Genere Badnavirus Classificazione

Total Page:16

File Type:pdf, Size:1020Kb

Genere Badnavirus Classificazione Dott. Francesco Fiume Genere Badnavirus Classificazione Gruppo IV (+ssRNA) Ordine Ortervirales Genere Badnavirus. Il genere Badnavirus, la cui specie tipo è Commelina yellow mottle virus (CYMV, comprende le seguenti specie: 1. Aglaonema bacilliform virus (ABV) 2. Banana streak GF virus (BSGFV) 3. Banana streak IM virus (BSIMV) 4. Banana streak MY virus (BSMYV) 5. Banana streak OL virus (BSOLV) 6. Banana streak UA virus (BSUAV) 7. Banana streak UI virus (BSUIV) 8. Banana streak UL virus (BSULV) 9. Banana streak UM virus (BSUMV) 10. Banana streak VN virus (BSVNV) 11. Bougainvillea chlorotic vein banding virus (BCVBV) 12. Cacao mild mosaic virus (CMMV) 13. Cacao swollen shoot CD virus (CSSCDV) 14. Cacao swollen shoot Togo A virus (CSSTAV) 15. Cacao swollen shoot virus (CSSV) 16. Cacao yellow vein banding virus (CYVBV) 17. Canna yellow mottle virus (CaYMV) 18. Citrus yellow mosaic virus (CYMV) 19. Commelina yellow mottle virus (CoYMV) 20. Dioscorea bacilliform AL virus (DBALV) 21. Dioscorea bacilliform RT virus 1 (DBRTV1) 22. Dioscorea bacilliform RT virus 2 (DBRTV2) 23. Dioscorea bacilliform SN virus (DBSNV) 24. Dioscorea bacilliform TR virus (DBTRV) 25. Fig badnavirus 1 (FBaV-1) 26. Gooseberry vein banding associated virus (GVBaV) 27. Grapevine Roditis leaf discoloration-associated virus (GRLDaV) 28. Grapevine vein clearing virus (GVCV) 29. Kalanchoe top-spotting virus (KTSV) 30. Mulberry badnavirus 1 (MBV-1) 31. Pagoda yellow mosaic associated virus (PYMAV) 32. Pineapple bacilliform CO virus (PBCOV) 33. Pineapple bacilliform ER virus (PBERV) 34. Piper yellow mottle virus (PYMV) 35. Rubus yellow net virus (RYNV) 36. Schefflera ringspot virus (SRV) 37. Spiraea yellow leafspot virus (SYLSV) 38. Sugarcane bacilliform Guadeloupe A virus (SCBGAV) 39. Sugarcane bacilliform Guadeloupe D virus (SCBGDV) 40. Sugarcane bacilliform IM virus (SBIMV) 41. Sugarcane bacilliform MO virus (SBMOV) 42. Sweet potato pakakuy virus (SPPV) 43. Taro bacilliform CH virus (TBCHV) 44. Taro bacilliform virus (TBV) 45. Wisteria badnavirus 1 (WBV1) 46. Yacon necrotic mottle virus (YNMoV). Le piante sono gli ospiti naturali di questo virus. Ci sono attualmente 46 specie in questo genere le cui malattie associate includono i seguenti sintomi: clorosi fogliare, necrosi delle radici, benda delle vene rosse in foglie giovani, piccoli baccelli chiazzati, gonfiori nella radice e nel fusto cui può seguire la morte delle piante. L'infezione riduce la resa del 25% entro un anno, del 50% entro due anni e di solito le piante muoiono entro 3-4 anni. Distribuzione geografica Il virus è presente nella sottoregione dell'Africa occidentale nei paesi della Costa d’Avorio, Ghana, Togo e Nigeria (figura 1). Figura 1 – Distribuzione geografica dei Badnavirus. Struttura del virus e ciclo vitale I Badnavirus sono privi di pericapside, con geometrie bacilliformi. Il genoma è circolare con segmentazione monopartitica. Le particelle virali hanno una larghezza di circa 30 nm e una lunghezza di 90-900 nm (figura 2). 2 Figura 2 - Particelle del genere Badnavirus, senza pericapside, bacilliformi, di 30 nm di larghezza e 90-900 nm di lunghezza. I genomi sono circolari e non segmentati (figura 3). La replicazione virale è nucleare/citoplasmatica. L'ingresso nella cellula ospite si ottiene con l’attacco delle proteine virali ai recettori ospiti, che mediano l'endocitosi. La replica è quella del modello di replica del dsDNA (RT, reverse transcriptasi). La trascrizione basata sul DNA, in particolare la trascrizione dsdna (rt) è il metodo di trascrizione. Il virus esce dalla cellula ospite mediante l'esportazione di pori nucleari ed il movimento virale guidato dai tubuli. Le piante fungono da ospiti naturali. Il virus viene trasmesso tramite un vettore rappresentato da varie specie di cocciniglie, anche se, in generale, i percorsi della trasmissione sono vettoriali, meccanici ed attraverso i semi. Figura 3 – Genoma dei Badnavirus, monopartito, a DNA circolare aperto a doppio filamento, di circa 7200 paia di basi, con discontinuità in entrambi i filamenti: uno nel filamento trascritto e tre in quello non trascritto. La poliproteina ORF1 è presumibilmente tagliata in diverse catene da proteasi virali. La replicazione virale avviene secondo le seguenti fasi: 1. L’attacco delle proteine virali ai recettori ospiti media l’entrata virale nella cellula ospite. 3 2. Il dsDNA virale viene rilasciato nel nucleo dove viene trascritto dalla polimerasi II dell’RNA dell’ospite. 3. La traduzione dell'RNA produce proteine virali. 4. L'RNA genomico è retrotrascritto nel citoplasma in nuovi genomi di dsDNA. 5. I genomi sono incapsidati con la proteina capsidica, rilasciando nuovi virioni. Organizzazione del genoma e ciclo di replicazione Nella figura 4 è riportato il ciclo di Cauliflower mosaic virus (CaMV), un badnavirus il cui genoma è lungo da 7,2 a 9,2 kb volte quello do in DNA circolare con sovrapposizione del singolo filamento. Questi sono i segni dell'inizio della sintesi del DNA positivo e negativo per la trascrizione inversa (Hohn et Rothnie, 2013 ). La trascrizione inversa si riscontra all'interno del capside del virus con il risultato che il DNA viene trasferito al nucleo, dove le discontinuità vengono riparate ed i mini- cromosomi sono formati dall'associazione del DNA supercoltivato chiuso covalentemente con le proteine istoniche (Hull, 2002). Figura 4 - Ciclo di replicazione dei pararetrovirus delle piante (partenza in senso orario a 12 ore): una particella virale contenente DNA circolare aperto è entrato nella cellula. Il suo DNA è importato nel nucleo, dove gli spazi vuoti vengono riparati per produrre dsDNA superarrotolato. Viene prodotto RNA terminale, ridondante e trasportato nel citoplasma. Le copie dell'RNA sono tradotte in proteine virali e/o impaccate come due copie in particelle virali. Avviene la trascrizione inversa. Il dsDNA circolare aperto risultante rientra nel ciclo di replica. In basso a sinistra viene mostrato come la ricombinazione può avvenire per modello commutazione. A destra viene mostrato quanto raramente i frammenti del DNA del virus incorporino nella pianta genoma, che porta a sequenze virali endogene. 4 Una regione intergenomica lunga da 631 a 1177 pb (figura 5) include un promotore ed un segnale di poliadenilazione. Figura 5 - Organizzazione del genoma di badnavirus rappresentativi con un numero variabile di ORF. Banana streak MY virus (BSMYV); Bougainvillea spectabilis chlorotic vein banding virus (BsCVBV); Cacao swollen shoot virus (CSSV); Citrus yellow mosaic virus (CYMV), Rubus yellow net virus (RYNV). Il DNA mini-cromosomico viene quindi trascritto utilizzando l'RNA dipendente dalla polimerasi II del DNA codificato dall'ospite, creando un RNA terminale ridondante che funge da pregenoma e messaggero policistronico del RNA. La ridondanza viene creata ignorando il segnale di poliadenilazione sul DNA circolare, durante il primo incontro con la RNA polimerasi e riconoscendolo al secondo (Sanfaçon et Hohn, 1990). Nella fase finale della replicazione, l'RNA pregenomico viene riconvertito in dsDNA mediante l'azione di una trascrittasi inversa. La sintesi del DNA a singolo filamento, senso (-), è innescata da tRNAmet e di senso (+) del DNA da prodotti di clivaggio ricchi in purine rimasti dopo la digestione con RNasi H del pregenomico RNA (Medberry et al., 1990; Hohn, et Rothnie, 2013). L'ORF I dei badnavirus contiene da 399 a 927 bp a seconda della specie. Nel membro del tipo 5 ComYMV, ORF I è lungo 602 bp e si traduce in un polipeptide di 23 kD, che si è dimostrato essere (Cheng et al., 1996) associato al virione (virion-associated). L'ORF II è il più piccolo, che va da 312 a 561 bp. In CSSV, il suo prodotto è stato identificato come proteina legante l'acido nucleico (Jacquot et al 1996); ComYMV, è stato anche mostrato di legarsi al capside del virus (Medberry et al., 1990; Cheng et al., 1996). ORF III è il più grande ORF, di lunghezza compresa tra 5100 e 6000 bp. Codifica una poliproteina che viene scissa in quattro o cinque prodotti quali: 1. proteina del capside, 2. aspartato proteasi, 3. transcriptasi inversa, 4. RNasi H 5. una presunta proteina di movimento cellula-cellula (Medberry et al., 1990; Jacquot et al., 1996; Hohn et Fütterer, 1997). La scissione di questa poliproteina nelle sue subunità funzionali è raggiunta dalla proteasi aspartica (Hohn et Fütterer, 1997). La proteina del capside include un motivo Cys, come nella maggior parte degli elementi di trascrizione inversa, ed un secondo motivo Cys (CX2CX11CX2CX4CX2C) trovato solo nei membri dei generi. Alcuni badnavirus hanno ORF aggiuntivi: Piper yellow mottle virus (PYMoV), Bougainvillea spectabilis chlorotic vein-banding virus (BsCVBV), Dioscorea bacilliform SN virus (DBSNV), Grapevine Roditis leaf discoloration-associated virus (GRLDaV), Taro bacilliform virus (TaBV) e Yacon necrotic mottle virus (YNMoV) hanno un ORF aggiuntivo (Hany et al., 2014; Lee et al., 2015; Maliogka et al., 2015; Seal et al., 2007; Wang et al., 2016; Yang et al., 2003). Pagoda yellow mosaic associated virus (PYMAV) ne ha due (Hagen et al., 1993; Wang et al., 2014); Cymbidium mosaic virus (CYMV) e Taro bacilliform CH virus (TaBCHV) ne hanno tre (Borah et al., 2009; Huang et al., 2001; Kazmi et al., 2015); DrMV e RYNV hanno quattro ORF aggiuntivi. Due di questi ultimi sono posizionati sul filamento antisenso (Su et al., 2007; Kalischukng et al., 2013). Non è noto se questi ORF siano espressi, né quale potrebbe essere la loro funzione. Le trascrizioni dei pararetrovirus delle piante hanno una lunghezza di circa 600 nt, sono altamente strutturate, contengono diversi ORF corti, con la possibilità di formare una grande struttura, stem-loop (conformazione intramolecolare basata sull'accoppiamento delle basi azotate che può insorgere a livello di un DNA a singolo filamento) nota per essere la traduzione transitoria. La formazione di questa struttura porta il primo ORF lungo nella stretta vicinanza spaziale di un ORF prossimale 5' corto che termina a 5-10 nt a monte dell’elemento strutturale stabile. Questo elemento viene deviato dal ribosoma di scansione e porta alla traduzione del primo lungo ORF (Fütterer et al., 1993; Ryabova et Hohn, 2000).
Recommended publications
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M
    Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin, Lyuba Ryabova To cite this version: Mikhail M. Pooggin, Lyuba Ryabova. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.644. 10.3389/fmicb.2018.00644. hal-02289592 HAL Id: hal-02289592 https://hal.archives-ouvertes.fr/hal-02289592 Submitted on 16 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License fmicb-09-00644 April 9, 2018 Time: 16:25 # 1 REVIEW published: 10 April 2018 doi: 10.3389/fmicb.2018.00644 Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin1* and Lyubov A. Ryabova2* 1 INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France, 2 Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms.
    [Show full text]
  • Genomic Characterization of the Cacao Swollen Shoot Virus Complex and Other Theobroma Cacao-Infecting Badnaviruses
    Genomic Characterization of the Cacao Swollen Shoot Virus Complex and other Theobroma Cacao-Infecting Badnaviruses Item Type text; Electronic Dissertation Authors Chingandu, Nomatter Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 07:25:04 Link to Item http://hdl.handle.net/10150/621859 GENOMIC CHARACTERIZATION OF THE CACAO SWOLLEN SHOOT VIRUS COMPLEX AND OTHER THEOBROMA CACAO-INFECTING BADNAVIRUSES by Nomatter Chingandu __________________________ A Dissertation Submitted to the Faculty of the SCHOOL OF PLANT SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN PLANT PATHOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Nomatter Chingandu, entitled “Genomic characterization of the Cacao swollen shoot virus complex and other Theobroma cacao-infecting badnaviruses” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________ Date: 7.27.2016 Dr. Judith K. Brown _______________________________________________________ Date: 7.27.2016 Dr. Zhongguo Xiong _______________________________________________________ Date: 7.27.2016 Dr. Peter J. Cotty _______________________________________________________ Date: 7.27.2016 Dr. Barry M. Pryor _______________________________________________________ Date: 7.27.2016 Dr. Marc J. Orbach Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Badnaviruses: the Current Global Scenario
    viruses Review Badnaviruses: The Current Global Scenario Alangar Ishwara Bhat 1, Thomas Hohn 2,* and Ramasamy Selvarajan 3 1 ICAR-Indian Institute of Spices Research, Kozhikode 673012, Kerala, India; [email protected] 2 UNIBAS, Botanical Institute, 4056 Basel, Switzerland 3 ICAR-National Research Centre for Banana, Tiruchirapalli 620102, Tamil Nadu, India; [email protected] * Correspondence: [email protected]; Tel.: +41-61-701-7502 Academic Editor: Alexander Ploss Received: 9 March 2016; Accepted: 25 May 2016; Published: 22 June 2016 Abstract: Badnaviruses (Family: Caulimoviridae; Genus: Badnavirus) are non-enveloped bacilliform DNA viruses with a monopartite genome containing about 7.2 to 9.2 kb of dsDNA with three to seven open reading frames. They are transmitted by mealybugs and a few species by aphids in a semi-persistent manner. They are one of the most important plant virus groups and have emerged as serious pathogens affecting the cultivation of several horticultural crops in the tropics, especially banana, black pepper, cocoa, citrus, sugarcane, taro, and yam. Some badnaviruses are also known as endogenous viruses integrated into their host genomes and a few such endogenous viruses can be awakened, e.g., through abiotic stress, giving rise to infective episomal forms. The presence of endogenous badnaviruses poses a new challenge for the fool-proof diagnosis, taxonomy, and management of the diseases. The present review aims to highlight emerging disease problems, virus characteristics, transmission, and diagnosis of badnaviruses. Keywords: badnavirus; integration; endogenous badnavirus; detection; distribution; host range; transmission 1. Introduction Plant pararetroviruses (Family: Caulimoviridae) contain eight genera with two distinct virion morphologies: Caulimovirus (10 species), Soymovirus (one species), Solendovirus (two species), Cavemovirus (two species), Petuvirus (one species), and Rosadnavirus (one species) have isometric particles, whereas members of Badnavirus (32 species) and Tungrovirus (one species) have bacilliform ones.
    [Show full text]
  • Characterization of Grapevine Vein Clearing Virus Expression
    CHARACTERIZATION OF GRAPEVINE VEIN CLEARING VIRUS EXPRESSION STRATEGY AND DEVELOPMENT OF CAULIMOVIRUS INFECTIOUS CLONES _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Plant, Insect and Microbial Sciences _____________________________________________________ by YU ZHANG Dr. James E. Schoelz, Dissertation Supervisor DECEMBER 2016 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled CHARACTERIZATION OF GRAPEVINE VEIN CLEARING VIRUS EXPRESSION STRATEGY AND DEVELOPMENT OF CAULIMOVIRUS INFECTIOUS CLONES Presented by Yu Zhang A candidate for the degree of doctor of philosophy In Plant, Insect and Microbial Sciences And hereby certify that, in their opinion, it is worthy of acceptance. Dr. James E. Schoelz, PhD Dr. Wenping Qiu, PhD Dr. David G. Mendoza-Cózatl, PhD Dr. Trupti Joshi, PhD ACKNOWLEDGEMENTS I wish to express my appreciation to my advisor, Dr. James Schoelz, for his constant guidance and support during my doctoral studies. He is a role model to me as an enthusiastic and hard working scientist. Although I will leave MU, I will keep what I learnt from him with my future life. I owe thanks to members of my doctoral committee, Dr. Wenping Qiu, Dr. David G. Mendoza-Cózatl, and Dr. Trupti Joshi, for their helpful comments and suggestions. I also want to thank Dr. Dmitry Korkin, who served in my committee for one year and helped me with bioinformatics and data interpretation. Thanks are due to my colleagues in the lab, Dr. Carlos Angel, Dr. Andres Rodriguez, Mustafa Adhab, and Mohammad Fereidouni, who I really enjoyed working with.
    [Show full text]
  • XXVI Brazilian Congress of Virology
    Virus Reviews and Research Journal of the Brazilian Society for Virology Volume 20, October 2015, Supplement 1 Annals of the XXVI Brazilian Congress of Virology & X Mercosur Meeting of Virology October, 11 - 14, 2015, Costão do Santinho Resort, Florianópolis, Santa Catarina, Brazil Editors Edson Elias da Silva Fernando Rosado Spilki BRAZILIAN SOCIETY FOR VIROLOGY BOARD OF DIRECTORS (2015-2016) Officers Area Representatives President: Dr. Bergmann Morais Ribeiro Basic Virology (BV) Vice-President: Dr. Célia Regina Monte Barardi Dr. Luciana Jesus da Costa, UFRJ (2015 – 2016) First Secretary: Dr. Fernando Rosado Spilki Dr. Luis Lamberti Pinto da Silva, USP-RP (2015 – 2016) Second Secretary: Dr. Mauricio Lacerda Nogueira First Treasurer: Dr. Alice Kazuko Inoue Nagata Environmental Virology (EV) Second Treasurer: Dr. Zélia Inês Portela Lobato Dr. Adriana de Abreu Correa, UFF (2015 – 2016) Executive Secretary: Dr Fabrício Souza Campos Dr. Jônatas Santos Abrahão, UFMG (2015 – 2016 Human Virology (HV) Fiscal Councilors Dr. Eurico de Arruda Neto, USP-RP (2015 – 2016) Dr. Viviane Fongaro Botosso Dr. Paula Rahal, UNESP (2015 – 2016) Dr. Davis Fernandes Ferreira Dr. Maria Ângela Orsi Immunobiologicals in Virology (IV) Dr. Flávio Guimarães da Fonseca, UFMG (2015 – 2016) Dr. Jenner Karlisson Pimenta dos Reis, UFMG (2015 – 2016) Plant and Invertebrate Virology (PIV) Dr. Maite Vaslin De Freitas Silva, UFRJ (2015 – 2016) Dr. Tatsuya Nagata, UNB (2015 – 2016) Veterinary Virology (VV) Dr. João Pessoa Araújo Junior, UNESP (2015 – 2016) Dr. Marcos Bryan Heinemann, USP (2015 – 2016) Address Universidade Feevale, Instituto de Ciências da Saúde Estrada RS-239, 2755 - Prédio Vermelho, sala 205 - Laboratório de Microbiologia Molecular Bairro Vila Nova - 93352-000 - Novo Hamburgo, RS - Brasil Phone: (51) 3586-8800 E-mail: F.R.Spilki - [email protected] http://www.vrrjournal.org.br Organizing Committee Dr.
    [Show full text]
  • Banana Streak Badnavirus (BSV) in South Africa: Incidence, Transmission and the Development of an Antibody Based Detection System
    University of Pretoria etd, Meyer J B (2006) i Banana streak badnavirus (BSV) in South Africa: incidence, transmission and the development of an antibody based detection system Jacolene Bee Meyer Submitted in partial fulfillment of the requirements of the degree Master of Science in the Faculty of Natural & Agricultural Science University of Pretoria Pretoria October 2005 i University of Pretoria etd, Meyer J B (2006) ii ACKNOWLEGEMENTS I would like to thank: My collegues and friends at Du Roi Invitrolab, especially Anne Davson, Mark Hassenkamp, Dr. John Robinson and the rest of the team for their advice, support, financial assistance as well as providing plant material and tissue culture equipment Prof. Gerhard Pietersen for his valuable inputs, proofreading of the thesis, advice and motivation The personnel at the University of Pretoria for their inputs with special thanks to Prof. Louis Nel and Wanda Markotter, as well as my co-students; Orienka Koch, Peter Coetzee and Liz Botha. The personnel at ARC-PPRI with special thanks to Anna Ndala for assistance in sample preparations and Elize Jooste for proofreading certain chapters of the manuscript Kassie Kasdorf for his inputs and for all Electron microscopy work done Connie Frazer for her assistance in the collection of samples from the Burgershall and Kiepersol areas as well as the banana growers who made their farms available for sampling; Rodney Hearne, Jan Prinsloo, Piet Knipe, Flip Basson,, Hannes van der Walt and Dave Hall. The personnel of OVI for their technical and practical
    [Show full text]
  • Endophytic Virome
    bioRxiv preprint doi: https://doi.org/10.1101/602144; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Endophytic Virome 2 3 Saurav Das1,2*, Madhumita Barooah1 and Nagendra Thakur3 4 1 Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 5 India 6 2 Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Nebraska, USA 7 3 Department of Microbiology, Sikkim University, 6th Mile, Tadong-737102, Gangtok, Sikkim, 8 India 9 10 *Corresponding Author: Dr. Saurav Das, Department of Agronomy and Horticulture, University 11 of Nebraska – Lincoln, Nebraska, USA, Email : [email protected] / [email protected], 12 Phone: +1-308-631-1486 13 14 Abstract 15 Endophytic microorganisms are well established for their mutualistic relationship and plant 16 growth promotion through production of different metabolites. Bacteria and fungi are the major 17 group of endophytes which were extensively studied. Virus are badly named for centuries and 18 their symbiotic relationship was vague. Recent development of omics tools especially next 19 generation sequencing has provided a new perspective towards the mutualistic viral relationship. 20 Endogenous virus which has been much studied in animal and are less understood in plants. In 21 this study, we described the endophytic viral population of tea plant root. Viral population (9%) 22 were significantly less while compared to bacterial population (90%). Viral population of tea 23 endophytes were mostly dominated by endogenous pararetroviral sequences (EPRV) derived 24 from Caulimoviridae and Geminiviridae.
    [Show full text]
  • Abstract Booklet
    World Society for Virology | 2021| Virtual | Abstracts Platinum Sponsor Gold Sponsors Silver Sponsor The World Society for Virology (WSV) is a non-profit organization established in 20171 to connect virologists around the world with no restrictions or boundaries, and without membership fees. The WSV brings together virologists regardless of financial resources, ethnicity, nationality or geographical location to build a network of experts across low-, middle- and high-income countries.2 To facilitate global interactions, the WSV makes extensive use of digital communication platforms.3-8 The WSV’s aims include fostering scientific collaboration, offering free educational resources, advancing scientists’ recognition and careers, and providing expert virology guidance. By fostering cross-sectional collaboration between experts who study viruses of humans, animals, plants and other organisms as well as leaders in the public health and private sectors, the WSV strongly supports the One Health approach. The WSV is a steadily growing society with currently more than 1,480 members from 86 countries across all continents. Members include virologists at all career stages including leaders in their field as well as early career researchers and postgraduate students interested in virology. The WSV has established partnerships with The International Vaccine Institute, the Elsevier journal Virology (the official journal of the WSV) and an increasing number of other organizations including national virology societies in China, Colombia, Finland, India, Mexico, Morocco and Sweden. Abdel-Moneim AS, Varma A, Pujol FH, Lewis GK, Paweska JT, Romalde JL, Söderlund-Venermo M, Moore MD, Nevels MM, Vakharia VN, Joshi V, Malik YS, Shi Z, Memish ZA (2017) Launching a Global Network of Virologists: The World Society for Virology (WSV) Intervirology 60: 276–277.
    [Show full text]
  • Discover and Analysis of Grapevine Vein-Clearing Virus in Ampelopsis Cordata
    BearWorks MSU Graduate Theses Summer 2016 Discover And Analysis Of Grapevine Vein-Clearing Virus In Ampelopsis Cordata Sylvia Marie Petersen As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Plant Sciences Commons Recommended Citation Petersen, Sylvia Marie, "Discover And Analysis Of Grapevine Vein-Clearing Virus In Ampelopsis Cordata" (2016). MSU Graduate Theses. 2974. https://bearworks.missouristate.edu/theses/2974 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DISCOVERY AND ANALYSIS OF GRAPEVINE VEIN-CLEARING VIRUS IN AMPELOPSIS CORDATA A Masters Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Plant Science By Sylvia M Petersen July 2016 Copyright 2016 by Sylvia Marie Petersen ii DISCOVERY AND ANALYSIS OF GRAPEVINE VEIN-CLEARING VIRUS IN AMPELOPSIS CORDATA Agriculture Missouri State University, July 2016 Master of Science Sylvia M Petersen ABSTRACT A recent threat to the sustainability of grape production is Grapevine vein-clearing virus (GVCV), the first DNA virus discovered in grapevines.
    [Show full text]
  • Mesh 2016 Hierarchy Changes This Report Shows Changes to Parent Child Relationships Between Mesh Headings
    MeSH 2016 Hierarchy Changes This report shows changes to parent child relationships between MeSH headings. Note that existing PubMed searches with the "Parent Heading" will now include or exclude the Child heading depending upon whether it is added or removed respectively.
    [Show full text]