Turritopsis Nutricula

Total Page:16

File Type:pdf, Size:1020Kb

Turritopsis Nutricula Nature and Science 2010;8(2) Turritopsis nutricula Hongbao Ma, Yan Yang Brookdale University Hospital and Medical Center, Brooklyn, New York 11212, USA [email protected]; [email protected] Abstract: Turritopsis nutricula is a hydrozoan that can revert to the sexually immature (polyp stage) after becoming sexually mature. It is the only known metazoan capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary stage. It does this through the cell development process of transdifferentiation. This cycle can repeat indefinitely tha offers it biologically immortal. It is not clear if stem cells are involved in this immortality or not. Upto now, there is little academic report in the Turristopsis nutricula studies. To study the mechanism of the biological immortality of Turritopsis nutricula possibly supplies the way finding the biological immortality for human. [Nature and Science 2010;8(2):15-20]. (ISSN: 1545-0740). Keywords: immortal; immortality; sexual maturity; stem cell; transdifferentiation; Turritopsis nutricula 1. Introduction occurs in parts of the organsism, like in the eye of the Turritopsis nutricula is a hydrozoan that can revert salamander. However, the immortal jellyfish has to the sexually immature (polyp stage) after becoming incorporated transdifferentiation into its lifecycle. In sexually mature. It is the only known metazoan capable the process, all of the old cells are regenerated. At the of reverting completely to a sexually immature, end of the cycle, the immortal jellyfish is a young colonial stage after having reached sexual maturity as a polyp, ready to start life anew (Wendy, 2009). solitary stage. It does this through the cell development While colonial animals can have their immortality, process of transdifferentiation. This cycle can repeat solitary animal individuals are to die. Hydrozoan indefinitely that offers it biologically immortal. To cnidarians usually have a complex life cycle, wherein a study the reason of the biological immortality of colonial stage leads to the sexually mature, solitary, Turritopsis nutricula possibly supplies the way finding adult stage. Eggs and sperms from solitary, sexual, the biological immortality for human. adult medusa (jellyfish) develop into an embryo and Turritopsis nutricula is a species of jellyfish with a planula larva, and they then form the colonial polyp very unusual quality: it is biologically immortal. Also stage. Medusae are formed asexually from polyps. known as the immortal jellyfish, this fascinating animal, These medusae have a limited lifespan and die shortly in theory, has the ability to sustain life indefinitely, so after releasing their gametes. long as its nerve center remains intact. The hydrozoan Turritopsis nutricula is diferent, Typically, jellyfish die after reproducing, but the which is biological immortality. The solitary medusa of immortal jellyfish is capable of returning to a polyp this species can revert to its polyp stage after becoming after producing offspring. This essentially means that sexually mature (Bavestrello et al., 1992; Piraino et al., this type of jellyfish is able to return itself to a much 1996). In the laboratory, 100% of these medusae younger state. As a result of reversing its life cycle, the regularly undergo this change. The cells that immortal jellyfish can evade death. If the jellyfish accomplish the building of a new stolon are probably continues to reverse its life cycle following those of the exumbrella. However, it is not known reproduction, it can live on for an indefinite period. In whether the sensory cells, myoepithelial cells, and laboratory tests, the species reverted back to the cnidocytes are derived from the exumbrella or the immature polyp stage 100% of the time. endodermal component. Turritopsis nutricula is capable of rejuvenating In the past, because of men’s desire to be forever itself due to a process called transdifferentiation. young, inspired by legends, epics, myths, stories of the Transdifferentiation occurs when a non-stem cell turns gods and goddesses, they engaged in the quest for the itself into another type of cell. But, it is not clear if so-called ‘fountain of youth’ but nobody was able to stem cells are involved in this immortality or not. As find one. Based on scientific studies, some organisms my opinion, the transdifferentiation in Turritopsis or creatures are considered or thought to be immortal. nutricula has related mechanism to stem cell when the As the nature will, to live eternally is an extracting life cycle reverted. It is important to reveal the dream in all the human history. Stem cell is the original relationship of this Turritopsis nutricula of life tissue and all adult cells come from stem cells transdifferentiation and stem cell. Transdifferentiation (Hongbao Ma 2005a). Germline stem cell is the cell in is rare, and when it does occur, it most commonly the earliest of the cell stage. It is possible to inject the http://www.sciencepub.net 15 [email protected] Nature and Science 2010;8(2) germline stem cell into adult human body to get the cells. After sexually reproducing, the jellyfish eternal life (Ma Hongbao 2007). However, the reveal reabsorbs all of its external parts and turns into a cyst, of the transdifferentiation mechanism of the jellyfish which looks like an ameba-esque blob. The cyst then Turritopsis nutricula will offer the chance to explore attaches to the ground and grows into a stalk-shaped the possibility of the eternal life for human. polyp colony. These polyps begin a new cycle, where they form into mature jellyfish - all genetically 2. Description identical. This specimen of Turritopsis nutricula Diameter of Turritopsis nutricula is about 5 mm. It vibrantly shows its majestic being, with its deep red has an equally high and bell-shaped figure. The walls stomach clearly showing. are uniformly thin. The bright red, big stomach has a cruciform shape in its cross section. Young specimens 2.1 Turritopsis nutricula have only 8 tentacles along the edge, while adult Classification specimens have 80-90 tentacles. Kingdom – Animalia Turritopsis nutricula is the first case in which a Phylum – Cnidaria metazoan is capable of reverting completely to a Class – Hydrozoa sexually immature, colonial stage after having reached Order – Hydroida sexual maturity as a solitary stage (Gilbert, 2006). Family – Clavidae Jellyfish usually die after propagating but Genus – Turritopsis Turritopsis nutricula reverts to a sexually immature Species – T. nutricula stage after reaching adulthood and is capable of rejuvenating itself. The jellyfish and its reversal of the Turritopsis nutricula is a Hydrozoan, which is a ageing process is now the focus of research by marine class of Cnidarians including the Portuguese Man-of- biologists and geneticists. It is thought to achieve the War, Hydra, and freshwater jellyfish. Hydrozoans are, feat through the cell development process of for the most part, colonial animals. Turritopsis transdifferentiation, in which cells transform from one nutricula is a colonial organism as a polyp, though it is type to another. an independent, pelagic creature. The organism has a The switching of cell roles is usually seen only diameter of 5 millimeters, or one fifth of an inch. when parts of an organ regenerate. However, it appears Although a young specimen would only have 8 to occur normally in the Turritopsis life cycle (Lech tentacles, an adult would have between 80 and 90 Mintowt-Czyz, 2009). tentacles. It has an obvious red stomach in the center of Turritopsis nutricula, a type of jellyfish, is gaining the main part of its body. Once eggs are fertilized, they notoriety for its uncanny and unprecedented capacity to develop in the stomach and in the screen formed by the de-evolve instead of dying. These jellyfish are the first cave in the planula, or free-swimming, ciliated form of evidenced metazoan, or multi-celled creature, to some Cnidarian species. The eggs must then be demonstrate the ability to revert back to a colonial deposited on the seabed in colonies of the larval stage stage after reaching sexual maturity. After sexually of polyps. The jellyfish will then hatch in 2 days and reproducing, most animals inevitably die. Turritopsis will become sexually mature after just 2 weeks, which nutricula, however, undergo a transformation in which it then can revert back to a polyp in the process of they return to a stage of sexual immaturity after transdifferentiation. T. Nutricula can be found reproducing, only to mature and reproduce again, then worldwide. return to sexual immaturity, and so on. What does this mean? Turritopsis nutricula do not die, by nature, and 2.2 Hydra are believed to have an indefinite potential lifespan. Classification: Turritopsis nutricula are about 5 mm in diameter in Kingdom – Animalia sexually mature stage. They have 8-24 tentacles when Phylum – Cnidaria they are young and up to 90 tentacles as mature adults. Class – Hydrozoa Shaped like a bell, their external walls are transparent Subclass – Leptolinae and their stomachs are large and have a distinctive red Order – Anthomedusae color. Suborder – Capitata Turritopsis nutricula rejuvenate from sexually Family – Hydridae mature to colonial through two processes: cell Genus – Hydra transformation and cell transdifferentiation. Transdifferentiation is one cell transform into a 3. Distribution, range and related species completely different type of cell. By Turritopsis nutricula are originally from the transdifferentiating, these cells are able to change their Caribbean but have spread all over the world. entire make-up, much like the much-publicized stem Turritopsis nutricula are found in temperate to tropical http://www.sciencepub.net 16 [email protected] Nature and Science 2010;8(2) regions in all of the world's oceans. It is believed to be spreading across the world as ships are discharging 3.6 Hydra viridissima ballast water in ports. Since the species is immortal, the The Green Hydra or formally called Hydra number of individuals is spiking. "We are looking at a viridissima can be found in both temperate and tropical worldwide silent invasion" said Smithsonian Tropical fresh waters.
Recommended publications
  • Insights from the Molecular Docking of Withanolide Derivatives to The
    open access www.bioinformation.net Hypothesis Volume 10(9) The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish Pratap Devarapalli1, 2, Ranjith N. Kumavath1*, Debmalya Barh3 & Vasco Azevedo4 1Department of Genomic Science, Central University of Kerala, Riverside Transit Campus, Opp: Nehru College of Arts and Science, NH 17, Padanakkad, Nileshwer, Kasaragod, Kerala-671328, INDIA; 2Genomics & Molecular Medicine Unit, Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research, Mathura Road, New Delhi-110025, INDIA; 3Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, PurbaMedinipur, West Bengal-721172, INDIA; 4Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. MG, Brazil; Ranjith N. Kumavath - Email: [email protected]; *Corresponding author Received August 14, 2014; Accepted August 16, 2014; Published September 30, 2014 Abstract: Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T.
    [Show full text]
  • Trophic Ecology and Diet of Hydra Vulgaris (Cnidaria; Hydrozoa)
    Animal Biology 67 (2017) 287–300 brill.com/ab Trophic ecology and diet of Hydra vulgaris (Cnidaria; Hydrozoa) María I. Deserti∗, Karina S. Esquius, Alicia H. Escalante and Fabián H. Acuña Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Funes 3250 2° piso, 7600 Mar del Plata, Buenos Aires, Argentina Submitted: April 10, 2017. Final revision received: October 5, 2017. Accepted: October 29, 2017 Abstract Hydra is a genus of common, sessile, solitary freshwater cnidarians, which are defined as carnivorous and efficient predators. The purpose of this study was to obtain information on the feeding habits and diet of Hydra vulgaris collected from its natural habitat in Nahuel Rucá Lake (Buenos Aires Province, Argentina). We found three categories of food items in the coelenteron: algae, fungi, and small invertebrates. Algae dominated the diet in terms of abundance and frequency of occurrence, but their volumetric contribution was almost negligible, as was their possible nutritional value. Inverte- brate prey captured, using active predation, represented the major volumetric contribution, with four different taxa found. The detection of phytoplankton in the gastral cavities reveals the input of some organisms present in the surrounding waters in addition to the invertebrates. This information is novel, since studies on the natural diet of Hydra are very scarce. Keywords Argentina; Buenos Aires Province; genus Hydra; trophic ecology Introduction The genus Hydra has a wide geographical distribution and occurs on all continents, except Antarctica (Jankowski et al., 2008). In spite of this wide distribution, the group has received little attention from ecologists.
    [Show full text]
  • Cátia Alexandra Ribeiro Venâncio Salinization Effects on Coastal
    Universidade de Departamento de Biologia Aveiro 2017 Cátia Alexandra Salinization effects on coastal terrestrial and Ribeiro Venâncio freshwater ecosystems Efeitos de salinização em ecossistemas costeiros terrestres e de água doce Universidade de Departamento de Biologia Aveiro 2017 Cátia Alexandra Salinization effects on coastal terrestrial and Ribeiro Venâncio freshwater ecosystems Efeitos de salinização em ecossistemas costeiros terrestres e de água doce Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica da Doutora Isabel Maria da Cunha Antunes Lopes (Investigadora Principal do CESAM e Departamento de Biologia da Universidade de Aveiro), do Professor Doutor Rui Godinho Lobo Girão Ribeiro (Professor Associado com Agregação do Departamento de Ciências da Vida da Universidade de Coimbra) e da Doutora Ruth Maria de Oliveira Pereira (Professora Auxiliar do Departamento de Biologia da Universidade do Porto). This work was supported by FEDER funds through the programme COMPETE- Programa Operacional Factores de Competitividade, by the Portuguese Foundation for Science and Technology (FCT, grant SFRH/BD/81717/2011, within the CESAM's strategic programme (UID/AMB/50017/2013), and the research project SALTFREE (PTDC/AAC- CLI/111706/2009). o júri presidente Prof. Doutor João de Lemos Pinto Professor Catedrático, Departamento de Física da Universidade de Aveiro Doutora Isabel Maria da Cunha Antunes Lopes Investigadora Principal do
    [Show full text]
  • Gent Forms of Metalloproteinases in Hydra
    Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin.
    [Show full text]
  • Adhering Process Among Single Cells of Hydra 1699
    The Journal of Experimental Biology 204, 1697–1702 (2001) 1697 Printed in Great Britain © The Company of Biologists Limited 2001 JEB3258 THE PROCESS OF CELL ADHESION AMONG DISSOCIATED SINGLE CELLS OF HYDRA: MORPHOLOGICAL OBSERVATIONS YASUHARU TAKAKU1,2,*, TAKAHIKO HARIYAMA1 AND YASUO TSUKAHARA2,3 1Graduate School of Information Sciences, Tohoku University, 2-1-1, Katahira, SKK Building, Sendai 980-8577, Japan, 2Photodynamics Research Center, The Institute of Physical and Chemical Research (RIKEN), 19-1399, Koeji, Nagamachi, Sendai 982-0842, Japan and 3Future University-Hakodate, 116-2, Kamedanakano, Hakodate 041-8655, Japan *Author for correspondence (e-mail: [email protected]) Accepted 26 February; published on WWW 23 April 2001 Summary Ultrastructural observations were made on the initial length of each separation distance in adherent cell pairs adhesion process at the adherent region of Hydra approached that reported previously for intact Hydra. The endodermal cell pairs brought into contact (following sums of lengths in both the closest and medium categories dissociation) using a three-dimensional laser manipulator. (as a proportion of total contact length) increased because Total contact length across the diameter of the adherent the length of cleavages (distances >25 nm) decreased region decreased during the period 10–60 min after initial significantly during the same time period. These results adhesion. However, the mean numbers of closest (<4 nm) suggest that adherent cell pairs undergo rapid, active and medium (5–25 nm) separation distances between membrane changes in the adherent region, which might be membranes (thought to be important in total cell associated with cell sorting. The possible significance of adhesion) were not significantly different.
    [Show full text]
  • 111 Turritopsis Dohrnii Primarily from Wikipedia, the Free Encyclopedia
    Turritopsis dohrnii Primarily from Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Dark_matter) Mark Herbert, PhD World Development Institute 39 Main Street, Flushing, Queens, New York 11354, USA, [email protected] Abstract: Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia. [Mark Herbert. Turritopsis dohrnii. Stem Cell 2020;11(4):111-114]. ISSN: 1945-4570 (print); ISSN: 1945-4732 (online). http://www.sciencepub.net/stem. 5. doi:10.7537/marsscj110420.05. Keywords: Turritopsis dohrnii; immortal jellyfish, biologically immortal; animals; sexual maturity Turritopsis dohrnii, also known as the immortal without reverting to the polyp form.[9] jellyfish, is a species of small, biologically immortal The capability of biological immortality with no jellyfish[2][3] found worldwide in temperate to tropic maximum lifespan makes T. dohrnii an important waters. It is one of the few known cases of animals target of basic biological, aging and pharmaceutical capable of reverting completely to a sexually immature, research.[10] colonial stage after having reached sexual maturity as The "immortal jellyfish" was formerly classified a solitary individual. Others include the jellyfish as T. nutricula.[11] Laodicea undulata [4] and species of the genus Description Aurelia.[5] The medusa of Turritopsis dohrnii is bell-shaped, Like most other hydrozoans, T. dohrnii begin with a maximum diameter of about 4.5 millimetres their life as tiny, free-swimming larvae known as (0.18 in) and is about as tall as it is wide.[12][13] The planulae.
    [Show full text]
  • TRANSDIFFERENTATION in Turritopsis Dohrnii (IMMORTAL JELLYFISH)
    TRANSDIFFERENTATION IN Turritopsis dohrnii (IMMORTAL JELLYFISH): MODEL SYSTEM FOR REGENERATION, CELLULAR PLASTICITY AND AGING A Thesis by YUI MATSUMOTO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Maria Pia Miglietta Committee Members, Jaime Alvarado-Bremer Anja Schulze Noushin Ghaffari Intercollegiate Faculty Chair, Anna Armitage December 2017 Major Subject: Marine Biology Copyright 2017 Yui Matsumoto ABSTRACT Turritopsis dohrnii (Cnidaria, Hydrozoa) undergoes life cycle reversal to avoid death caused by physical damage, adverse environmental conditions, or aging. This unique ability has granted the species the name, the “Immortal Jellyfish”. T. dohrnii exhibits an additional developmental stage to the typical hydrozoan life cycle which provides a new paradigm to further understand regeneration, cellular plasticity and aging. Weakened jellyfish will undergo a whole-body transformation into a cluster of uncharacterized tissue (cyst stage) and then metamorphoses back into an earlier life cycle stage, the polyp. The underlying cellular processes that permit its reverse development is called transdifferentiation, a mechanism in which a fully mature and differentiated cell can switch into a new cell type. It was hypothesized that the unique characteristics of the cyst would be mirrored by differential gene expression patterns when compared to the jellyfish and polyp stages. Specifically, it was predicted that the gene categories exhibiting significant differential expression may play a large role in the reverse development and transdifferentiation in T. dohrnii. The polyp, jellyfish and cyst stage of T. dohrnii were sequenced through RNA- sequencing, and the transcriptomes were assembled de novo, and then annotated to create the gene expression profile of each stage.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
    W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.
    [Show full text]
  • Expansion of a Single Transposable Element Family Is BRIEF REPORT Associated with Genome-Size Increase and Radiation in the Genus Hydra
    Expansion of a single transposable element family is BRIEF REPORT associated with genome-size increase and radiation in the genus Hydra Wai Yee Wonga, Oleg Simakova,1, Diane M. Bridgeb, Paulyn Cartwrightc, Anthony J. Bellantuonod, Anne Kuhne, Thomas W. Holsteine, Charles N. Davidf, Robert E. Steeleg, and Daniel E. Martínezh,1 aDepartment of Molecular Evolution and Development, University of Vienna, 1010 Vienna, Austria; bDepartment of Biology, Elizabethtown College, Elizabethtown, PA 17022; cDepartment of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045; dDepartment of Biological Sciences, Florida International University, Miami, FL 33199; eCentre for Organismal Biology, Heidelberg University, 69120 Heidelberg, Germany; fFaculty of Biology, Ludwig Maximilian University of Munich, 80539 Munich, Germany; gDepartment of Biological Chemistry, University of California, Irvine, CA 92617; and hDepartment of Biology, Pomona College, Claremont, CA 91711 Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 8, 2019 (received for review July 9, 2019) Transposable elements are one of the major contributors to genome- Using transcriptome data, we searched for evidence of a ge- size differences in metazoans. Despite this, relatively little is known nome duplication event in the brown hydras. We found that 75% about the evolutionary patterns of element expansions and the (8,629 out of 11,543) of gene families had the same number of element families involved. Here we report a broad genomic sampling genes in both H. viridissima and H. vulgaris. Additionally, 84.7% within the genus Hydra, a freshwater cnidarian at the focal point of and 81.1% of the gene families contained a single gene from H.
    [Show full text]
  • Generic Injuries Are Sufficient to Induce Ectopic Wnt Organizers in Hydra Jack F Cazet, Adrienne Cho, Celina E Juliano*
    RESEARCH ARTICLE Generic injuries are sufficient to induce ectopic Wnt organizers in Hydra Jack F Cazet, Adrienne Cho, Celina E Juliano* Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States Abstract During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians. Introduction Regeneration is an injury-induced morphogenetic process that enables the restoration of lost or damaged body parts. Although nearly all animals are capable of some form of regeneration, the greatest regenerative capacity is found in the invertebrate species capable of rebuilding their entire *For correspondence: body from small tissue fragments through a process called whole-body regeneration. In these highly [email protected] regenerative systems, amputation injuries trigger morphogenesis on both sides of the amputation plane, leading to the reconstruction of all missing body parts.
    [Show full text]
  • The Diversity of Hydras (Cnidaria: Hydridae) in the Baikal Region
    Limnology and Freshwater Biology 2018 (2): 107-112 DOI:10.31951/2658-3518-2018-A-2-107 Original Article The diversity of hydras (Cnidaria: Hydridae) in the Baikal region Peretolchina T.E.*, Khanaev I.V., Kravtsova L.S. Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, Irkutsk, 664033, Russia ABSTRACT. We have studied the fauna of Hydra in the waters of the Baikal region using morphological and molecular genetic methods. By the external morphological features of the structure of the polyp and the microscopic study of nematocysts, we have identified four species belonging to three different genetic groups: “oligactis group” (Hydra oligactis, H. oxycnida), “braueri group” (H. circumcincta) and “vulgaris group” (H. vulgaris). Molecular phylogenetic analysis has confirmed the species status of the hydras studied. The intraspecific genetic distances between the Baikal and European hydras are 1.5– 4.2% and 0.4–2.7% of the substitutions in COI and ITS1–5.8S–ITS2 markers, respectively, while, inter- specific distances for different species significantly exceed intraspecific and amount to 9.8−16.1% and 6.4−32.1% of substitutions for the markers COI and ITS1–5.8S–ITS2, respectively. The temperature regime of the water and the availability of food resources, which play a key role in the reproduction of hydras, determine the habitats of the identified species. The research performed has replenished the regional fauna with species whose findings were previously considered presumptive or doubtful. The first record of H. vulgaris in the artificial reservoir near the Angara River (Lake Kuzmikhinskoye) will help to clarify the distribution of this species.
    [Show full text]