Molecular Characterization and Diagnosis of Badnaviruses Infecting Yams in the South Pacific

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Characterization and Diagnosis of Badnaviruses Infecting Yams in the South Pacific Molecular characterization and diagnosis of badnaviruses infecting yams in the South Pacific by Amit Chand Sukal Bachelor of Science (Biology/Chemistry) Master of Science (Biology) Centre for Tropical Crops and Biocommodities School of Earth, Environment and Biological Sciences Faculty of Science and Technology A thesis submitted for the degree of Doctor of Philosophy Queensland University of Technology 2018 This page is intentionally left blank ii Abstract Yams (Dioscorea spp.) are economically important, annual or perennial tuber-bearing, tropical plants. Globally yam ranks as the fourth most important root crop by production and is a staple food crop for millions of people in Africa, the Caribbean, South America, Asia and the Pacific. In Pacific Island countries (PICs), the production and utilization of yams is limited by several factors including diseases and the lack of genetic diversity. An important global in vitro collection of yam germplasm is conserved in tissue culture by the Pacific Community’s (SPC) Centre for Pacific Crops and Trees (CePaCT) in Fiji. Evaluation of this germplasm and its distribution to PICs holds the key to improving production. However, similar to other vegetatively propagated crops, yam has a tendency to accumulate and perpetuate tuber-borne fungal and viral diseases. Although the tissue culture process eliminates fungal pathogens, viruses remain an issue. As such, quarantine regulations prohibit the movement of the yam germplasm from the SPC-CePaCT germplasm collection to other countries due to the risks associated with movement of untested and/or virus-infected material. To comply with these standards, sensitive diagnostic tests are needed to enable the virus indexing of yam germplasm. Several different viruses are known to infect yams, but badnaviruses, namely the Dioscorea bacilliform viruses (DBVs), remain the least studied and the most difficult to diagnose. The limited studies conducted on DBVs in PICs, using PCR-based studies, suggest that they are prevalent and are highly diverse. This high genetic variability hinders the development of reliable PCR-based diagnostic tests. DBV diagnostics is further complicated by the fact that badnavirus sequences are integrated in the genomes of some yam cultivars leading to false positives using PCR-based tests. Further, since all studies on DBV in the Pacific have been PCR- based, the existence of episomal DBV in Pacific yam remains unknown. Therefore, iii the aims of this PhD were to identify and characterize the diversity of episomal badnaviruses infecting yams in the Pacific to support the development of diagnostic protocols. A rolling circle amplification (RCA)-based approach, previously used for the characterization of episomal banana streak viruses (BSVs) from banana, was used in initial screening of yam accessions from SPC-CePaCT. Using RCA, two novel badnaviruses, namely Dioscorea bacilliform AL virus 2 (DBALV2) from Papua New Guinea (PNG) and Dioscorea bacilliform ES virus (DBESV) from Fiji were amplified and characterized. In addition, an isolate of Dioscorea bacilliform RT virus 2 (DBRTV2) was characterized from Samoa, which is the first report from the Pacific. Further, a novel viral sequence, tentatively named Dioscorea nummularia-associated virus (DNUaV), infecting D. nummularia from Samoa was identified. The genome size, organization, and the presence of conserved amino acid domains of DNUaV were found to be characteristic of members of the family Caulimoviridae. However, based on the criteria used for the demarcation of species in the family by the International Committee on Taxonomy of Viruses (ICTV), DNUaV is likely representative of a member of a new genus within the Caulimoviridae family. This was further supported by pairwise sequence analysis using pol gene sequences which showed 42 to 58% nucleotide and 27 to 53% amino acid identity between DNUaV and type members of other recognized genera within the family Caulimoviridae. Despite some success in using RCA for the characterization of DBVs from Pacific yams, in some cases the existing protocols yielded inconsistent results and produced background amplification of host circular DNA, such as plastids. Therefore, a suite of badnavirus-specific primers was designed from published sequences and used to optimize badnavirus-biased RCA protocols, such as directed-RCA (D-RCA) iv and specific primed-RCA (SP-RCA), using a commercially available phi29 polymerase. The optimized badnavirus RCA protocols performed up to 80-fold better than the commercially available TempliPhi kit-based random primed-RCA (RCA) based on Illumina MiSeq sequencing analysis. D-RCA was found to be the best protocol for badnavirus genome amplification and was subsequently used to test 224 yam accessions in the SPC-CePaCT Pacific yam germplasm collection including D. alata (185), D. esculenta (31), D. bulbifera (6), and one each of D. transversa and D. trifida. Thirty-five samples from three countries (PNG, Tonga and Vanuatu), representing five yam species (D. alata, D. bulbifera, D. esculenta, D. transversa and D. trifida) produced restriction profiles indicative of badnaviruses following digestion with EcoRI and SphI. Twenty samples were selected, and the SphI digested RCA products were cloned and sequenced using Sanger sequencing (n=4) or undigested RCA products sequenced using Illumina MiSeq (n=16) to obtain full length genome sequences. A total of 10 Dioscorea bacilliform AL virus (DBALV) genomes were generated from Vanuatu D. alata (n=2), D. bulbifera (n=3), D. esculenta (n=2), D. transversa (n=1) and D. trifida (n=1), or Tonga D. esculenta (n=1), while an additional 10 DBALV2 genomes were generated from PNG D. alata. This study also revealed that RCA, in combination with restriction analysis and/or Sanger sequencing and/or Next Generation Sequencing (NGS), could be successfully used for the detection and characterization of DBVs from Pacific yams. Such a strategy can now be used for the detection and further characterization of DBVs in the Pacific and other regions. An understanding of the episomal virus diversity infecting Pacific yam will help the further improvement of diagnostic protocols. This study has generated novel data that will support the global community in DBV diagnostics and also provides a foundation for the development of a consolidated v global diagnostic approach to enable the routine testing of yam germplasm. In the immediate future, the results of this study will enable the indexing of the yam collections, currently conserved at SPC-CePaCT, for DBVs and support the safe distribution and utilization of yam germplasm. Keywords: Dioscorea bacilliform virus (DBV), Dioscorea bacilliform AL virus (DBALV), Dioscorea bacilliform AL virus 2 (DBALV2), Dioscorea bacilliform ES virus (DBESV), Dioscorea bacilliform RT virus 2 (DBRTV2), rolling circle amplification (RCA), random-primed RCA (RP-RCA), directed RCA (D-RCA), specific-primed RCA (SP-RCA), next generation sequencing (NGS) vi Publications Peer reviewed publications related to this PhD thesis 1. Sukal, A., Kidanemariam, D., Dale, J., James, A. and Harding, R. (2017). Characterization of badnaviruses infecting Dioscorea spp. in the Pacific reveals two putative novel species and the first report of dioscorea bacilliform RT virus 2. Virus Research 238, 29–34. 2. Sukal, A., Kidanemariam, D., Dale, J., Harding, R. and James, A. (2018). Characterization of a novel member of the family Caulimoviridae infecting Dioscorea nummularia in the Pacific, which may represent a new genus of dsDNA plant viruses. PLos ONE 13, 1-12. 3. Sukal, A., Kidanemariam, D., Dale, J., Harding, R. and James, A. (2018). An improved degenerate-primed rolling circle amplification and next-generation sequencing approach for the detection and characterization of badnaviruses. Formatted for submission to Virology. 4. Sukal, A., Kidanemariam, D., Dale, J., Harding, R. and James, A. (2018). Characterization and genetic diversity of Dioscorea bacilliform viruses infecting Pacific yam germplasm collections. Formatted for submission to Plant Pathology. vii This page is intentionally left blank viii Table of Contents Abstract ............................................................................................................. ii Publications ................................................................................................... vii Table of Contents ........................................................................................... ix List of Figures ............................................................................................... xv List of Tables ............................................................................................... xvii List of Abbreviations.................................................................................... xix Statement of Original Authorship ............................................................. xxi Acknowledgements ..................................................................................... xxii Chapter 1 Introduction ........................................................................................................ 1 1.1 Description of scientific problem investigated ............................................ 1 1.2 Overall objectives of the study ..................................................................... 2 1.3 Specific aims of the study ............................................................................ 2 1.4 Account of scientific progress linking
Recommended publications
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Diversity of Viruses in Hard Ticks (Ixodidae) from Select Areas of a Wildlife-Livestock Interface Ecosystem at Mikumi National Park, Tanzania
    American Journal of BioScience 2020; 8(6): 150-157 http://www.sciencepublishinggroup.com/j/ajbio doi: 10.11648/j.ajbio.20200806.12 ISSN: 2330-0159 (Print); ISSN: 2330-0167 (Online) Diversity of Viruses in Hard Ticks (Ixodidae) from Select Areas of a Wildlife-livestock Interface Ecosystem at Mikumi National Park, Tanzania Donath Damian 1, 3, * , Modester Damas 1, Jonas Johansson Wensman 2, Mikael Berg 3 1Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania 2Section of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden 3Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden Email address: *Corresponding author To cite this article: Donath Damian, Modester Damas, Jonas Johansson Wensman, Mikael Berg. Diversity of Viruses in Hard Ticks (Ixodidae) from Select Areas of a Wildlife-livestock Interface Ecosystem at Mikumi National Park, Tanzania. American Journal of BioScience . Vol. 8, No. 6, 2020, pp. 150-157. doi: 10.11648/j.ajbio.20200806.12 Received : December 3, 2020; Accepted : December 16, 2020; Published : December 28, 2020 Abstract: Many of the recent emerging infectious diseases have occurred due to the transmission of the viruses that have wildlife reservoirs. Arthropods, such as ticks, are known to be important vectors for spreading viruses and other pathogens from wildlife to domestic animals and humans. In the present study, we explored the diversity of viruses in hard ticks (Ixodidae) from select areas of a wildlife-livestock interface ecosystem at Mikumi National Park, Tanzania using a metagenomic approach. cDNA and DNA were amplified with random amplification and Illumina high-throughput sequencing was performed.
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Sequences and Phylogenies of Plant Pararetroviruses, Viruses and Transposable Elements
    Hansen and Heslop-Harrison. 2004. Adv.Bot.Res. 41: 165-193. Page 1 of 34. FROM: 231. Hansen CN, Heslop-Harrison JS. 2004 . Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Advances in Botanical Research 41 : 165-193. Sequences and Phylogenies of 5 Plant Pararetroviruses, Viruses and Transposable Elements CELIA HANSEN AND JS HESLOP-HARRISON* DEPARTMENT OF BIOLOGY 10 UNIVERSITY OF LEICESTER LEICESTER LE1 7RH, UK *AUTHOR FOR CORRESPONDENCE E-MAIL: [email protected] 15 WEBSITE: WWW.MOLCYT.COM I. Introduction ............................................................................................................2 A. Plant genome organization................................................................................2 20 B. Retroelements in the genome ............................................................................3 C. Reverse transcriptase.........................................................................................4 D. Viruses ..............................................................................................................5 II. Retroelements........................................................................................................5 A. Viral retroelements – Retrovirales....................................................................6 25 B. Non-viral retroelements – Retrales ...................................................................7 III. Viral and non-viral elements................................................................................7
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M
    Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin, Lyuba Ryabova To cite this version: Mikhail M. Pooggin, Lyuba Ryabova. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.644. 10.3389/fmicb.2018.00644. hal-02289592 HAL Id: hal-02289592 https://hal.archives-ouvertes.fr/hal-02289592 Submitted on 16 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License fmicb-09-00644 April 9, 2018 Time: 16:25 # 1 REVIEW published: 10 April 2018 doi: 10.3389/fmicb.2018.00644 Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin1* and Lyubov A. Ryabova2* 1 INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France, 2 Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms.
    [Show full text]
  • Plant Virus Evolution
    Marilyn J. Roossinck Editor Plant Virus Evolution Plant Virus Evolution Marilyn J. Roossinck Editor Plant Virus Evolution Dr. Marilyn J. Roossinck The Samuel Roberts Noble Foundation Plant Biology Division P.O. Box 2180 Ardmore, OK 73402 USA Cover Photo: Integrated sequences of Petunia vein cleaning virus (in red) are seen in a chromosome spread of Petunia hybrida (see Chapter 4). ISBN: 978-3-540-75762-7 e-ISBN: 978-3-540-75763-4 Library of Congress Control Number: 2007940847 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface The evolution of viruses has been a topic of intense investigation and theoretical development over the past several decades. Numerous workshops, review articles, and books have been devoted to the subject.
    [Show full text]
  • Patterns of Transmission and Horizontal Gene
    Patterns of transmission and horizontal gene transfer in the Dioscorea sansibarensis leaf symbiosis revealed by whole-genome sequencing Bram Danneels, Juan Viruel, Krista Mcgrath, Steven Janssens, Nathan Wales, Paul Wilkin, Aurélien Carlier To cite this version: Bram Danneels, Juan Viruel, Krista Mcgrath, Steven Janssens, Nathan Wales, et al.. Patterns of transmission and horizontal gene transfer in the Dioscorea sansibarensis leaf symbiosis revealed by whole-genome sequencing. Current Biology - CB, Elsevier, 2021, 31 (12), pp.2666-2673.e4. 10.1016/j.cub.2021.03.049. hal-03272495 HAL Id: hal-03272495 https://hal.inrae.fr/hal-03272495 Submitted on 28 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License 1 TITLE: Shedding light on the evolution of the Zanzibar yam leaf symbiosis using whole 2 genome sequences from historical herbarium specimens 3 Authors: Bram Danneels1, Juan Viruel2, Krista Mcgrath3, Steven B. Janssens4,5, Nathan 4 Wales6, Paul Wilkin2 & Aurélien Carlier1,7,*
    [Show full text]
  • An Abstract of the Dissertation Of
    AN ABSTRACT OF THE DISSERTATION OF Alfredo Diaz Lara for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on December 16, 2016. Title: Identification of Endogenous and Exogenous Pararetroviruses in Red Raspberry (Rubus idaeus L.) and Blueberry (Vaccinium corymbosum L.). Abstract approved: ______________________________________________________ Robert R. Martin The Pacific Northwest (Oregon and Washington in the United States and British Columbia in Canada) is one of the major producers of red raspberry (Rubus idaeus L.) and blueberry (Vaccinium corymbosum L.) in the world. The expansion of growing area with these crops has resulted in the emergence of new virus diseases that cause serious economic losses. The majority of viruses affecting plants (including blueberry and red raspberry) contain RNA genomes. In contrast, plant viruses with DNA genomes are relatively rare and most of the time ignored in virus surveys. The family Caulimoviridae is a group of plant pararetroviruses (reverse-transcribing viruses) with the ability to integrate their DNA into the host genome, resulting in complex molecular interactions that lead to inconsistencies in terms of detection and disease symptoms. Albeit, few studies have been conducted to determine the nature of plant pararetroviruses and their relationships with the associated host. To investigate the presence of pararetroviruses in blueberry and red raspberry, and their possible integration events, different plant material suspected to be infected with viruses was collected in nurseries, commercial fields and clonal germplasm repositories for a period of four years. For blueberry, using rolling circle amplification (RCA) a new virus was identified and named Blueberry fruit drop-associated virus (BFDaV) because of its association with fruit-drop disorder.
    [Show full text]
  • Lilioceris Egena Air Potato Biocontrol Environmental Assessment
    United States Department of Field Release of the Beetle Agriculture Lilioceris egena (Coleoptera: Marketing and Regulatory Chrysomelidae) for Classical Programs Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Field Release of the Beetle Lilioceris egena (Coleoptera: Chrysomelidae) for Classical Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]