TRANSDIFFERENTATION in Turritopsis Dohrnii (IMMORTAL JELLYFISH)

Total Page:16

File Type:pdf, Size:1020Kb

TRANSDIFFERENTATION in Turritopsis Dohrnii (IMMORTAL JELLYFISH) TRANSDIFFERENTATION IN Turritopsis dohrnii (IMMORTAL JELLYFISH): MODEL SYSTEM FOR REGENERATION, CELLULAR PLASTICITY AND AGING A Thesis by YUI MATSUMOTO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Maria Pia Miglietta Committee Members, Jaime Alvarado-Bremer Anja Schulze Noushin Ghaffari Intercollegiate Faculty Chair, Anna Armitage December 2017 Major Subject: Marine Biology Copyright 2017 Yui Matsumoto ABSTRACT Turritopsis dohrnii (Cnidaria, Hydrozoa) undergoes life cycle reversal to avoid death caused by physical damage, adverse environmental conditions, or aging. This unique ability has granted the species the name, the “Immortal Jellyfish”. T. dohrnii exhibits an additional developmental stage to the typical hydrozoan life cycle which provides a new paradigm to further understand regeneration, cellular plasticity and aging. Weakened jellyfish will undergo a whole-body transformation into a cluster of uncharacterized tissue (cyst stage) and then metamorphoses back into an earlier life cycle stage, the polyp. The underlying cellular processes that permit its reverse development is called transdifferentiation, a mechanism in which a fully mature and differentiated cell can switch into a new cell type. It was hypothesized that the unique characteristics of the cyst would be mirrored by differential gene expression patterns when compared to the jellyfish and polyp stages. Specifically, it was predicted that the gene categories exhibiting significant differential expression may play a large role in the reverse development and transdifferentiation in T. dohrnii. The polyp, jellyfish and cyst stage of T. dohrnii were sequenced through RNA- sequencing, and the transcriptomes were assembled de novo, and then annotated to create the gene expression profile of each stage. Comparative functional gene enrichment analyses with the cyst as the central stage of comparison reported significant GO categories that were over-expressed, such as telomere maintenance and DNA repair, in the cyst as compared to other stages. The enrichment analyses also reported ii significantly under-expressed categories, such as mitotic cell division and cellular differentiation, in the cyst as compared to the other stages. Additionally, candidate genes, such as the Yamanaka (Oct4, Sox2, Klf4, c-Myc) and Thompson Factors (Lin28, Nanog) that exhibit potential association with the transdifferentiation processes were found among the three stages for downstream differential gene expression analyses. Ultimately, our work produced a foundation to develop an alternative model system to further investigate and comprehend regeneration, cellular plasticity and aging in metazoans. iii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my M.S. graduate adviser and committee chair, Dr. Maria Pia Miglietta, for consistently providing invaluable guidance throughout the duration of my thesis project. Her patience, enthusiasm and knowledge have been fundamental to my deep understanding of genomics and the advancement of my project. Furthermore, Dr. Miglietta’s investment in the success of my research and M.S. career has facilitated my further development as a scientist, and has inspired my future as a researcher in the academic system. Additionally, I would like to thank the rest of my thesis committee, Dr. Jaime Alvarado-Bremer, Dr. Noushin Ghaffari and Dr. Anja Schulze, and essential collaborator, Dr. Stefano Piraino, for the encouragement and support they provided throughout the progression of my research. Without their provision, my project would have failed to incorporate different perspectives which drastically expanded the scope of my project. Sample collection would not have been possible without the research facilities of the Smithsonian Tropical Research Institute and support from the members of the Systematics and Biology of Hydrozoa Summer Course (2015) who invested long hours helping me collect specimens in Bocas del Toro, Panama. This project would also not have been possible without the troubleshooting and bioinformatic support from the Texas A&M Genomics and Bioinformatics Service team. Funding for this project was iv generously provided by Texas A&M University’s Agrilife Research Center and Texas Sea Grant. In addition, graciously being awarded the Graduate Student Boost Funding scholarship significantly assisted the efficiency and intricacy of my research during my final year as a graduate student as it enabled the complete devotion to the progression of my project. v CONTRIBUTORS AND FUNDING SOURCES Contributors This work was supported by a thesis committee consisting of Professor Maria Pia Miglietta [adviser], Jaime Alvarado-Bremer, and Anja Schulze of the Department of Marine Biology, and Dr. Noushin Ghaffari of the Department of Electrical and Computer Engineering. All work for this thesis was completed by the student, under the advisement of Dr. Maria Pia Miglietta of the Department of Marine Biology. Funding Sources Graduate study was supported by a Graduate Student ‘Boost’ Funding Scholarship (2016-2017) from Texas A&M University, Galveston. This work was made possible in part by Texas Sea Grant College Program’s Grants-In-Aid of Graduate Research Program. Additionally, this work was made possible in part by TAMUG’s Marine Biology Mini Travel Grants, Galveston Graduate Student Association Travel Grant, and Erma Lee and Luke Mooney Graduate Student Travel Grant, TAMU’s Agrilife Research Division and TAMU’s PESCA Research Division. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Texas Sea Grant College Program and TAMUG. vi NOMENCLATURE BUSCOs Benchmarking Universal Single-Copy Orthologs ESc Embryonic Stem cell FDR False Discovery Rate GO Gene Ontology iPSc Induced Pluripotent Stem cell KEGG Kyoto Encyclopedia of Genes and Genomes NCBI National Center for Biotechnology Information PE Paired Ends RNA-seq RNA-sequencing TAMUG Texas A&M University Galveston vii TABLE OF CONTENTS Page ABSTRACT ....................................................................................................................... ii ACKNOWLEDGEMENTS .............................................................................................. iv CONTRIBUTORS AND FUNDING SOURCES ............................................................ vi NOMENCLATURE ........................................................................................................ vii TABLE OF CONTENTS ................................................................................................ viii LIST OF TABLES ............................................................................................................. x LIST OF FIGURES ......................................................................................................... xii 1. INTRODUCTION ......................................................................................................... 1 1.1 Background ........................................................................................................ 1 1.2 Study system: Transdifferentiation in Turritopsis dohrnii ................................ 9 1.3 Research approach: RNA-Sequencing and de novo assembly ........................ 14 1.4 Research goals ................................................................................................. 17 2. METHODOLOGY ...................................................................................................... 19 2.1 Specimen collection/Species identification ..................................................... 19 2.2 RNA extraction/Library construction/RNA-sequencing ................................. 21 2.3 De novo transcriptome assembly ..................................................................... 22 2.4 Completeness of transcriptomes ...................................................................... 23 2.5 Functional annotation of transcriptomes .......................................................... 24 2.6 Functional enrichment analyses ....................................................................... 25 2.7 Screening of candidate genes ........................................................................... 26 3. RESULTS AND DISCUSSION .................................................................................. 27 3.1 Transcriptome sequencing and assembly ......................................................... 27 3.2 Completeness of transcriptomes ...................................................................... 35 3.3 Functional annotation and categorization of transcriptomes ........................... 38 3.4 Functional enrichment analyses ....................................................................... 53 3.5 Candidate genes of interest .............................................................................. 68 viii Page 4. CONCLUSION ............................................................................................................ 83 REFERENCES ................................................................................................................ 85 APPENDIX A ................................................................................................................ 104 APPENDIX B ...............................................................................................................
Recommended publications
  • Insights from the Molecular Docking of Withanolide Derivatives to The
    open access www.bioinformation.net Hypothesis Volume 10(9) The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish Pratap Devarapalli1, 2, Ranjith N. Kumavath1*, Debmalya Barh3 & Vasco Azevedo4 1Department of Genomic Science, Central University of Kerala, Riverside Transit Campus, Opp: Nehru College of Arts and Science, NH 17, Padanakkad, Nileshwer, Kasaragod, Kerala-671328, INDIA; 2Genomics & Molecular Medicine Unit, Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research, Mathura Road, New Delhi-110025, INDIA; 3Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, PurbaMedinipur, West Bengal-721172, INDIA; 4Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. MG, Brazil; Ranjith N. Kumavath - Email: [email protected]; *Corresponding author Received August 14, 2014; Accepted August 16, 2014; Published September 30, 2014 Abstract: Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T.
    [Show full text]
  • Survey Methods, Data Collections, and Species Observations from the 2015 Survey to Sgaan Kinghlas-Bowie Marine Protected Area
    Survey Methods, Data Collections, and Species Observations from the 2015 Survey to SGaan Kinghlas-Bowie Marine Protected Area K.S.P. Gale, J.M.R. Curtis, K.H. Morgan, C. Stanley, W. Szaniszlo, L.A. Burke, L.N.K. Davidson, B. Doherty, G. Gatien, M. Gauthier, S. Gauthier, D.R. Haggarty, D. Ianson, A. Neill, J. Pegg, K. Wallace, and J.D.M. Zand Fisheries and Oceans Canada Science Branch, Pacific Region Pacific Biological Station Nanaimo, British Columbia V9T 6N7 2017 Canadian Technical Report of Fisheries and Aquatic Sciences 3206 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports.
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Ageing Research Reviews Revamping the Evolutionary
    Ageing Research Reviews 55 (2019) 100947 Contents lists available at ScienceDirect Ageing Research Reviews journal homepage: www.elsevier.com/locate/arr Review Revamping the evolutionary theories of aging T ⁎ Adiv A. Johnsona, , Maxim N. Shokhirevb, Boris Shoshitaishvilic a Nikon Instruments, Melville, NY, United States b Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States c Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States ARTICLE INFO ABSTRACT Keywords: Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a mil- Evolution of aging lennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain whysuchstark Mutation accumulation longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumu- Antagonistic pleiotropy lation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should Disposable soma select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies Lifespan conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant Extrinsic mortality tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality – like planarian flatworms, panther worms, and hydra – further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • 111 Turritopsis Dohrnii Primarily from Wikipedia, the Free Encyclopedia
    Turritopsis dohrnii Primarily from Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Dark_matter) Mark Herbert, PhD World Development Institute 39 Main Street, Flushing, Queens, New York 11354, USA, [email protected] Abstract: Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia. [Mark Herbert. Turritopsis dohrnii. Stem Cell 2020;11(4):111-114]. ISSN: 1945-4570 (print); ISSN: 1945-4732 (online). http://www.sciencepub.net/stem. 5. doi:10.7537/marsscj110420.05. Keywords: Turritopsis dohrnii; immortal jellyfish, biologically immortal; animals; sexual maturity Turritopsis dohrnii, also known as the immortal without reverting to the polyp form.[9] jellyfish, is a species of small, biologically immortal The capability of biological immortality with no jellyfish[2][3] found worldwide in temperate to tropic maximum lifespan makes T. dohrnii an important waters. It is one of the few known cases of animals target of basic biological, aging and pharmaceutical capable of reverting completely to a sexually immature, research.[10] colonial stage after having reached sexual maturity as The "immortal jellyfish" was formerly classified a solitary individual. Others include the jellyfish as T. nutricula.[11] Laodicea undulata [4] and species of the genus Description Aurelia.[5] The medusa of Turritopsis dohrnii is bell-shaped, Like most other hydrozoans, T. dohrnii begin with a maximum diameter of about 4.5 millimetres their life as tiny, free-swimming larvae known as (0.18 in) and is about as tall as it is wide.[12][13] The planulae.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Paulinella Micropora KR01 Holobiont Genome Assembly for Studying Primary Plastid Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/794941; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Paulinella micropora KR01 holobiont genome assembly for studying primary plastid evolution Duckhyun Lhee1, JunMo Lee2, Chung Hyun Cho1, Ji-San Ha1, Sang Eun Jeong3, Che Ok Jeon3, Udi Zelzion4, Dana C. Price5, Ya-Fan Chan4, Arwa Gabr4, Debashish Bhattacharya4,*, Hwan Su Yoon1,* 1Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea 2Department of Oceanography, Kyungpook National University, Daegu 41566, Korea 3Department of Life Science, Chung-Ang University, Seoul 06974, Korea 4Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, U.S.A. 5Department of Plant Biology, Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, U.S.A. *Authors for correspondence Key words: Paulinella, primary endosymbiosis, endosymbiotic gene transfer Running title: Analysis of Paulinella draft genome Abstract The widespread algal and plant (Archaeplastida) plastid originated >1 billion years ago, therefore relatively little can be learned about plastid integration during the initial stages of primary endosymbiosis by studying these highly derived species. Here we focused on a unique model for endosymbiosis research, the photosynthetic amoeba Paulinella micropora KR01 (Rhizaria) that underwent a more recent independent primary endosymbiosis about 124 Mya. A total of 149 Gbp of PacBio and 19 Gbp of Illumina data were used to generate the draft assembly that comprises 7,048 contigs with N50=143,028 bp and a total length of 707 Mbp. Genome GC-content was 44% with 76% repetitive sequences.
    [Show full text]
  • Foraminifera and Cercozoa Share a Common Origin According to RNA Polymerase II Phylogenies
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1735–1739 DOI 10.1099/ijs.0.02597-0 ISEP XIV Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies David Longet,1 John M. Archibald,2 Patrick J. Keeling2 and Jan Pawlowski1 Correspondence 1Dept of zoology and animal biology, University of Geneva, Sciences III, 30 Quai Ernest Jan Pawlowski Ansermet, CH 1211 Gene`ve 4, Switzerland [email protected] 2Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, #3529-6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4 Phylogenetic analysis of small and large subunits of rDNA genes suggested that Foraminifera originated early in the evolution of eukaryotes, preceding the origin of other rhizopodial protists. This view was recently challenged by the analysis of actin and ubiquitin protein sequences, which revealed a close relationship between Foraminifera and Cercozoa, an assemblage of various filose amoebae and amoeboflagellates that branch in the so-called crown of the SSU rDNA tree of eukaryotes. To further test this hypothesis, we sequenced a fragment of the largest subunit of the RNA polymerase II (RPB1) from five foraminiferans, two cercozoans and the testate filosean Gromia oviformis. Analysis of our data confirms a close relationship between Foraminifera and Cercozoa and points to Gromia as the closest relative of Foraminifera. INTRODUCTION produces an artificial grouping of Foraminifera with early protist lineages. The long-branch attraction phenomenon Foraminifera are common marine protists characterized by was suggested to be responsible for the position of granular and highly anastomosed pseudopodia (granulo- Foraminifera and some other putatively ancient groups of reticulopodia) and, typically, an organic, agglutinated or protists in rDNA trees (Philippe & Adoutte, 1998).
    [Show full text]
  • A Fossilized Microcenosis in Triassic Amber. Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L
    J:' Eu.l@ryot. Microbiol., 46(6), 1999 pp. 57 l-584 @ 1999 by the Society of Protozoologists l A Fossilized Microcenosis in Triassic Amber WILFRIED SCTTÖNNONN," HEINIRICH DÖRtr'ELT,O WILHELM FOISSNER," LOTIIAR KRIEMTZd ANd URSULA SCHAF'ER" "Friedrich-schiller-[Jniversität Jeru, Institut fiir ökologie, Arbeitsgruppe Limnologie, Winzerlaer Strafie 10, D-07745 Jena, Germany, and bFriedrich-Schiller-tlniversität Jena,Institut fiir Ernährung und (Jmwelt, Ichrgebiet Landschaftsökologie und Naturschutz, Dornburgerstrat3e 159, D-07743 Jena, Germany, and "Unbersität Salaburg, Institut für Zoologie, HellbrunnerstraJ3e 34, A-5020 Salzburg, Austria, and dlnstitutfür Gewässerökologie und Binnenfischerei, Alte Fischerhütte 2, D-16775 Neuglobsow, Germany ABSTRACT. Detailed data on bacterial and protistan microfossils axe presented from a 0.003 mm3 piece of Ttiassic amber (Schlier- seerit, Upper Tliassic period, 22O-23O million years old). This microcenosis, which actually existed as such within a very small, probably semiaquatic habitat, included the remains of about two bacteria species, four fungi (Palaeodikaryomyces bauerL Pithornyces-like conidia, capillitium-Iike hyphae, yeast cells) two euglenoids, two chlamydomonas (Chlamydomonas sp., Chloromonas sp.), two coccal green microalgae (Chlorell.a sp., Choricystis-like cells), one zooflagellate, three testate amoebae (Centropyxis aculeata var. oblonga-like, Cyclopyxis eurystoma-like, Hyalosphenia baueri n. sp.), seven ciliates (Pseudoplatyophrya nana-l|ke, Mykophagophrys terricola-like, Cyrtolophosis
    [Show full text]