(Quetiapine Fumarate) and Seroquel XR Safety and Drug Utilization

Total Page:16

File Type:pdf, Size:1020Kb

(Quetiapine Fumarate) and Seroquel XR Safety and Drug Utilization De partme nt of He alth and Human Se rvice s Public He alth Se rvice Food and Drug Administration Ce nte r for Drug Evaluation and Re se arch Office of Surve illance and Epide miology Pe diatric Postmark e ting Pharmacovigilance and Drug Utilization Re vie w Date : February 19, 2016 Safe ty Evaluator: Vicky Chan, P harmD, BCP S Division of P harmacovigilance I Drug Us e Analys t: Travis Ready, P harmD Division of Epidemiolog y II Te am Le ade r: Ida-Lina Diak, P harmD, MS Division of P harmacovigilance I Te am Le ade r: Rajdeep Gill, P harmD Division of Epidemiolog y II De puty Dire ctor Grace Chai, PharmD For Drug Utilization: Division of Epidemiolog y II Acting De puty Divis ion Cindy Kortepeter, P harmD Dire ctor: Division of P harmacovigilance I Divis ion Dire ctor: Robert L. Levin, MD Division of P harmacovigilance I Product Name (s ): Seroquel (quetiapine fumarate), Seroquel XR (quetiapine fumarate, extended release) Pe diatric Labe ling Approval Date : April 30, 2013 Application Type /Numbe r: NDA # 020639, 022047, 022172 Applicant/Spons or: AstraZeneca OSE RCM #: 2015-1960 **This docume nt contains proprie tary drug use data obtained by FDA unde r contract. The drug use data/information cannot be re le as ed to the public/non-FDA pe rs onnel without contractor approval obtaine d through the FDA/CDER Office of Surveillance and Epide miology.** Reference ID: 3890159 TA B L E O F C O NTENTS Executive Summary................................................................................................................. 3 1 Introduction ..................................................................................................................... 4 1.1 Pediatr ic Regulator y History ...................................................................................... 4 1.2 Highlights of Labele d Safety Issues, ........................................................................... 5 Pediatric Use ....................................................................................................................... 7 1.3 Previous OSE Post-Marketing Safety Reviews............................................................ 8 2 Drug utilization data......................................................................................................... 9 2.1 Methods and Materials ............................................................................................... 9 2.1.1 Determining Settings of Care .............................................................................. 9 2.1.2 Data Sources Used .............................................................................................10 2.2 Results .....................................................................................................................10 2.2.1 Patient Data for Quetiapine ................................................................................10 2.2.2 Prescriber Spec ia lty ...........................................................................................11 2.2.3 Diagnoses Associated w ith Use ..........................................................................12 3 Postmarket adverse event Reports ....................................................................................13 3.1 Methods and Materials ..............................................................................................13 3.1.1 FDA Adverse Event Reporting System (FAER S) Search Strategy .......................13 3.1.2 Inclus ion Cr iter ia ...............................................................................................14 3.2 Results .....................................................................................................................14 3.2.1 Tota l number of FAERS reports by Age .............................................................14 3.2.2 Selection of Serious Pediatric Cases in FAERS ...................................................15 3.2.3 Characteristics of Pediatric Case Series ..............................................................16 3.3 Summary of Fatal Pediatric Adverse Event Cases (N=16) ..........................................18 3.4 Summary of Non-Fata l Pediatric Serious Adverse Event Cases (N=62) ......................19 3.4.1 Psychiatr ic Dis orders (n=35) ..............................................................................19 3.4.2 Eye Disor ders (n=7) ...........................................................................................21 3.4.3 Gastrointestina l ( GI) and Hepatic Disor ders (n=6) ..............................................22 3.4.4 Pulmonary/Respirator y/Vascular Dis orders (n=4) ...............................................24 3.4.5 Nervous Syste m Dis orders (n=3) ........................................................................25 3.4.6 Musculoske letal D isor ders (n=2) ........................................................................25 3.4.7 Miscellaneous Dis orders (n=5) ...........................................................................25 4 Discussion ......................................................................................................................26 5 Conc lus ion......................................................................................................................27 6 Recommendations ...........................................................................................................27 7 References ......................................................................................................................27 8 Appendices .....................................................................................................................29 8.1 Appendix A. Drug Utilization Database Descriptions ................................................29 8.2 Appendix B. FDA Adverse Event Reporting Syste m (FAERS) ...................................30 8.3 Appendix C. FAERS Case Numbers, FAERS Version Numbers And Manufacturer Control Numbers For The Pediatric Case Series With Quetia pine (N=78) ...................31 8.4 Appendix D. Fatal Case Narratives ............................................................................33 8.5 Appendix E Suicide Injury Deaths and Rates per 100,000 for Ages 0-24 years old, 2014 ………………………………………………………………………………………….40 Reference ID: 3890159 EXECUTIVE SUMMARY In accordance with the Food and Drug Administration Amendments Act P ediatric Research Equity Act, the Office of Surveillance and Epidemiolo gy (OSE) evaluated postmarketing adverse event reports with a serious outcome and drug utilizat ion data for Seroquel and Seroquel XR (quetiapine fumarate) in pediatric patients. This review was triggered by the pediatric study of quetiapine for the indication of bipolar depression. Quetiapine fumarate was first approved in 1997. Seroquel is indicated for the treatment of schizophrenia; bipolar I disorder manic episodes; and bipolar disorder, depressive episodes. Seroquel XR is indicated for the treatment of schizophrenia; bipolar I disorder, manic or mixed episodes; bipolar disorder, depressive episodes; and major depressive disorder, adjunctive therapy with antidepressants. The approved pediatric labeling is for schizophrenia in adolescents (13-17 years) and bipolar mania in children and adolescents (10-17 years). The Food and Drug Administration Adverse Event Reporting System database was searched for all reports of adverse events received from August 1, 2011 through July 31, 2015. The Division of P harmacovigilance (DP V) focused on the serious pediatric reports with unlabeled events. DP V included 78 pediatric cases with serious, unlabeled events reported with quetiapine use in the case series. There were no new safety signals identified, no increased severity or frequency of any labeled adverse events, and there were no deaths directly associated with quetiapine. There were 16 fatal cases and 62 non-fatal cases from August 1, 2011 through July 31, 2015. More than half (n=9) of the fatal cases did not report a cause of death. The remaining 7 fatal cases that reported a cause of death were all due to multiple drug overdoses, except for 1 case that reported “cerebral death” in a 14-year-old female with a recent history of elevated valproate and alcohol blood levels. Almost half of the 62 non-fatal cases reported overdose, self-injur ious behavior, suicidal ideation, or suicidal attempt. According to the Center for Disease Control and P revention, suicide is the third leading cause of death for youths between the ages of 10 and 24 years. P oisoning is among the top three methods used in suicides of young people. A history of depression or other mental illness is among several risk factors that can put a young person at risk for suicide. The drug utilizat ion data showed that pediatric patients aged 0-17 years accounted for about 7% of total use during each 12-month period analyzed with approximately 168,000 patients during the 12-month period ending July 2012, increasing to about 184,000 patients during the 12-month period ending July 2015 in the outpatient retail pharmacy setting. A slight increase in the use of quetiapine in older pediatric patients aged 10 – 17 years was observed, whereas the use in younger pediatric patients aged 0-9 years showed minor fluctuations. P sychiatry specialists were the top prescribers of quetiapine, followed by nurse practitioner and family practice. Among pediatric patients aged 10-17 years, Affective P sychoses NEC/NOS was the only diagnosis mentioned in association with the use
Recommended publications
  • Supranuclear and Internuclear Ocular Motility Disorders
    CHAPTER 19 Supranuclear and Internuclear Ocular Motility Disorders David S. Zee and David Newman-Toker OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF THE MEDULLA THE SUPERIOR COLLICULUS Wallenberg’s Syndrome (Lateral Medullary Infarction) OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF Syndrome of the Anterior Inferior Cerebellar Artery THE THALAMUS Skew Deviation and the Ocular Tilt Reaction OCULAR MOTOR ABNORMALITIES AND DISEASES OF THE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN BASAL GANGLIA THE CEREBELLUM Parkinson’s Disease Location of Lesions and Their Manifestations Huntington’s Disease Etiologies Other Diseases of Basal Ganglia OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN THE PONS THE CEREBRAL HEMISPHERES Lesions of the Internuclear System: Internuclear Acute Lesions Ophthalmoplegia Persistent Deficits Caused by Large Unilateral Lesions Lesions of the Abducens Nucleus Focal Lesions Lesions of the Paramedian Pontine Reticular Formation Ocular Motor Apraxia Combined Unilateral Conjugate Gaze Palsy and Internuclear Abnormal Eye Movements and Dementia Ophthalmoplegia (One-and-a-Half Syndrome) Ocular Motor Manifestations of Seizures Slow Saccades from Pontine Lesions Eye Movements in Stupor and Coma Saccadic Oscillations from Pontine Lesions OCULAR MOTOR DYSFUNCTION AND MULTIPLE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN SCLEROSIS THE MESENCEPHALON OCULAR MOTOR MANIFESTATIONS OF SOME METABOLIC Sites and Manifestations of Lesions DISORDERS Neurologic Disorders that Primarily Affect the Mesencephalon EFFECTS OF DRUGS ON EYE MOVEMENTS In this chapter, we survey clinicopathologic correlations proach, although we also discuss certain metabolic, infec- for supranuclear ocular motor disorders. The presentation tious, degenerative, and inflammatory diseases in which su- follows the schema of the 1999 text by Leigh and Zee (1), pranuclear and internuclear disorders of eye movements are and the material in this chapter is intended to complement prominent.
    [Show full text]
  • Management of Major Depressive Disorder Clinical Practice Guidelines May 2014
    Federal Bureau of Prisons Management of Major Depressive Disorder Clinical Practice Guidelines May 2014 Table of Contents 1. Purpose ............................................................................................................................................. 1 2. Introduction ...................................................................................................................................... 1 Natural History ................................................................................................................................. 2 Special Considerations ...................................................................................................................... 2 3. Screening ........................................................................................................................................... 3 Screening Questions .......................................................................................................................... 3 Further Screening Methods................................................................................................................ 4 4. Diagnosis ........................................................................................................................................... 4 Depression: Three Levels of Severity ............................................................................................... 4 Clinical Interview and Documentation of Risk Assessment...............................................................
    [Show full text]
  • Parkinson's Disease Fact Sheet
    Parkinson’s Disease Fact Sheet About Parkinson’s Disease Parkinson’s disease is a progressive, incurable neurological disorder associated with a loss of dopamine-generating cells in the brain. It is primarily associated with progressive loss of motor control, but it results in a complex array of symptoms, including many non-motor symptoms. Parkinson’s impacts an estimated one million people in the United States. Critical Clinical Care Considerations • To avoid serious side effects, Parkinson’s patients need their medications on time, every time — do not skip or postpone doses. • Write down the exact times of day medications are to be administered so that doses are given on the same schedule the patient follows at home. • Do not substitute Parkinson’s medications or stop levodopa therapy abruptly. • Resume medications immediately following procedures, unless vomiting or severely incapacitated. • If an antipsychotic is necessary, use pimavanserin (Nuplazid), quetiapine (Seroquel) or clozapine (Clozaril). • Be alert for symptoms of dysphagia (trouble swallowing) and risk of pneumonia. • Ambulate as soon as medically safe. Patients may require assistance. Common Symptoms of Parkinson’s Disease Motor Non-Motor • Shaking or tremor at rest • Depression • Bradykinesia or freezing (being stuck • Anxiety in place when attempting to walk) • Constipation • Low voice volume or muffled speech • Cognitive decline and dementia • Lack of facial expression • Impulse control disorders • Stiffness or rigidity of the arms, legs • Orthostatic hypotension or
    [Show full text]
  • Eye Movement Disorders and Neurological Symptoms in Late-Onset Inborn Errors of Metabolism Koens, Lisette H.; Tijssen, Marina A
    University of Groningen Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism Koens, Lisette H.; Tijssen, Marina A. J.; Lange, Fiete; Wolffenbuttel, Bruce H. R.; Rufa, Alessandra; Zee, David S.; de Koning, Tom J. Published in: Movement Disorders DOI: 10.1002/mds.27484 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Koens, L. H., Tijssen, M. A. J., Lange, F., Wolffenbuttel, B. H. R., Rufa, A., Zee, D. S., & de Koning, T. J. (2018). Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism. Movement Disorders, 33(12), 1844-1856. https://doi.org/10.1002/mds.27484 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Development and Validation of a LC-MS/MS Method for Detection and Quantification of 18 Antidepressants in Whole Blood
    City University of New York (CUNY) CUNY Academic Works Student Theses John Jay College of Criminal Justice Spring 6-2019 Development and validation of a LC-MS/MS method for detection and quantification of 18 antidepressants in whole blood Linda Kim CUNY John Jay College, [email protected] How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/jj_etds/106 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Development and validation of a LC-MS/MS method for detection and quantification of 18 antidepressants in whole blood A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science in Forensic Science, John Jay College of Criminal Justice, City University of New York Linda Kim May 2019 Development and validation of a LC-MS/MS method for detection and quantification of 18 antidepressants in whole blood Linda Kim This Thesis has been presented to and accepted by the Office of Graduate Studies, John Jay College of Criminal Justice in Partial Fulfillment of the Requirements for the Degree of Master of Science in Forensic Science. Thesis Committee Thesis Advisor: Marta Concheiro-Guisan Second Reader: Shu-Yuan Cheng External Reader: Damon Borg i Acknowledgement I would like to thank Dr. Stripp for providing his laboratory for my research, and Dr. Borg and everyone in Cordant Laboratory for their guidance and support. I would like to thank Dr. Concheiro-Guisan for her time, patience, and information, and for making it possible to successfully complete this thesis.
    [Show full text]
  • Drug-Facilitated Sexual Assault Panel, Blood
    DRUG-FACILITATED SEXUAL ASSAULT PANEL, BLOOD Blood Specimens (Order Code 70500) Alcohols Analgesics, cont. Anticonvulsants, cont. Antihistamines, cont. Ethanol Phenylbutazone Phenytoin Cyclizine Amphetamines Piroxicam Pregabalin Diphenhydramine Amphetamine Salicylic Acid* Primidone Doxylamine BDB Sulindac* Topiramate Fexofenadine Benzphetamine Tapentadol Zonisamide Guaifenesin Ephedrine Tizanidine Antidepressants Hydroxyzine MDA Tolmetin Amitriptyline Loratadine MDMA Tramadol Amoxapine Oxymetazoline* Mescaline* Anesthetics Bupropion Pyrilamine Methcathinone Benzocaine Citalopram Tetrahydrozoline Methamphetamine Bupivacaine Clomipramine Triprolidine Phentermine Etomidate Desipramine Antipsychotics PMA Ketamine Desmethylclomipramine 9-hydroxyrisperidone Phenylpropanolamine Lidocaine Dosulepin Aripiprazole Pseudoephedrine Mepivacaine Doxepin Buspirone Analgesics Methoxetamine Duloxetine Chlorpromazine Acetaminophen Midazolam Fluoxetine Clozapine Baclofen Norketamine Fluvoxamine Fluphenazine Buprenorphine Pramoxine* Imipramine Haloperidol Carisoprodol Procaine 1,3-chlorophenylpiperazine (mCPP) Mesoridazine Cyclobenzaprine Rocuronium Mianserin* Norclozapine Diclofenac Ropivacaine Mirtazapine Olanzapine Etodolac Antibiotics Nefazodone Perphenazine Fenoprofen Azithromycin* Nordoxepin Pimozide Hydroxychloroquine Chloramphenicol* Norfluoxetine Prochlorperazine Ibuprofen Ciprofloxacin* Norsertraline Quetiapine Ketoprofen Clindamycin* Nortriptyline Risperidone Ketorolac Erythromycin* Norvenlafaxine Thioridazine Meclofenamic Acid* Levofloxacin* Paroxetine
    [Show full text]
  • 2002 Samel 10 Most Common Systemic Health Conditions with A
    Avanti Samel / March 15, 2002 10 Most Common Systemic Health Conditions with a Listing of Frequently Prescribed Medications and their Ocular Side Effects HYPERTENSION ACE Inhibitors: Captopril (Capoten}- blurred vision Enalapril (Vasotec) - Blurred vision, conjunctivitis, dry eyes, tearing Quinipril (Accupril)- amblyopia Benazepril (Lotensin)- N/A Lisinopril (Zestril) - Visual loss, diplopia, blurred vision, photophobia Beta-Blockers: Propranolol (Inderal)- visual disturbances, dry eyes Atenolol (Tenormin)- blurred vision, dry eyes, visual disturbances Metoprolol (Lopressor) - blurred vision, dry eyes calcium Channel Blockers: Diltiazem (Cardizem)- Amblyopia, eye irritation Amlodipine (Norvasc)- abnormal vision, conjunctivitis, diplopia, eye pain Verapamil (Calan)- Blurred vision Nifedipine (Procardia) - blurred vision, Transient blindness at the peak of plasma level · Diuretics: Thiazides: Chlorothiazide (Diuril) - Transient blurred vision, xanthopsia Loop: Furosemide (Lasix) - Blurred vision, Xanthopsia Potassium Sparing: Amiloride (Midamor) - Visual disturbances, Increased lOP Triamterene (Dyrenium)- N/A HYPERLIPIDEMIA Statins: Lovastatin (Mevacor) - Blurred vision, Eye irritation Simvastatin (Zocor)- Cataracts Atorvastatin (Lipitor)- Amblyopia, dry eyes, refraction disorder, eye hemorrhage, glaucoma Resins: Cholestyramine (Questran)- Uveitis Fibrates: Gemfibrozil (Lopid)- Blurred vision Niacin: Niacin (Niacor) - Toxic amblyopia, cystoid macular edema ASTHMA ( ) Beta 2 Agonists: Albuterol (Proventil) - N/A ( Salmeterol (Serevent)-
    [Show full text]
  • Blood Thinners These Medications Require up to 2 Weeks of Discontinued Use Prior to a Myelogram Procedure
    MEDICATIONS TO AVOID PRE & POST MYELOGRAMS Radiocontrast agents used in myelography have the ability to lower the seizure threshold and when used with other drugs that also have this ability, may lead to convulsions. Drugs that possess the ability to lower seizure threshold should be discontinued at least 48 hours prior to myelography if possible and should not be resumed until at least 24 hours post-procedure. Drugs are listed below. ***Always consult with your prescribing physician prior to stoppage of your medication. Phenothiazines Antidepressants MAO Inhibitors Acetophenazine (Tindal) Amitriptyline (Elavil) Furazolidone (Furoxone) Chlorpromazine (Thorazine) Amoxapine (Asendin) Isocarboxazid (Marplan) Promethazine (Phenergan) Bupropion *(Welbutrin, Zyban) Pargyline (Eutonyl) Ethopropazine (Parsidol) Clomipramine (Anafranil, Placil) Phenelzine (Nardil) Fluphenazine (Prolixin) Desipramine (Norapramin) Procarbazine (Matulane) Mesoridazine (Serentil) Doxepin (Sinequan) Tranlcypromine (Parnate) Methdilazine (Tacaryl) Imipramine (Tofranil) Perphenazine (Trilafon) Maprotiline (Ludiomil) CNS Stimulants Proclorperazine (Compazine) Nortriptyline (Pamelor) Amphetamines Promazine (Sparine) Protriptyline (Vivactil) Pemoline (Cylert) Promethazine (Phenergan) Trimipramine (Surmontil) Thiethylperazine (Torecan) Thioridazine (Mellaril) Combination Antidepressants Trifluoperazine (Stelazine) Amitriptyline + Chlordiazepoxide (Limbitrol DS) Triflupromazine (Vesprin) Amitriptyline + Perphenazine (Triavil) Largon Levoprome Miscellaneous Antipsychotics
    [Show full text]
  • CYCLOBENZAPRINE (Brand Name: Flexeril®, Amrix®)
    Drug Enforcement Administration Diversion Control Division Drug & Chemical Evaluation Section CYCLOBENZAPRINE ® ® (Brand Name: Flexeril , Amrix ) March 2020 Introduction: Illicit Uses: Cyclobenzaprine is a central nervous system Anecdotal reports found on the Internet suggest (CNS) muscle relaxant intended for short-term use that individuals are taking cyclobenzaprine alone or in the treatment of pain, tenderness and limitation of in combination with other illicit drugs to produce or motion caused by muscle spasms. Cyclobenzaprine enhance psychoactive effects. Individuals have may enhance the effects of other CNS depressants reported taking cyclobenzadrine both orally and including alcohol, barbiturates, benzodiazepines intra-nasally at doses ranging from 10 mg to 60 mg. and narcotics and anecdotal reports indicate it is Sedation, relaxation and increased heart rate were used non-medically to induce euphoria and the most common effects reported. Euphoria was relaxation. reported by a smaller number of individuals. Licit Uses: Illicit Distribution: Cyclobenzaprine hydrochloride is approved for Several indicators suggest that cyclobenzaprine use in the United States as a muscle relaxant. It is is being intentionally misused or abused. According marketed under the brand names Flexeril® and to the American Association of Poison Control Amrix® and as generic formulations in 5, 7.5, and 10 Centers, 10,615 case mentions and 4,444 single mg tablets intended for short-term (2 to 3 week) oral exposures were associated with cyclobenzaprine in administration. The usual starting dose is 5 mg, 2016, resulting in 75 major medical outcomes and three times per day. The maximum recommended four deaths among single substance exposures. In dose is 10 mg, three times daily.
    [Show full text]
  • Neuro-Ophthalmologic Manifestations of Paraneoplastic Syndromes
    STATE OF THE ART Neuro-Ophthalmologic Manifestations of Paraneoplastic Syndromes Melissa W. Ko, MD, Josep Dalmau, MD, PhD, and Steven L. Galetta, MD Abstract: Paraneoplastic syndromes with neuro- PARANEOPLASTIC CEREBELLAR ophthalmologic manifestations may involve the cen­ DEGENERATION tral nervous system, cranial nerves, neuromuscular Paraneoplastic cerebellar degeneration (PCD) is junction, optic nerve, uvea, or retina. Most of these a syndrome of subacute severe pancerebellar dysfunction disorders are related to immunologic mechanisms (Table 1). Initially, patients present with gait instability. presumably triggered by the neoplastic expression of Over several days to weeks, they develop truncal and limb neuronal proteins. Accurate recognition is essential to ataxia, dysarthria, and dysphagia. The cerebellar disease appropriate management. eventually stabilizes but leaves patients incapacitated. PCD is most commonly associated with cancers of (/Neuro-Ophthalmol 2008;28:58-68) the lung, ovary, and breast and with Hodgkin disease (7). Ocular motor manifestations include nystagmus, ocular dysmetria, saccadic pursuit, saccadic intrusions and he term "paraneoplastic neurologic syndrome" (PNS) oscillations, and skew deviation (8). Over the last 30 refers to dysfunction of the nervous system caused by T years, at least nine anti-neuronal antibodies have been a benign or malignant tumor via mechanisms other than associated with PCD. However, only about 50% of patients metastasis, coagulopathy, infection, or treatment side with suspected PCD test positive for anti-neuronal anti­ effects (1). Whereas reports of possible paraneoplastic bodies in serum or cerebrospinal fluid (CSF) (9). Anti-Yo neuropathies extend back to the 19th century, cerebellar syndromes associated with cancer were first described by and anti-Tr are the autoantibodies most commonly Brouwerin 1919 (2).
    [Show full text]
  • GAZE and AUTONOMIC INNERVATION DISORDERS Eye64 (1)
    GAZE AND AUTONOMIC INNERVATION DISORDERS Eye64 (1) Gaze and Autonomic Innervation Disorders Last updated: May 9, 2019 PUPILLARY SYNDROMES ......................................................................................................................... 1 ANISOCORIA .......................................................................................................................................... 1 Benign / Non-neurologic Anisocoria ............................................................................................... 1 Ocular Parasympathetic Syndrome, Preganglionic .......................................................................... 1 Ocular Parasympathetic Syndrome, Postganglionic ........................................................................ 2 Horner Syndrome ............................................................................................................................. 2 Etiology of Horner syndrome ................................................................................................ 2 Localizing Tests .................................................................................................................... 2 Diagnosis ............................................................................................................................... 3 Flow diagram for workup of anisocoria ........................................................................................... 3 LIGHT-NEAR DISSOCIATION .................................................................................................................
    [Show full text]
  • Psychotropic Drugs and Ocular Side Effects Psikotropik İlaçlar Ve Oküler Yan Etkileri
    DOI: 10.4274/tjo.43.67944 Review / Derleme Psychotropic Drugs and Ocular Side Effects Psikotropik İlaçlar ve Oküler Yan Etkileri İpek Sönmez, Ümit Aykan* Near East University, Department of Psychiatry, Nicosia, TRNC, MD *Near East University, Department of Ophthalmology, Nicosia, TRNC Sum mary Nowadays the number of patients using the types of drugs in question here has significantly increased. A study carried out in relation with the long term use of psychotropic drugs shows that the consumption of this group of drugs has substantially increased in terms of variety and quantity. This compilation is arranged in accordance with the ocular complications of psychotropic drugs in long term treatment profile of numerous patients to the results of related literature review. If the doctor and the patients are informed about the eye problems related to the use of psychotropic drugs, potential ocular complications can be easily prevented, supervised and controlled and can even be reversed. (Turk J Ophthalmol 2013; 43: 270-7) Key Words: Psychotropic drugs, ocular, side effects, adverse effects Özet Günümüzde kronik ilaç kullanan hasta sayısı önemli derecede artmıştır. Uzun süreli psikotrop ilaç kullanımı açısından yapılan bir çalışma, hem çeşitlilik hem de miktar açısından bu grup ilaç tüketiminin önemli derecede arttığını göstermektedir. Bu derleme günümüzde çok sayıda hastanın uzun süreli tedavi profilinde yer alan psikotrop ilaçların oküler komplikasyonlarına ilişkin literatür taraması sonucu hazırlanmıştır. Hekim ve hastalar psikotrop ilaç kullanımına bağlı göz problemleri açısından bilgili oldukları takdirde potansiyel oküler komplikasyonlar kolayca önlenebilir, gözlem ve kontrol altına alınabilir ve hatta geriye döndürülebilirler. (Turk J Ophthalmol 2013; 43: 270-7) Anah tar Ke li me ler: Psikotropik ilaç, oküler, yan etki, ters etki Introduction human eye becoming sensitive to psychotropic treatments.
    [Show full text]