Bc:ntham a!~d I~ooker (1%2-67), on the other hand, include these genera in the family Lythracem, to which there is little doubt that these are very closely related. As the writer had been recently studying the embryology of the family Lythracem (Joshi and Venkateswarln, 1935 a, 1935 b, 1935 c, 1936), it was thought desirable to study the family Sonneratiacem also from the comparative point of view and to see how far its embryological features agree with those of the Lythracem. The previous work on this family is limited to an investigation on Sonneratia apetala Linn. by Karsten (1891). tIis observations, however, are very fragmentary and also partly erroneous as pointed out by me in preliminary notes (Venkateswarlu, 1936a, 1936b) relating to the plants described in the present paper. The present paper deals with the two chief genera of the family, namely, Duabanga and Sonneratia.
    [Show full text]
  • Coastal Blue Carbon
    COASTAL BLUE CARBON methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows Coordinators of the International Blue Carbon Initiative CONSERVATION INTERNATIONAL Conservation International (CI) builds upon a strong foundation of science, partnership and field demonstration, CI empowers societies to responsibly and sustainably care for nature, our global biodiversity, for the long term well-being of people. For more information, visit www.conservation.org IOC-UNESCO UNESCO’s Intergovernmental Oceanographic Commission (IOC) promotes international cooperation and coordinates programs in marine research, services, observation systems, hazard mitigation, and capacity development in order to understand and effectively manage the resources of the ocean and coastal areas. For more information, visit www.ioc.unesco.org IUCN International Union for Conservation of Nature (IUCN) helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN’s work focuses on valuing and conserving nature, ensuring effective and equitable governance of its use, and deploying nature-based solutions to global challenges in climate, food and development. For more information, visit www.iucn.org FRONT COVER: © Keith A. EllenbOgen; bACK COVER: © Trond Larsen, CI COASTAL BLUE CARBON methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows EDITORS Jennifer howard – Conservation International Sarah hoyt – duke University Kirsten Isensee – Intergovernmental Oceanographic Commission of UNESCO Emily Pidgeon – Conservation International Maciej Telszewski – Institute of Oceanology of Polish Academy of Sciences LEAD AUTHORS James Fourqurean – Florida International University beverly Johnson – bates College J. boone Kauffman – Oregon State University hilary Kennedy – University of bangor Catherine lovelock – University of Queensland J.
    [Show full text]
  • Bioactivities of Sonneratia Caseolaris (Linn) Leaf and Stem Using Different Solvent Systems
    Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.31.005175 Bioactivities of Sonneratia Caseolaris (Linn) Leaf and Stem Using Different Solvent Systems Bishwajit Bokshi1*, Md Nazmul Hasan Zilani2, Hemayet Hossain3, Md Iqbal Ahmed1, Moham- mad Anisuzzman1, Nripendra Nath Biswas1 and Samir Kumar Sadhu1 1Pharmacy Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh 2Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore-7408, Bangladesh 3BCSIR Laboratories & IFST, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh *Corresponding author: Bishwajit Bokshi, Pharmacy Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh ARTICLE INFO ABSTRACT Received: November 05, 2020 This study was aimed to report the antioxidant, cytotoxic and antibacterial potentials Published: November 16, 2020 of different fractions of crude ethanol extract of leaf and stem of Sonneratia caseolaris Linn. The liquid-liquid fractionation was conducted among Ethyl Acetate, chloroform and carbon tetrachloride and was designated as EAFS, CFS, CTFS for stem and EAFL, CFL, Citation: Bishwajit Bokshi, Md Nazmul CTFL for leaf respectively. Antioxidant activity of individual fraction was then evaluated Hasan Zilani, Hemayet Hossain, Md Iqbal by DPPH free radical scavenging assay; whereas cytotoxic activity was investigated by Ahmed, Mohammad Anisuzzman, et al., Bi- brine shrimp lethality assay and antibacterial activity by disk diffusion method. In antioxidant assay, the EAFL was found to be more potent (IC 12.0±0.12µg/ml) whereas oactivities of Sonneratia Caseolaris (Linn) 50 in cytotoxicity test both the EAFS and CTFL demonstrated lowest LC (25.0±0.05 and Leaf and Stem Using Different Solvent Sys- 50 tems.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • Pacific Reef Assessment and Monitoring Program Benthic Monitoring Summary: American Sāmoa 2015
    Pacific Reef Assessment and Monitoring Program Benthic monitoring summary: American Sāmoa 2015 About this summary The purpose of this document is to provide a brief summary of the most recent survey efforts conducted in the islands of American Sāmoa by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center as part of the Pacific Reef Assessment and Monitoring Program (Pacific RAMP). A more detailed assessment of coral populations and reef community structure in American Sāmoa will be summarized in a forthcoming annual report. Sampling effort - Ecological monitoring in American Sāmoa was conducted from February 15 – March 30, 2015. Figure 2. Mean density of all juvenile coral colonies (Scleractinia, < 5 cm) at survey sites. - Surveys were conducted at 188 sites across 5 islands and atolls: Ofu-Olosega, Rose, Swains, Ta‘ū, and Tutuila. - Coral demography, partial mortality, and condition were surveyed using belt transects; benthic community structure will be assessed using photoquadrats. Overview of data collected Figure 3. Mean density of adult (dark) and juvenile (light) coral colonies (± standard error) grouped by island within three depth categories: shallow (0–6 m), mid (>6–18 m), and deep (>18–30 m). Figure 1. Mean density of all adult coral colonies (Scleractinia, ≥ 5 cm) at survey sites. Overview of data collected (cont.) colonies measured, two colonies were identified as Pavona diffluens and 813 colonies identified as Isopora sp. The threatened species Isopora crateriformis was not consistently identified to species throughout our survey efforts in American Samoa due to the similarity to I. cuneata when both have an encrusting morphology.
    [Show full text]
  • Global Climate Change and Coral Reefs: Implications for People and Reefs
    Global Climate Change and Coral Reefs: Implications for People and Reefs Report of the UN EP-IOC-ASPEI-UCN Global Task Team on the Implications of Climate Change on Coral Reefs — THE AUSTRALIAN INSTITUTE OF MARINE SCIENCE Established in 1972, the Australian Institute of Marine Science (AIMS) is a federally funded statutory authority governed by a Council appointed by the Australian government. The Institute has established a high national and international reputation in marine science and technology, principally associated with an understanding of marine communities of tropical Australia, Southeast Asia, and the Pacific and Indian Oceans. The Institute’s long-term research into complex marine ecosystems and the impacts of human activities on the marine environment is used by industry and natural resource management agencies to ensure the conservation and sustainable use of marine resources in these regions. KANSAS GEOLOGICAL SURVEY The Kansas Geological Survey is a research and service organisation operated by the University of Kansas. The Survey’s mission is to undertake both fundamental and applied research in areas related to geologic resources and hazards, and to disseminate the results of that research to the public, policy-makers and the scientific community. THE MARINE AND COASTAL AREAS PROGRAMME IUCN’S Marine and Coastal Areas Programme was established in 1985 to promote activities which demonstrate how conservation and development can reinforce each other in marine and coastal environments; conserve marine and coastal species and ecosystems; enhance aware- ness of marine and coastal conservation issues and management; and mobilise the global conservation community to work for marine and coastal conservation.
    [Show full text]
  • BBP in Brief
    IO AS" COM M P A LE H X I A T " Y 0 R O J E C T BBP in Brief A NEWSLETTER OF THE BAHAMAS BIOCOMPLEXITY PROJECT Produced by the American Museum of Natural History’s Center for Biodiversity and Conservation (AMNH-CBC) Issue 8 Spring, 2007 Welcome… This is the newsletter of the Bahamas Biocomplexity Project, or “BBP,” also available at http://bbp.amnh.org/bbpinbrief/. Here you can learn about the activities and progress of the BBP team and its partners. We welcome your submissions about research progress, upcoming field plans, meetings, or any other information you feel would be of interest to project partners. Submissions for consideration in future newsletters may be made to Kate Holmes or Christine Engels ([email protected]). In this Issue: Marine Reserves and Coral Recovery: BBP Publications Demonstrate How Reserves Can Facilitate Reef Recovery Kate Holmes, Dan Brumbaugh (AMNH-CBC), and Steve Vollmer (Northeastern University) A Swimming Cash Crop Two recent research articles by BBP researchers have revealed Page 2 important information about how marine protected areas (MPAs) can contribute to the recovery of Caribbean corals. The first paper, published in the Journal of Heredity in January BBP General Meeting 2007, addresses the maximum spacing among reefs that would 2007 allow for reef recovery via an adequate supply of coral recruits Page 3 (coral larvae that disperse, settle, and grow to become small new coral colonies). That is, how close should damaged reefs be to healthy reefs for them to be able to benefit from a supply of new corals? This information is particularly needed in Bahamian Voices the Caribbean where the two once-dominant shallow water at the 15th UN corals, staghorn coral (Acropora cervicornis) and elkhorn Commission coral (A.
    [Show full text]
  • Spaceflight Imposes Numerous Adaptive Challenges for Terrestrial Life
    Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3032.pdf Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Giorgio Casaburi1, Irina Goncharenko-Foster1 and Jamie S. Foster1, 1Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA. Introduction: Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environ- ment that can disrupt homeostasis of many physiologi- cal processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals in- oculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled mi- crogravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled micro- gravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled mi- crogravity. This study provides a window into the adaptive responses that the host animal and its symbi- ont use during modeled microgravity. .
    [Show full text]
  • Octopus Insularis</Italic> As a New Marine Model for Evolutionary
    © 2019. Published by The Company of Biologists Ltd | Biology Open (2019) 8, bio046086. doi:10.1242/bio.046086 RESEARCH ARTICLE Octopus insularis as a new marine model for evolutionary developmental biology Ernesto Maldonado1,*, Emma Rangel-Huerta1,2, Roberto González-Gómez3,4, Gabriel Fajardo-Alvarado3,4 and Piedad S. Morillo-Velarde4,5,* ABSTRACT of aquatic animal eggs and embryos guarantees the observation of Octopuses are intriguing organisms that, together with squids and every developmental stage using microscopy and allows detailed cuttlefishes, form the extant coleoid cephalopods. This group includes experimental analysis from the first cell division through to the many species that can potentially be used as models in the fields of formation of embryonic germ layers and organogenesis (Boletzky biomedicine, developmental biology, evolution, neuroscience and et al., 2006). Finally, small embryos allow reasonable sample sizes even for robotics research. The purpose of this work is to first to be tested together using multi-well plates to provide multiple present a simple method for maintaining Octopus insularis embryos experimental replicates at the same time, making them cost- under a laboratory setup. Second, we show that these embryos are effective animal models (Hill et al., 2005). suitable for detailed analyses of specific traits that appear during Coleoid cephalopods (octopus, squid and cuttlefish) exhibit the developmental stages, including the eyes, hearts, arms, suckers, largest nervous systems found among invertebrates (Young, 1971) chromatophores and Kölliker’s organs. Similar complex traits between and a sophisticated visual system controlling body color changes for cephalopods and vertebrates such as the visual, cardiovascular, communication, camouflage and mimicry (Hanlon et al., 2011; neural and pigmentation systems are generally considered to be a Robin et al., 2014).
    [Show full text]
  • Protected Areas by Management 9
    Unted States p Forest Department a Service DRNA of Agriculture g P r o t e c t e d N a t u r a l A r e a s o f P u e r to R i c o K E E P I N G C O M M ON S P E C I E S C O M M O N PRGAP ANALYSIS PROJECT William A. Gould, Maya Quiñones, Mariano Solórzano, Waldemar Alcobas, and Caryl Alarcón IITF GIS and Remote Sensing Lab A center for tropical landscape analysis U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry . o c 67°30'0"W 67°20'0"W 67°10'0"W 67°0'0"W 66°50'0"W 66°40'0"W 66°30'0"W 66°20'0"W 66°10'0"W 66°0'0"W 65°50'0"W 65°40'0"W 65°30'0"W 65°20'0"W i R o t rotection of natural areas is essential to conserving biodiversity and r e u P maintaining ecosystem services. Benefits and services provided by natural United , Protected areas by management 9 States 1 areas are complex, interwoven, life-sustaining, and necessary for a healthy A t l a n t i c O c e a n 1 1 - 6 environment and a sustainable future (Daily et al. 1997). They include 2 9 0 clean water and air, sustainable wildlife populations and habitats, stable slopes, The Bahamas 0 P ccccccc R P productive soils, genetic reservoirs, recreational opportunities, and spiritual refugia.
    [Show full text]
  • Counterillumination in the Hawaiian Bobtail Squid, Euprymna Scolopes Berry (Mollusca: Cephalopoda)
    Marine Biology (2004) 144: 1151–1155 DOI 10.1007/s00227-003-1285-3 RESEARCH ARTICLE B. W. Jones Æ M. K. Nishiguchi Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda) Received: 27 May 2003 / Accepted: 24 November 2003 / Published online: 10 January 2004 Ó Springer-Verlag 2004 Abstract The mutualism between the Hawaiian bobtail 1999), predator evasion (Hartline et al. 1999), and squid Euprymna scolopes and the luminescent symbiont counterillumination, an antipredatory behavior com- Vibrio fischeri has been used extensively as a model mon to many midwater cephalopods, decapod crusta- system for studies ranging from co-speciation and bio- ceans, and fishes (Young 1977; Harper and Case 1999; geography to gene regulation and the evolution of Lindsay et al. 1999). Animals exhibiting counterillumi- pathogenesis. In this association, the luminescent bac- nation reduce their silhouette by producing biolumi- terium V. fischeri is housed in a complex light organ nescence in an attempt to match the intensity and within the mantle cavity of E. scolopes. Prior hypotheses wavelength of down-welling light (Young and Roper have assumed that sepiolid squids in general utilize the 1977), providing a mechanism that allows them to evade bioluminescence produced by their V. fischeri symbionts predators by camouflage. The light produced can either for counterillumination, a behavior that helps squid be autogenic (luminescence produced intrinsically by the camouflage themselves by matching down-welling animal itself), or bacteriogenic (produced by bacterial moonlight via silhouette reduction. This assumption, symbionts). based solely on the morphology of the squid light organ, Establishing a morphological design for efficient has never been empirically tested for Euprymna in the counterillumination has resulted in the evolution of a laboratory.
    [Show full text]