Black Damp in Mines

Total Page:16

File Type:pdf, Size:1020Kb

Black Damp in Mines Bulletin 1 0 5 DEPARTMENT OF THE INTERIOR RA KL K . LA E S E C R E T A R Y F N IN N , BUREAU OF MI N ES V A N . H . M A G D I R E C T OR NNIN . BLAC K DAMP IN MINES L E G . A . B URRE L, 1 . w. ROB RTSON AND G . G . OB ERFELL W AS HING TON G OV ERNM ENT PRINTING OFFICE 1 91 6 The B ureau of Min es in car in out one of the o isions of its or anic a — , ry g pr v g ct to b disseminate inform ation concerning investigations m ade prints a limited free edition li a ns o f each of its pub c tio . When this edition is exh auste co ies m a be o taine at cost rice onl thr o d , p y b d p y ugh m in in W hin n the Su e inten ent of Docum ents Gove n ent t O ce as to D . p r d , r Pr g ffi , g , C Th in n n f D um ents not an O iC’ia l o th Bu au o M e Super te de t o oc 133 fl f e re f ines . n l an h h ul ba d e an e tire y separate office d e s o d e d r ess d : E I TE D E T OF D O M E T SUP R N N N C U N S , Government P intin O ce r g fi , Wash n to D i g n, . C . Th n al la unde hi h blications are ist i u te ohi its the i in of e ge er w r w c pu d r b d pr b g v g n n Th os f hi u li ation is m ore than one copy of a publication to o e perso . e c t o t s p b c 1 0 cents . 1 91 6 . C O N T E N T S . I ntroduction Com parison o fatm ospheric air with mi ne air Composition ofthe atm osphere Transfer o f oxygen and carbon di oxide in breathing Effects on m an o fvariations in composition and am ount ofair Effect o f carbon dio xide Effect o fdiminished o xygen s upply . Effect of air at high altitu des E ct o fbreathin a ec eas in ox en su l ffe g d r g yg pp y Effect of a mi ne atm osphere low in o xygen Effect o f atm ospheres low in oxygen on canaries and mice General com m ents on tests Effects o f o xygen deficiency as showing relative value of birds and mice in explo ring mines Effect o ftemperature and m oisture on m an ila ion o fbuildin s a o e roun . Vent t g b v g d Ventilation conditions in mines Action of oxygen on coal i n at of abso tion of o x l I nflu nc of m o sture o e en bcoa e e r rp yg y f x n an d o uction of ca bon dioxid Abso tion o o e e om atm os h rp yg pr d r fr p eric air bwood y Discus sion of r esults E ect o f lowe in ox en and ai si n car on dioxide content on ex losibilit ff r g yg r g b p y o fm ethane-air mi xtures m i n o f o x n and oduction o f carbon i xi ons u t o e o de bm en and b C p yg pr d y y Foulin ofmin e air beca oftim e g y d y b r i i f la Specific gravity and compos t on o b ck damp . E ct on li hts of air low in ox en and hi h in ca bon di xi ffe g yg g r o de Effect of atm ospheres low in o xygen on fires in mines l f l - m Results of ana yses o coa mine at ospheres . Results o fanalyses o fsam ples in series 1 Comm ent on analyses o fsamples in series 1 Tem perature and humidity R l f anal f am l i esu ts o yses o s p es in ser es 2 to 6 . Comm ent on r esults of sam pling and analysis Sam ples in s eries 2 Sam ples in se ries 3 Sam pl es in series 4 Sam ples inseries 5 Samples in series 6 Effects o ftem perature and humidity and othe r factors E ects o flea a e of air throu h oors rattices tc ff k g g d , b , e I nflamma ble as in mines g TE TS 4 CON N . Occurrence and composition o f gas in r oc k strata o f the Cripple Creek gold minin dis t ict olo ado g r , C r Origin o fthe strata gas ts o fba om et ic ressure on outflow o f st ata as . Effec r r p r g Collection ofsampl es ofgas in four m etal mines Observations on gas in Midget mine . l ations a din aseous conditions in Ana n mi n a obse e co da ne . Ge er rv r g r g g Observations on gas in Cresson mine Tabulated data Special air samples from Mary McKinney mi ne i i n o f st ata as sam les c al culated on air- ee basis Compos t o r g p fr Effect on m en o fpartial pr essures o f o xyg n th indi ations af o d d ban l n l m a ison betwee e c e c e a d bacet n Co p r f r y d y y e e flam e and analyses ofthe sam pl es m us tibl e as i n the rock~s trata as Co b g g n tions o f 1 5 m tal mines as indicate banal ses o f air sam Ventilation co di e d y y pl es Observations r egarding black damp in c ertain m etal mines Summ ary . mthod f al 1 n ublications on mine accidents and e s o co m1 n P g I ndex B L A C K D A M P I N M I N E S . R B ER S A D B E A RELL . T O E B Y . UR . N . R LL G B , I W O ON, G G F . R D U INT O CTION . u i in n The B reau of M nes , pursuing investigations looki g to greater in i f safety min ng , has analyzed samples of the air in many di ferent U coal mines in the nited States , and has studied the analyses . This report presents the results of one phase of this study and shows how a tmospheric air, after entering a coal mine , loses oxygen and gains s o — l carbon dioxide with resulting formation of cal ed black damp . Also the report discusses the effects of the constituents of black damp n and on men , on the bur ing of oil and acetylene lamps , on the ex los ibilit . p y of methane The term “ black damp was and still is widely used to designate di fi accumulations of carbon oxide , but a more exact de nition of black E s ha s damp , as Haldane , the ngli h physiologist , pointed out, is an accum ul ation of carbon dioxide and nitrogen in proportions larger r i than those found in atmospheric air . The reasons for prefe r ng Hal ’ dane s definition are given on succeeding pages . C R S S HE R C A I R WI H E A IR OMPA I ON OF ATMO P I T MIN . h a a ir i W en tmospheric enters a coal m ne , it changes in composition according to ( 1 ) the velocity with which it traverses the workings ; 2 n i in — is ( ) the amou t of coal w th which it comes contact that , the extent of the mine workings that it tra verses ; (3 ) the gaseous nature o f the seam ; (4) the tendency of the coal to absorb oxygen ; and (5 ) n the temperature and wetness of the mi e . n fol As regards the details mentioned , the governi g conditions are as : 1 i lows ( ) Other th ngs being equal , more carbon dioxide and methane are present and there is a greater deficiency of oxygen at places where air l i . 2 The the is sti l, as at working faces and in old work ngs ( ) purity air d in l of the epends on the distance it has traveled , so that a wel ventilated mine the air is purer at working faces near the shaft than il at those that are remote . In the same mine the air w l be fresher and pur er when the mine is ventilated by a split system than when a 3 the ir traverses each working face and entry . ( ) Some mines vary s r l greatly a rega ds the generation of methane .
Recommended publications
  • ~ Coal Mining in Canada: a Historical and Comparative Overview
    ~ Coal Mining in Canada: A Historical and Comparative Overview Delphin A. Muise Robert G. McIntosh Transformation Series Collection Transformation "Transformation," an occasional paper series pub- La collection Transformation, publication en st~~rie du lished by the Collection and Research Branch of the Musee national des sciences et de la technologic parais- National Museum of Science and Technology, is intended sant irregulierement, a pour but de faire connaitre, le to make current research available as quickly and inex- plus vite possible et au moindre cout, les recherches en pensively as possible. The series presents original cours dans certains secteurs. Elle prend la forme de research on science and technology history and issues monographies ou de recueils de courtes etudes accep- in Canada through refereed monographs or collections tes par un comite d'experts et s'alignant sur le thenne cen- of shorter studies, consistent with the Corporate frame- tral de la Societe, v La transformation du CanadaLo . Elle work, "The Transformation of Canada," and curatorial presente les travaux de recherche originaux en histoire subject priorities in agricultural and forestry, communi- des sciences et de la technologic au Canada et, ques- cations and space, transportation, industry, physical tions connexes realises en fonction des priorites de la sciences and energy. Division de la conservation, dans les secteurs de: l'agri- The Transformation series provides access to research culture et des forets, des communications et de 1'cspace, undertaken by staff curators and researchers for develop- des transports, de 1'industrie, des sciences physiques ment of collections, exhibits and programs. Submissions et de 1'energie .
    [Show full text]
  • Mine Rescue Team Training: Metal and Nonmetal Mines (MSHA 3027, Formerly IG 6)
    Mine Rescue Team Training Metal and Nonmetal Mines U.S. Department of Labor Mine Safety and Health Administration National Mine Health and Safety Academy MSHA 3027 (Formerly IG 6) Revised 2008 Visit the Mine Safety and Health Administration website at www.msha.gov CONTENTS Introduction Your Role as an Instructor Overview Module 1 – Surface Organization Module 2 – Mine Gases Module 3 – Mine Ventilation Module 4 – Exploration Module 5 – Fires, Firefighting, and Explosions Module 6 – Rescue of Survivors and Recovery of Bodies Module 7 – Mine Recovery Module 8 – Mine Rescue Training Activities Introduction Throughout history, miners have traveled underground secure in the knowledge that if disaster strikes and they become trapped in the mine, other miners will make every possible attempt to rescue them. This is the mine rescue tradition. Today’s mine rescue efforts are highly organized operations carried out by groups of trained and skilled individuals who work together as a team. Regulations require all underground mines to have fully-trained and equipped professional mine rescue teams available in the event of a mine emergency. MSHA’s Mine Rescue Instruction Guide (IG) series is intended to help your mine to meet mine rescue team training requirements under 30 CFR Part 49. The materials in this series are divided into self-contained units of study called “modules.” Each module covers a separate subject and includes suggestions, handouts, visuals, and text materials to assist you with training. Instructors and trainers may wish to use these materials to either supplement existing mine rescue training, or tailor a program to fit their mine-specific training needs.
    [Show full text]
  • Some Remarks on Fire Damp and Safety Lamps
    Downloaded from http://pygs.lyellcollection.org/ by guest on September 26, 2021 610 weaker, the features grow fainter, and it is only rarely we see anything deserving the name of an escarpment at all. One of the most striking exceptions, occurring in the immediate neighbourhood of this town, is the escarpment of the "WooUey Edge Hock, which may be traced from New MiUer Dam as far south as the neighbourhood of Elsecar. Beyond this, the rock, which hereabouts is a coarse and massive gritstone about 100 feet thick, dies away altogether, and is replaced by shale. I have now given a sketch of the general geology of the district of which the Barnsley Coal­ field forms a part. On some future occasion I hope to be allowed to lay before you some details about the coal-field itself. SOME EEMARKS ON FIRE DAMP AND SAFETY LAMPS. BY JOHN HUTCHINSON, MANAGER OF THE GAS WORKS, BARNSLEY. The subject upon which I am about to offer a fevr remarks is one of deep interest to the Colliery Proprietors and the mining population generally of this neighbourhood. And I feel sure you will excuse me if I occupy a few minutes of your valuable time this afternoon in noticing some facts and observations recently made on this subject at the Oaks Colliery and elsewhere. Anything relating to this ill-fated Colliery is doubly in­ teresting at the present time, since within the last few days some of the bodies of the volunteers, who so nobly rushed into this fiery mine ten months ago, in order, if possible, to aid, succour, or rescue their fellow men from a dreadful and almost certain death, have at length, after overcoming many difficulties, been recovered, brought to the surface, identified, and interred, which is no small degree of satisfaction to their sorrowing relatives and friends.
    [Show full text]
  • The Largest Fatal Accident in Scottish Coal in the Nationalised Era. Scottish Labour History, 54, Pp
    Gibbs, E. and Phillips, J. (2019) Remembering Auchengeich: the largest fatal accident in Scottish coal in the nationalised era. Scottish Labour History, 54, pp. 47-57. This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/210374/ Deposited on: 19 February 2020 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 1 Remembering Auchengeich: the largest fatal accident in Scottish coal in the nationalised era Ewan Gibbs and Jim Phillips The largest fatal accident in the post-Second World War Scottish coal industry took place on 18 September 1959, when 47 men were killed at Auchengeich Colliery in Moodiesburn, North Lanarkshire. On the sixtieth anniversary, we pay tribute to the Auchengeich miners, who died as a result of carbon monoxide poisoning arising from a large underground fire. This short note analyses the catastrophe within the longer history of underground dangers in the mining industry in Scotland. The nationalisation of coal mining in 1947 and stronger union voice in workplaces made mining much safer. Coal industry data summarised in this note shows that the rate of death underground roughly halved from the 1930s to the 1950s, but the calamitous losses at Auchengeich, nevertheless, demonstrated that mining remained a perilous occupation for the mass of workers engaged in underground work. Significant shortcomings in National Coal Board (NCB) management contributed directly to the loss of life at the colliery.
    [Show full text]
  • Part 5 Fires and Explosions
    Part 5 Fires and Explosions Subsurface fires and explosions Malcolm J. McPherson CHAPTER 21. SUBSURFACE FIRES AND EXPLOSIONS 21.1 INTRODUCTION 2 21.1.1. The fire triangle and the combustion process 3 21.1.2. Classification of mine fires 4 21.2 CAUSES OF IGNITIONS 4 21.2.1. Mechanized equipment 4 21.2.2. Electrical apparatus 5 21.2.3. Conveyors 5 21.2.4. Other frictional ignitions 6 21.2.5. Explosives 7 21.2.6. Welding 7 21.2.7. Smoking and flame safety lamps 7 21.3. OPEN FIRES 7 21.3.1. Oxygen-rich and fuel-rich fires 8 21.3.2. Effects of fires on ventilation 9 21.3.2.1. The choke effect 9 21.3.2.2. The buoyancy (natural draft) effect 10 21.3.3. Methods of fighting open fires 11 21.3.3.1. Firefighting with water 12 21.3.3.2. High expansion foam 13 21.3.4. Control by ventilation 14 21.3.4.1. Pressure control 14 21.3.4.2. Airflow reversal 15 21.4. SPONTANEOUS COMBUSTION 17 21.4.1. The mechanisms of spontaneous combustion in minerals 17 21.4.1.1. The phases of oxidation 17 21.4.1.2. The effects of water vapour 18 21.4.1.3. The path of a spontaneous heating. 19 21.4.2. Susceptibility to spontaneous combustion 19 21.4.3. Precautions against spontaneous combustion 20 21.4.4. Detection of a spontaneous heating 23 21.4.5. Dealing with a spontaneous heating 24 21.4.5.1.
    [Show full text]
  • AC B1678 CN 622.8222 SPO 1976 DA 1976 T1 Spontaneous
    Simtars Information Centre 1111111111111111111111111111111111111111 006374 AC B1678 CN 622.8222 SPO 1976 DA 1976 T1 Spontaneous combustion in underground coal mines (general notes for employees Jones~ H (Howard) AC 81678 CN 622.8222 SPa 1976 DA 1976 TI Spontaneous combustion in / underground coal mines - (general notes for employees AU Jones, H (Howard) - .. I OLD. LIBRARY SUPPLIES SPONTANEOUS COMBUSTION IN UNDERGROUND COAL MINES (General notes for employees) Compiled by: HOWARD lONES, H.Se., C.Eng., F.G.S., .....------F.I.M.E., M. (Aust.) I.M.M. z onsulting Mining Engineer o ~~ ~t- a: wZ f2U Issued by: Z THE DEPARTMENT OF MINES, QUEENSLAND in conjunction with The Queensland Coal Owners Association and The Queensland Colliery Employees Union ~ionNo {.~2}{. Order No . PSF No . 02te RecelJed ..(;'..1.~.?.!.'- t. .. CtOissiiication ...•.. 1:~.':..~ "}-'}'). 85904-1 No ~f(l . ..........................t·7-·7·6... i CONTENTS Foreword 4 Introduction 6 The Development of a Heating . 7 Mine Gases Associated With Heatings 10 Detection of Heatings . 15 Dangers Associated With the Development of a Spontaneous Heating .. 17 General..... 22 Conclusion 27 3 85904-2 FOREWORD The phenomenon of spontaneous combustion in undergroun4 coal mines is not a new one. Its associated problems have been of great concern wherever and whenever coal mining has been practised. Two unfortunate accidents, at Box Flat in 1972 and at Kianga in 1975, which together claimed thirty-one lives, have focused attention on the need for all associated with the industry in Queensland to gain a full appreciation of the nature of the problems and how they can best be handled. Among the recommendations made by the Board of Inquiry into the Kianga Disaster were- (a) There is a basic need for all members of the coal mining industry in Queensland to improve their knowledge with regard to the funda­ mentals of spontaneous combustion and the underground mining problems associated therewith.
    [Show full text]
  • Instruction Guide Series IG7
    Advanced Mine Rescue Training Coal Mines U.S. Department of Labor Mine Safety and Health Administration National Mine Health and Safety Academy Instruction Guide Series IG7 Revised 2 0 1 3 Visit the Mine Safety and Health Administration website at www.msha.gov CONTENTS Introduction Your Role as an Instructor Overview Module 1 – Surface Organization Module 2 – Mine Gases Module 3 – Mine Ventilation Module 4 – Exploration Module 5 – Fires, Firefighting, and Explosions Module 6 – Rescue of Survivors and Recovery of Bodies Module 7 – Mine Recovery Page Intentionally Left Blank Introduction Throughout history, miners have traveled underground secure in the knowledge that if disaster strikes and they become trapped in the mine, other miners will make every possible attempt to rescue them. This is the mine rescue tradition. Today’s mine rescue efforts are highly organized operations carried out by groups of trained and skilled individuals who work together as a team. Underground coal mine rescue team members must be trained according to the requirements under 30 CFR 49.18. Under Section 49.18(b)(4), this training must consist of advanced mine rescue training and procedures, as prescribed by MSHA's Office of Educational Policy and Development (EPD). This guide is designed to be used with the material in IG-7a, Advanced Skills Training, and both guides are needed to satisfy the advanced mine rescue training requirement. This guide is divided into self-contained units of study called “modules.” Each module covers a separate subject and includes suggestions, handouts, visuals, and text materials to assist you with training. Since regulations, policy and mining technology can change, be sure to check for information that could supersede this material.
    [Show full text]
  • The Composition of Coalbed Gas
    Report of Investigations 7762 The Composition of Coalbed Gas By Ann G. Kim Pittsburgh Mining and Safety Research Center, Pittsburgh, Pa. UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton, Secretary BUREAU OF MINES Elburt F. Osborn, Director This publication has been cataloged as follows : * Kim, Ann G The composition of coalbed gas. [washington] U.S. Bureau of Mines [ 19731 9 p. tables. (US. Bureau of Mines. Report of investigations 7762) hcludes bibliography. 1. Gas. 2. Mine gases. L US. Bureau of Mines. 11. Title. Ill. Title: Coalbed gas. (Series) TN23.U7 no. 7762 622.06173 U.S. Dept. of the Int. Library CONTENTS Page Abstract ................................................................. Intrductim .............................................................. Gas in coal: Theory ..................................................... Procedures ............. ................................................... Gases in coal: Data ...................................................... Smv.................................................................. References ............................................................... TABLES 1. Coalbeds sampled ..................................................... 2 . Composition of gas from Pocahontas No . 3 coal ........................ 3 . Hydrocarbons from Pocahontas No . 3 coal ...... ........................ 4 . Composition of gas from Pittsburgh coal . ............................ 5 . Composition of gas from Kittanning coalbeds .......................... 6 . Cmposition of
    [Show full text]
  • Monarch Mine Issue
    SUPERIOR HISTORICAL COMMISSION SUPERIOR HISTORIAN VOLUME 4, ISSUE 2 FALL/WINTER 2006 DECEMBER, 2006 DEATH AND “One of these mornings you’re The roster of the lost men is as follows: DEVASTATION IN THE going to see the Monarch blow,” Tom Stevens, Louisville DEPTHS: THE disaster survivor Nick Del Pizzo Ray Bailey, Broomfield once said to his sister. Oscar Baird, Rickard’s Camp MONARCH MINE Tony Di Santis, Louisville EXPLOSION oil and grease machinery, test for Steve Davis, Louisville gases, and get the mules ready and in Kester Novingger, Broomfield Eight Die, One Never Found place for the day shift. Leland Ward, Monarch Camp in 1936 Disaster The rescue teams were hampered Joe Jaramillo, Monarch Camp in their attempts to rescue the “Some of the men were discovered Constant, short shrieks of a mine stranded miners due to the presence seated on the floor of the mine, their steam whistle broke the silence of a of the “after damp” or “black damp,” a equipment at their side, their faces crisp winter’s morning January 20, deadly mix of carbon dioxide and turned toward their lamps, as if to 1936. It was a sound no one connected nitrogen. Rescuers didn’t want to risk watch the flame burn out with the with coal mining ever wanted to hear making the disaster worse, but eight creeping presence of carbon dioxide, because it signaled an emergency and men remained unaccounted for. the black damp,” is the description by probable disaster in the mine. Officials, family, friends, and fellow author Phyllis Smith. Tragically, the The word spread that there had miners milled about the mine entrance, body of Joe Jaramillo was never found.
    [Show full text]
  • Carbon Dioxide - Wikipedia
    5/20/2020 Carbon dioxide - Wikipedia Carbon dioxide Carbon dioxide (chemical formula CO2) is a colorless gas with Carbon dioxide a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (412 ppm) by volume, having risen from pre-industrial levels of 280 ppm.[8] Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations, but at high concentrations, it has a sharp and acidic odor.[1] At such Names concentrations it generates the taste of soda water in the Other names [9] mouth. Carbonic acid gas As the source of available carbon in the carbon cycle, atmospheric Carbonic anhydride carbon dioxide is the primary carbon source for life on Earth and Carbonic oxide its concentration in Earth's pre-industrial atmosphere since late Carbon oxide in the Precambrian has been regulated by photosynthetic organisms and geological phenomena. Plants, algae and Carbon(IV) oxide cyanobacteria use light energy to photosynthesize carbohydrate Dry ice (solid phase) from carbon dioxide and water, with oxygen produced as a waste Identifiers product.[10] CAS Number 124-38-9 (http://ww w.commonchemistr CO2 is produced by all aerobic organisms when they metabolize carbohydrates and lipids to produce energy by respiration.[11] It is y.org/ChemicalDeta returned to water via the gills of fish and to the air via the lungs of il.aspx?ref=124-38- air-breathing land animals, including humans.
    [Show full text]
  • Gas Testing Refresher
    Passion to Inspire GAS TESTING REFRESHER GAS TESTING REFRESHER GAS TESTING REFRESHER Although there is a dispute to who invented the "first" miner's flame lamp that was safe to use in fiery mines. The success of the flame safety lamp was a culmination of the principles discovered by Dr. William R. Clanny, Sir Humphrey Davy, and George Stephenson. All three worked independently on the problem at about the same time, and all had some knowledge of the other's work. GAS TESTING REFRESHER The principle of isolating the flame of the lamp was evolved by Dr. Clanny in 1813. Clanny's first lamp designs involved enclosing the flame, and pressurizing the lamp via bellows that would use water reservoirs to isolate the flame. The lamp was rather clumsy, and saw no practical use in the mines. But the feature of a glass window would be later a common feature on safety lamps. GAS TESTING REFRESHER GAS TESTING REFRESHER Sir Humphrey Davy was performed several experiments of his own for the development of a safety lamp. In 1815, Davy discovered that if two vessels were filled with explosive gas, they might be connected together by a narrow tube, and the gas in one of the chambers could be exploded without transmitting the explosion to the adjoining chamber. This meant that a flame in a lamp, fed mine air through small orifices, would not ignite the surrounding air of the mine. GAS TESTING REFRESHER Davy's further experiments found that mesh-holes of fine metallic gauze acted the same way as narrow tubes.
    [Show full text]
  • Explosive Mine Gases and Dusts
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR 383 NOTES ON EXPLOSIVE MINE GASES AND DUSTS WITH SPECIAL REFERENCE TO EXPLOSIONS IN THE MONONGAH, DARK, AND NAOMI COAL MINES BY ROLLIN THOMAS CHAMBERLIN WASHINGTON GOVERNMENT PRINTING OFFICE 1909 CONTENTS. Page. Introduction.............................................................. 5 Character of the report................................................. 5 Explosions studied.................................................... 6 Gases found in the mines.................................................. 7 Methods of collecting. ................................................... 7 Analyses............................................................. 8 Methane............................................................... 9 After damp....... T ................................................... 11 Deficiency of oxygen.......................--...--..- ------ ---- - -- 15 Possible conditions of gas in coal........................................... 1.6 Liberation of gas by crushing coal........................................... 17 Plan of experiments.................................................... 17 Method of crushing.................................:.................. 18 Detailed results....................................................... 18 Gases from coal bottled in a vacuum......................................... 24 Vacuum bottles....................................................... 24 Volume of gas..................'..............................
    [Show full text]