Environmental DNA and Specific Primers for Detecting the Invasive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum -
Trophic Ecology and Diet of Hydra Vulgaris (Cnidaria; Hydrozoa)
Animal Biology 67 (2017) 287–300 brill.com/ab Trophic ecology and diet of Hydra vulgaris (Cnidaria; Hydrozoa) María I. Deserti∗, Karina S. Esquius, Alicia H. Escalante and Fabián H. Acuña Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Funes 3250 2° piso, 7600 Mar del Plata, Buenos Aires, Argentina Submitted: April 10, 2017. Final revision received: October 5, 2017. Accepted: October 29, 2017 Abstract Hydra is a genus of common, sessile, solitary freshwater cnidarians, which are defined as carnivorous and efficient predators. The purpose of this study was to obtain information on the feeding habits and diet of Hydra vulgaris collected from its natural habitat in Nahuel Rucá Lake (Buenos Aires Province, Argentina). We found three categories of food items in the coelenteron: algae, fungi, and small invertebrates. Algae dominated the diet in terms of abundance and frequency of occurrence, but their volumetric contribution was almost negligible, as was their possible nutritional value. Inverte- brate prey captured, using active predation, represented the major volumetric contribution, with four different taxa found. The detection of phytoplankton in the gastral cavities reveals the input of some organisms present in the surrounding waters in addition to the invertebrates. This information is novel, since studies on the natural diet of Hydra are very scarce. Keywords Argentina; Buenos Aires Province; genus Hydra; trophic ecology Introduction The genus Hydra has a wide geographical distribution and occurs on all continents, except Antarctica (Jankowski et al., 2008). In spite of this wide distribution, the group has received little attention from ecologists. -
Evaluation of Seasonal Dynamics of Fungal DNA Assemblages in a Flow-Regulated Stream in a Restored Forest Using Edna Metabarcoding
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420661; this version posted May 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of seasonal dynamics of fungal DNA assemblages in a flow-regulated stream in a restored forest using eDNA metabarcoding Shunsuke Matsuoka1, Yoriko Sugiyama2, Yoshito Shimono3, Masayuki Ushio4,5, Hideyuki Doi1 1. Graduate School of Simulation Studies, University of Hyogo 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650- 0047, Japan 2. Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan 3. Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan 4. Hakubi Center, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan 5. Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan Corresponding author: Shunsuke Matsuoka ([email protected]) Abstract Investigation of seasonal variations in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community compositions, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over two years and used DNA metabarcoding to identify fungal eDNA. -
The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions. -
Environmental DNA for Wildlife Biology and Biodiversity Monitoring
Review Environmental DNA for wildlife biology and biodiversity monitoring 1,2* 3* 1,4 3 Kristine Bohmann , Alice Evans , M. Thomas P. Gilbert , Gary R. Carvalho , 3 3 5,6 3 Simon Creer , Michael Knapp , Douglas W. Yu , and Mark de Bruyn 1 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K, Denmark 2 School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 3 Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Deiniol Road, Bangor University, Bangor LL57 2UW, UK 4 Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6845, Australia 5 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang East Road, Kunming, Yunnan 650223, China 6 School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK Extraction and identification of DNA from an environ- technology. Today, science fiction is becoming reality as a mental sample has proven noteworthy recently in growing number of biologists are using eDNA for species detecting and monitoring not only common species, detection and biomonitoring, circumventing, or at least but also those that are endangered, invasive, or elusive. alleviating, the need to sight or sample living organisms. Particular attributes of so-called environmental DNA Such approaches are also accelerating the rate of discovery, (eDNA) analysis render it a potent tool for elucidating because no a priori information about the likely species mechanistic insights in ecological and evolutionary pro- found in a particular environment is required to identify cesses. -
Diverse Deep-Sea Anglerfishes Share a Genetically Reduced Luminous
RESEARCH ARTICLE Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment Lydia J Baker1*, Lindsay L Freed2, Cole G Easson2,3, Jose V Lopez2, Dante´ Fenolio4, Tracey T Sutton2, Spencer V Nyholm5, Tory A Hendry1* 1Department of Microbiology, Cornell University, New York, United States; 2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States; 3Department of Biology, Middle Tennessee State University, Murfreesboro, United States; 4Center for Conservation and Research, San Antonio Zoo, San Antonio, United States; 5Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and *For correspondence: that these bacteria have undergone extreme genome reduction although they are not vertically [email protected] (LJB); transmitted. -
CORE Arrigoni Et Al Millepora.Docx Click Here To
An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea Item Type Article Authors Arrigoni, Roberto; Maggioni, Davide; Montano, Simone; Hoeksema, Bert W.; Seveso, Davide; Shlesinger, Tom; Terraneo, Tullia Isotta; Tietbohl, Matthew; Berumen, Michael L. Citation Arrigoni R, Maggioni D, Montano S, Hoeksema BW, Seveso D, et al. (2018) An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs. Available: http://dx.doi.org/10.1007/s00338-018-01739-8. Eprint version Post-print DOI 10.1007/s00338-018-01739-8 Publisher Springer Nature Journal Coral Reefs Rights Archived with thanks to Coral Reefs Download date 05/10/2021 19:48:14 Link to Item http://hdl.handle.net/10754/629424 Manuscript Click here to access/download;Manuscript;CORE Arrigoni et al Millepora.docx Click here to view linked References 1 2 3 4 1 An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea 5 6 2 7 8 3 Roberto Arrigoni1, Davide Maggioni2,3, Simone Montano2,3, Bert W. Hoeksema4, Davide Seveso2,3, Tom Shlesinger5, 9 10 4 Tullia Isotta Terraneo1,6, Matthew D. Tietbohl1, Michael L. Berumen1 11 12 5 13 14 6 Corresponding author: Roberto Arrigoni, [email protected] 15 16 7 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah 17 18 8 University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 19 20 9 2Dipartimento di Scienze dell’Ambiente e del Territorio (DISAT), Università degli Studi di Milano-Bicocca, Piazza 21 22 10 della Scienza 1, Milano 20126, Italy 23 24 11 3Marine Research and High Education (MaRHE) Center, Faafu Magoodhoo 12030, Republic of the Maldives 25 26 12 4Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. -
Environmental DNA for Improved Detection and Environmental Surveillance of Schistosomiasis
Environmental DNA for improved detection and environmental surveillance of schistosomiasis Mita E. Senguptaa,1, Micaela Hellströmb,c, Henry C. Kariukid, Annette Olsena, Philip F. Thomsenb,e, Helena Mejera, Eske Willerslevb,f,g,h, Mariam T. Mwanjei, Henry Madsena, Thomas K. Kristensena, Anna-Sofie Stensgaardj,2, and Birgitte J. Vennervalda,2 aDepartment of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; bCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark; cAquabiota Water Research, SE-115 50, Sweden; dDepartment of Microbiology and Parasitology, Kenya Methodist University, 60200 Meru, Kenya; eDepartment of Bioscience, University of Aarhus, DK-8000 Aarhus C, Denmark; fDepartment of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom; gHuman Genetics Programme, Wellcome Trust Sanger Institute, Hinxton, SB10 1SA Cambridge, United Kingdom; hDanish Institute for Advanced Study, University of Southern Denmark, DK-5230 Odense M, Denmark; iNeglected Tropical Diseases Unit, Division of Communicable Disease Prevention and Control, Ministry of Health, Nairobi, Kenya; and jCenter for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Andrea Rinaldo, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, and approved March 18, 2019 (received for review September 21, 2018) Schistosomiasis is a water-based, infectious disease with -
A Comparative Study of Populations of Ectopleura Crocea and Ectopleura Ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean
Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Centro de Biologia Marinha - CEBIMar Artigos e Materiais de Revistas Científicas - CEBIMar 2014 A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean http://www.producao.usp.br/handle/BDPI/46763 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo Zootaxa 3753 (5): 421–439 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3753.5.2 http://zoobank.org/urn:lsid:zoobank.org:pub:B50B31BB-E140-4C6E-B903-1612B7B674AD A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean MAURÍCIO ANTUNES IMAZU1, EZEQUIEL ALE2, GABRIEL NESTOR GENZANO3 & ANTONIO CARLOS MARQUES1,4 1Departamento de Zoologia, Instituto de Biociências, USP, CEP 05508–090 São Paulo, SP, Brazil. E-mail : [email protected] 2Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, USP, CEP 05508–090 São Paulo, SP, Brazil 3Estación Costera Nágera, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Instituto de Investiga- ciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Mar del Plata – CONICET, Argentina. E-mail: [email protected] 4Corresponding author Abstract Ectopleura crocea (L. Agassiz, 1862) and Ectopleura ralphi (Bale, 1884) are two of the nominal tubulariid species re- corded for the Southwestern Atlantic Ocean (SWAO), presumably with wide but disjunct geographical ranges and similar morphologies. Our goal is to bring together data from morphology, histology, morphometry, cnidome, and molecules (COI and ITS1+5.8S) to assess the taxonomic identity of two populations of these nominal species in the SWAO. -
Gent Forms of Metalloproteinases in Hydra
Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin. -
Adhering Process Among Single Cells of Hydra 1699
The Journal of Experimental Biology 204, 1697–1702 (2001) 1697 Printed in Great Britain © The Company of Biologists Limited 2001 JEB3258 THE PROCESS OF CELL ADHESION AMONG DISSOCIATED SINGLE CELLS OF HYDRA: MORPHOLOGICAL OBSERVATIONS YASUHARU TAKAKU1,2,*, TAKAHIKO HARIYAMA1 AND YASUO TSUKAHARA2,3 1Graduate School of Information Sciences, Tohoku University, 2-1-1, Katahira, SKK Building, Sendai 980-8577, Japan, 2Photodynamics Research Center, The Institute of Physical and Chemical Research (RIKEN), 19-1399, Koeji, Nagamachi, Sendai 982-0842, Japan and 3Future University-Hakodate, 116-2, Kamedanakano, Hakodate 041-8655, Japan *Author for correspondence (e-mail: [email protected]) Accepted 26 February; published on WWW 23 April 2001 Summary Ultrastructural observations were made on the initial length of each separation distance in adherent cell pairs adhesion process at the adherent region of Hydra approached that reported previously for intact Hydra. The endodermal cell pairs brought into contact (following sums of lengths in both the closest and medium categories dissociation) using a three-dimensional laser manipulator. (as a proportion of total contact length) increased because Total contact length across the diameter of the adherent the length of cleavages (distances >25 nm) decreased region decreased during the period 10–60 min after initial significantly during the same time period. These results adhesion. However, the mean numbers of closest (<4 nm) suggest that adherent cell pairs undergo rapid, active and medium (5–25 nm) separation distances between membrane changes in the adherent region, which might be membranes (thought to be important in total cell associated with cell sorting. The possible significance of adhesion) were not significantly different.