Successful Treatment of Tardive Oculogyric Crisis with Bornaprine

Total Page:16

File Type:pdf, Size:1020Kb

Successful Treatment of Tardive Oculogyric Crisis with Bornaprine Isr J Psychiatry - Vol. 56 - No 3 (2019) Şengül KOCamer ŞAHIN ET AL. Successful Treatment of Tardive Oculogyric Crisis with Bornaprine Şengül Kocamer Şahin, MD,1 Ayşegül Şahin Ekici, MD,1 Gulcin Elboga, MD,1 Abdurrahman Altindag, MD,1 and Atil Bisgin, MD2 1 Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey 2 Adana Genetics Diseases Diagnosis and Treatment Center and Medical Genetics Department of the Medical Faculty, Cukurova University, Adana, Turkey The presentation is a specific dystonic reaction. Recurrent ABSTRACT oculogyric crisis is different from the acute adverse drug event (4). It has been variously considered to be a form Tardive oculogyric crisis is one of the tardive syndromes of tardive dyskinesia (4). characterized by a spasmodic deviation of eyes typically Antipsychotic discontinuation is still the primary turning upwards after long-term use of high-potency suggestion regarding the management of tardive syn- typical or rarely atypical antipsychotics. Antipsychotic dromes, although no definitive evidence is supported. discontinuation is suggested as a treatment option with If this is not possible, changing to an antipsychotic with changing to an antipsychotic with a lower tardive dystonia a lower tardive dystonia (TDt) risk is the next option risk. Anticholinergic drugs such as trihexyphenidyl may (5). Antidyskinetic agents may be added to treatment also improve the symptoms of tardive dystonia, but these in patients whose symptoms persist despite drug regula- drugs may trigger or aggravate tardive dyskinesia. We tion. Antioxidants that reduce free oxygen radicals such report on a case with tardive syndromes and treatment as Ginkgo biloba, vitamin E, vitamin B6, clonazepam, challenge. To our knowledge, this is the first presentation propranolol and amantadine may be used. However, the of tardive oculogyric crisis related to paliperidone treatment response rates are low (6, 7) Anticholinergic palmitate treatment in combination with aripiprazole drugs such as trihexyphenidyl may have a curative effect and treatment with bornaprine. on tardive dystonia, but these drugs may trigger or aggra- vate tardive dyskinesia (TDz) (1). We report on a case of a patient with tardive oculogyric crisis (TOC) that developed six weeks after initiating risperidone long-acting injection (LAI) every two weeks and aggravated with paliperidone palmitate (PP) treat- INTRODUCTION ment every three months and treatment with bornaprine. Tardive syndromes are delayed hyperkinetic and hypoki- In the literature review, we were not able to find any case netic movement disorders caused by antipsychotic treat- of treatment with bornaprine for TOC. ment and include dyskinesia, dystonia, akathisia, chorea, parkinsonism and ocular deviations. Oculogyric crisis is CaSE HISTORY a manifestation of dystonia as a tardive syndrome (1, 2). A 22-year-old woman was admitted to the psychiatry out- Oculogyric crisis is a recurrent dystonic adverse effect patient clinic in Gaziantep on the southeast coast of Turkey of antipsychotic drugs characterized by a spasmodic devi- due to spasmodic deviation of eyes turning upwards. ation of eyes typically turning upwards lasting minutes The medical history of the patient was acquired from her, to hours and can also be associated with other dystonic her mother and hospital data. The patient had been diag- symptoms (3). Acute oculogyric crisis in a patient on nosed with bipolar affective disorder in accordance with antipsychotic drug therapy is a familiar phenomenon. the DSM-5 criteria five years earlier. The first symptoms Address for Correspondence: Şengül Kocamer Şahin, MD, Faculty of Medicine, Department of Psychiatry, Gaziantep University, Üniversite Avenue, 27310 Şehitkamil, Gaziantep, Turkey [email protected] 53 SUCCESSFUL TREATMENT OF TARDIVE OCULOGYRIC CRISIS of the disorder were paranoid and persecutory delusions, year of treatment with PP, the PP monthly injection dose increase in irritability, engaging in unrestrained buying was changed to 175 mg in three-month formulations. sprees, talkativeness and decreased need for sleep. These At the second injection of PP every three months, symptoms had required hospitalization in her first manic the patient developed recurrence of dystonic oculogyric period. symptoms every day. This time, she was admitted to our In the treatment process during the first two years, clinic. We increased the aripiprazole dosage from 15 to 20 the patient used quetiapine 300 mg /day combined mg, added biperiden 3 × 2 mg/day and discontinued the with flupenthixol depot injection. However, due to three-month formulation of paliperidone treatment. The non-adherence to oral medication, she and her mother patient and her mother were given psychoeducation to had complained about every persecutory delusions and ensure compliance to oral treatment. After discontinuation unreasonable laughing, hallucinations and avolition of PP and adding biperiden 8 mg/day for three months, during some control visits. When she was using que- there was no improvement in the patients’ TOC symptoms. tiapine regularly combined with flupenthixol delusions One dosage elevation to 10 mg was attempted, but the decreased. During that period, she had no depressive patient could not tolerate it because of tachycardia. After episodes. However, she had been hospitalized twice for a literature review, trihexyphenidyl was considered for psychotic manic episodes. After a two-year period, the the treatment of TOC. However, since trihexyphenidyl patient was clinically stable without any depressive and therapy had not yet become available in Turkey, biperiden manic episodes, although she experienced a few adverse was discontinued and bornaprine 12 mg/day, which is effects. The disease in this patient exhibited a different another central anticholinergic drug, was added. progression pattern. Considering that the patient had After adding bornaprine treatment, the patients’ psychotic symptoms without affective episodes in the symptoms improved dramatically within a week. She first two years, a diagnosis of schizophrenia and also had no signs of dystonic symptoms with her eyes in manic episodes was made, indicating bipolar disorder. terms of oculogyric crisis and was clinically stable in Once mood stabilizers had been recommended, but the terms of her bipolar disorder at the follow-up visit after patient did not use them. Therefore, additional mood one month with bornaprine and aripiprazole treatment. stabilizers could not be added to the treatment. Unfortunately, this improvement persisted only for three The patient had been clinically stable when using months, after which she again had TOC episode lasting flupenthixol depot injection monthly for the past three five minutes. Moreover, there was recurrence of TOC years. Although she had used quetiapine regularly for a approximately once a week or once in two weeks for few months, she stopped using it for the past six months. three months. A prescription request was sent to the She had experienced adverse effects such as protrusion Ministry of Health with a letter of application to procure of the tongue, chewing and lateral jaw movements at the trihexyphenidyl from abroad. end of those three years. Because of tardive dyskinesia, her treatment was changed to risperidone LAI 37.5 mg every two weeks from the flupenthixol depot injection DISCUSSION supplemented with aripiprazole 15 mg/day. Tardive dys- This case of TOC is an unusual and significant phe- kinesia was improved after changing to risperidone LAI nomenon in terms of diagnosis, treatment and follow- and adding aripiprazole within that same month. up. Therefore, the development of TOC, the persisting After the third risperidone LAI, she began complain- reasons and the treatment of this complication have to ing about spasmodic deviation of eyes turning upwards. be discussed separately. Because of noncompliance to treatment, the risperidone TDz was the first tardive syndrome developed in this LAI treatment was changed to PP 100 mg/month. The patient when she was using flupenthixol. The literature paliperidone dose was gradually decreased from 100 to reports that 6.7% of tardive dyskinesia cases are related to 50 mg because of ongoing oculogyric crisis findings. flupenthixol (8). In this patient, TDz was improved after The patient showed improvement and was clinically flupenthixol was changed to the less potent antipsychotic stabilized by decreasing the PP dose to 50 mg injection risperidone LAI supplemented with aripiprazole 15 mg/ per month and increasing the biperiden dosage to 6 mg/ day. Although cases of aripiprazole-induced TDz have been day with continuation of aripiprazole 15 mg/day. There reported in the literature, aripiprazole has also been used were no signs of oculogyric crisis findings. After one in the treatment of TDz (9). The addition of aripiprazole 54 Şengül KOCamer ŞAHIN ET AL. during the first period of treatment in this case may be have been potentially associated with an increased risk of associated with the improvement of TDz, or changing to developing TD, namely the COMT, MAO, DRD2, DRD3, the less potent antipsychotic risperidone LAI may have CYP1A2 and MnSOD genes, but the clinical relevance of been adequate to achieve improvement. such associations has not yet been confirmed (13, 14). TOC was the second tardive syndrome developed in Hypersensitivity to the dopamine receptor system, this patient when she was using risperidone LAI plus dysfunction of GABAergic neurons,
Recommended publications
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Deficits in Cholinergic Neurotransmission and Their Clinical
    www.nature.com/npjparkd All rights reserved 2373-8057/16 REVIEW ARTICLE OPEN Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease Santiago Perez-Lloret1 and Francisco J Barrantes2 In view of its ability to explain the most frequent motor symptoms of Parkinson’s Disease (PD), degeneration of dopaminergic neurons has been considered one of the disease’s main pathophysiological features. Several studies have shown that neurodegeneration also affects noradrenergic, serotoninergic, cholinergic and other monoaminergic neuronal populations. In this work, the characteristics of cholinergic deficits in PD and their clinical correlates are reviewed. Important neurophysiological processes at the root of several motor and cognitive functions remit to cholinergic neurotransmission at the synaptic, pathway, and circuital levels. The bulk of evidence highlights the link between cholinergic alterations and PD motor symptoms, gait dysfunction, levodopa-induced dyskinesias, cognitive deterioration, psychosis, sleep abnormalities, autonomic dysfunction, and altered olfactory function. The pathophysiology of these symptoms is related to alteration of the cholinergic tone in the striatum and/or to degeneration of cholinergic nuclei, most importantly the nucleus basalis magnocellularis and the pedunculopontine nucleus. Several results suggest the clinical usefulness of antimuscarinic drugs for treating PD motor symptoms and of inhibitors of the enzyme acetylcholinesterase for the treatment of dementia. Data also suggest that these inhibitors and pedunculopontine nucleus deep-brain stimulation might also be effective in preventing falls. Finally, several drugs acting on nicotinic receptors have proved efficacious for treating levodopa-induced dyskinesias and cognitive impairment and as neuroprotective agents in PD animal models. Results in human patients are still lacking.
    [Show full text]
  • Supranuclear and Internuclear Ocular Motility Disorders
    CHAPTER 19 Supranuclear and Internuclear Ocular Motility Disorders David S. Zee and David Newman-Toker OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF THE MEDULLA THE SUPERIOR COLLICULUS Wallenberg’s Syndrome (Lateral Medullary Infarction) OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF Syndrome of the Anterior Inferior Cerebellar Artery THE THALAMUS Skew Deviation and the Ocular Tilt Reaction OCULAR MOTOR ABNORMALITIES AND DISEASES OF THE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN BASAL GANGLIA THE CEREBELLUM Parkinson’s Disease Location of Lesions and Their Manifestations Huntington’s Disease Etiologies Other Diseases of Basal Ganglia OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN THE PONS THE CEREBRAL HEMISPHERES Lesions of the Internuclear System: Internuclear Acute Lesions Ophthalmoplegia Persistent Deficits Caused by Large Unilateral Lesions Lesions of the Abducens Nucleus Focal Lesions Lesions of the Paramedian Pontine Reticular Formation Ocular Motor Apraxia Combined Unilateral Conjugate Gaze Palsy and Internuclear Abnormal Eye Movements and Dementia Ophthalmoplegia (One-and-a-Half Syndrome) Ocular Motor Manifestations of Seizures Slow Saccades from Pontine Lesions Eye Movements in Stupor and Coma Saccadic Oscillations from Pontine Lesions OCULAR MOTOR DYSFUNCTION AND MULTIPLE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN SCLEROSIS THE MESENCEPHALON OCULAR MOTOR MANIFESTATIONS OF SOME METABOLIC Sites and Manifestations of Lesions DISORDERS Neurologic Disorders that Primarily Affect the Mesencephalon EFFECTS OF DRUGS ON EYE MOVEMENTS In this chapter, we survey clinicopathologic correlations proach, although we also discuss certain metabolic, infec- for supranuclear ocular motor disorders. The presentation tious, degenerative, and inflammatory diseases in which su- follows the schema of the 1999 text by Leigh and Zee (1), pranuclear and internuclear disorders of eye movements are and the material in this chapter is intended to complement prominent.
    [Show full text]
  • Fisiopatologia Dei Tremori
    FISIOPATOLOGIA DEI TREMORI Enrico Alfonsi Neurofisiopatologia IRCCS-Istituto Neurologico Nazionale «Casimiro Mondino» Pavia TREMOR A rhythmic involuntary movement of one or several regions of the body. It represents the most common neurological sign, as everyone has a ‘’physiological’’ tremor, which can only be measured with instrumental tools. 1 BACKGROUND Relation to Voluntary Movement Relation to Body Part Rest tremor Head tremor Parkinson’s disease Cerebellar disease Other parkinsonian syndromes Dystonia Tardive (drug-induced) parkinsonism Essential tremor (rarely when isolated) Vascular parkinsonism Chin tremor Hydrocephalus Parkinson’s disease Common Psychogenic (functional) tremor Hereditary geniospasm tremor Action tremor Jaw tremor disorders Postural tremor Parkinson’s disease classified Physiologic tremor and enhanced physiologic tremor Dystonia according Essential tremor Palatal tremor to two main Dystonic tremor Idiopathic (essential) criteria Parkinsonism Owing to brainstem lesions (secondary) Fragile X premutation (fragile X tremor–ataxia syndrome) Owing to degenerative disease (adult-onset Alexander’s disease) Neuropathies Arm tremor Tardive tremor Cerebellar disease Toxins (e.g., mercury) Dystonia Metabolic disorder (e.g., hyperthyroidism, hypoglycemia) Essential tremor Psychogenic (functional) tremor Parkinson’s disease Kinetic tremor Leg tremor Cerebellar disease Parkinson’s disease Holmes’ tremor Orthostatic tremor Wilson’s disease Psychogenic (functional) tremor 2 Essential tremor Features considered typical of the essential tremor syndrome Feature Description Tremor 4–12 Hz action tremor that occurs when patients voluntarily attempt • A resting tremor can appear only in advanced to maintain a steady posture stages. Other neurological signs (with the against gravity (postural tremor) or move (kinetic tremor) exception of cog-wheel phenomenon and Tremor may be suppressed by difficulties with tandem gait) are typically performing skilled manual tasks absent.
    [Show full text]
  • Eye Movement Disorders and Neurological Symptoms in Late-Onset Inborn Errors of Metabolism Koens, Lisette H.; Tijssen, Marina A
    University of Groningen Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism Koens, Lisette H.; Tijssen, Marina A. J.; Lange, Fiete; Wolffenbuttel, Bruce H. R.; Rufa, Alessandra; Zee, David S.; de Koning, Tom J. Published in: Movement Disorders DOI: 10.1002/mds.27484 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Koens, L. H., Tijssen, M. A. J., Lange, F., Wolffenbuttel, B. H. R., Rufa, A., Zee, D. S., & de Koning, T. J. (2018). Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism. Movement Disorders, 33(12), 1844-1856. https://doi.org/10.1002/mds.27484 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • National Ribat University Institute of Forensic Evidence Sciences
    National Ribat University Institute of Forensic Evidence Sciences Assessment of Trihexyphenidyl (kharsha) Knowledge and Abuse Among Students of one of Khartoum state Universities Bsc. Pharmacy,University of Science andTechnology (2005) A Thesis Submitted to National Ribat University for Partial Fulfillment of the Requirements for the Master Degree in Forensic Science Submitted By Hawari Salih AbdElrahman Supervised By Associate Prof. Ahmed AwadElgamel 2016 I Dedication I dedicate this work to my father who generously dedicated his life for us. To my dear mother that the secret of my success is her du'aa. To my wife and my beautiful children who are the joy of my life for their patience and support. To my friend Musaab for his support and endless help. HawariSalih I Acknowledgment I wish to record my thanks to all those who assisted me in the completion of this work either by support or consultation. I owe a great deal to my academic supervisor Dr.Ahmed AwadElgamel for the patience careful direction and never-ending support. II الملخ صِ بنزهكسول ِهيدروكلوريد ِ)تريهكسفينيديل(، ِيعتبراحد ِمضادات ِالكولين ِالقوية ِ ِوقد ِاكتسب ِاستخدام ِعلىِ نطاقِواسعِفيِعﻻجِمرضِالشللِالرعاشِوفيِالسيطرةِعلىِاﻵثارِالجانبيةِﻻدويةِالشللِالرعاش.ِعلىِ الرغمِمنِالتقاريرالتيِتحدثتِفيِوقتِمبكرِﻻفتةِاﻻنتباهِإلىِتاثيراتهِالنفسيةِوإمكانيةِادمانهِمنِالناحيةِ النظريةِعليِاﻻقل،ِحيثِانهِلمِيتمِاثباتهِسريرياِحتىِوقتِقريب،ِقدِلوحظِسوءِاستخدامِبنزهكسولِبوتيرةِ متزايدةِفيِالسنواتِاﻷخيرةِبينِالشبانِالساخطينِوالمحرومينِالمترددينِعلىِعياداتِالطبِالنفسي،ِوقدِ أفادوا ِأن ِاستخدامهم
    [Show full text]
  • 2002 Samel 10 Most Common Systemic Health Conditions with A
    Avanti Samel / March 15, 2002 10 Most Common Systemic Health Conditions with a Listing of Frequently Prescribed Medications and their Ocular Side Effects HYPERTENSION ACE Inhibitors: Captopril (Capoten}- blurred vision Enalapril (Vasotec) - Blurred vision, conjunctivitis, dry eyes, tearing Quinipril (Accupril)- amblyopia Benazepril (Lotensin)- N/A Lisinopril (Zestril) - Visual loss, diplopia, blurred vision, photophobia Beta-Blockers: Propranolol (Inderal)- visual disturbances, dry eyes Atenolol (Tenormin)- blurred vision, dry eyes, visual disturbances Metoprolol (Lopressor) - blurred vision, dry eyes calcium Channel Blockers: Diltiazem (Cardizem)- Amblyopia, eye irritation Amlodipine (Norvasc)- abnormal vision, conjunctivitis, diplopia, eye pain Verapamil (Calan)- Blurred vision Nifedipine (Procardia) - blurred vision, Transient blindness at the peak of plasma level · Diuretics: Thiazides: Chlorothiazide (Diuril) - Transient blurred vision, xanthopsia Loop: Furosemide (Lasix) - Blurred vision, Xanthopsia Potassium Sparing: Amiloride (Midamor) - Visual disturbances, Increased lOP Triamterene (Dyrenium)- N/A HYPERLIPIDEMIA Statins: Lovastatin (Mevacor) - Blurred vision, Eye irritation Simvastatin (Zocor)- Cataracts Atorvastatin (Lipitor)- Amblyopia, dry eyes, refraction disorder, eye hemorrhage, glaucoma Resins: Cholestyramine (Questran)- Uveitis Fibrates: Gemfibrozil (Lopid)- Blurred vision Niacin: Niacin (Niacor) - Toxic amblyopia, cystoid macular edema ASTHMA ( ) Beta 2 Agonists: Albuterol (Proventil) - N/A ( Salmeterol (Serevent)-
    [Show full text]
  • Neuro-Ophthalmologic Manifestations of Paraneoplastic Syndromes
    STATE OF THE ART Neuro-Ophthalmologic Manifestations of Paraneoplastic Syndromes Melissa W. Ko, MD, Josep Dalmau, MD, PhD, and Steven L. Galetta, MD Abstract: Paraneoplastic syndromes with neuro- PARANEOPLASTIC CEREBELLAR ophthalmologic manifestations may involve the cen­ DEGENERATION tral nervous system, cranial nerves, neuromuscular Paraneoplastic cerebellar degeneration (PCD) is junction, optic nerve, uvea, or retina. Most of these a syndrome of subacute severe pancerebellar dysfunction disorders are related to immunologic mechanisms (Table 1). Initially, patients present with gait instability. presumably triggered by the neoplastic expression of Over several days to weeks, they develop truncal and limb neuronal proteins. Accurate recognition is essential to ataxia, dysarthria, and dysphagia. The cerebellar disease appropriate management. eventually stabilizes but leaves patients incapacitated. PCD is most commonly associated with cancers of (/Neuro-Ophthalmol 2008;28:58-68) the lung, ovary, and breast and with Hodgkin disease (7). Ocular motor manifestations include nystagmus, ocular dysmetria, saccadic pursuit, saccadic intrusions and he term "paraneoplastic neurologic syndrome" (PNS) oscillations, and skew deviation (8). Over the last 30 refers to dysfunction of the nervous system caused by T years, at least nine anti-neuronal antibodies have been a benign or malignant tumor via mechanisms other than associated with PCD. However, only about 50% of patients metastasis, coagulopathy, infection, or treatment side with suspected PCD test positive for anti-neuronal anti­ effects (1). Whereas reports of possible paraneoplastic bodies in serum or cerebrospinal fluid (CSF) (9). Anti-Yo neuropathies extend back to the 19th century, cerebellar syndromes associated with cancer were first described by and anti-Tr are the autoantibodies most commonly Brouwerin 1919 (2).
    [Show full text]
  • GAZE and AUTONOMIC INNERVATION DISORDERS Eye64 (1)
    GAZE AND AUTONOMIC INNERVATION DISORDERS Eye64 (1) Gaze and Autonomic Innervation Disorders Last updated: May 9, 2019 PUPILLARY SYNDROMES ......................................................................................................................... 1 ANISOCORIA .......................................................................................................................................... 1 Benign / Non-neurologic Anisocoria ............................................................................................... 1 Ocular Parasympathetic Syndrome, Preganglionic .......................................................................... 1 Ocular Parasympathetic Syndrome, Postganglionic ........................................................................ 2 Horner Syndrome ............................................................................................................................. 2 Etiology of Horner syndrome ................................................................................................ 2 Localizing Tests .................................................................................................................... 2 Diagnosis ............................................................................................................................... 3 Flow diagram for workup of anisocoria ........................................................................................... 3 LIGHT-NEAR DISSOCIATION .................................................................................................................
    [Show full text]
  • Psychotropic Drugs and Ocular Side Effects Psikotropik İlaçlar Ve Oküler Yan Etkileri
    DOI: 10.4274/tjo.43.67944 Review / Derleme Psychotropic Drugs and Ocular Side Effects Psikotropik İlaçlar ve Oküler Yan Etkileri İpek Sönmez, Ümit Aykan* Near East University, Department of Psychiatry, Nicosia, TRNC, MD *Near East University, Department of Ophthalmology, Nicosia, TRNC Sum mary Nowadays the number of patients using the types of drugs in question here has significantly increased. A study carried out in relation with the long term use of psychotropic drugs shows that the consumption of this group of drugs has substantially increased in terms of variety and quantity. This compilation is arranged in accordance with the ocular complications of psychotropic drugs in long term treatment profile of numerous patients to the results of related literature review. If the doctor and the patients are informed about the eye problems related to the use of psychotropic drugs, potential ocular complications can be easily prevented, supervised and controlled and can even be reversed. (Turk J Ophthalmol 2013; 43: 270-7) Key Words: Psychotropic drugs, ocular, side effects, adverse effects Özet Günümüzde kronik ilaç kullanan hasta sayısı önemli derecede artmıştır. Uzun süreli psikotrop ilaç kullanımı açısından yapılan bir çalışma, hem çeşitlilik hem de miktar açısından bu grup ilaç tüketiminin önemli derecede arttığını göstermektedir. Bu derleme günümüzde çok sayıda hastanın uzun süreli tedavi profilinde yer alan psikotrop ilaçların oküler komplikasyonlarına ilişkin literatür taraması sonucu hazırlanmıştır. Hekim ve hastalar psikotrop ilaç kullanımına bağlı göz problemleri açısından bilgili oldukları takdirde potansiyel oküler komplikasyonlar kolayca önlenebilir, gözlem ve kontrol altına alınabilir ve hatta geriye döndürülebilirler. (Turk J Ophthalmol 2013; 43: 270-7) Anah tar Ke li me ler: Psikotropik ilaç, oküler, yan etki, ters etki Introduction human eye becoming sensitive to psychotropic treatments.
    [Show full text]
  • Toxic, and Comatose-Fatal Blood-Plasma Concentrations (Mg/L) in Man
    Therapeutic (“normal”), toxic, and comatose-fatal blood-plasma concentrations (mg/L) in man Substance Blood-plasma concentration (mg/L) t½ (h) Ref. therapeutic (“normal”) toxic (from) comatose-fatal (from) Abacavir (ABC) 0.9-3.9308 appr. 1.5 [1,2] Acamprosate appr. 0.25-0.7231 1311 13-20232 [3], [4], [5] Acebutolol1 0.2-2 (0.5-1.26)1 15-20 3-11 [6], [7], [8] Acecainide see (N-Acetyl-) Procainamide Acecarbromal(um) 10-20 (sum) 25-30 Acemetacin see Indomet(h)acin Acenocoumarol 0.03-0.1197 0.1-0.15 3-11 [9], [3], [10], [11] Acetaldehyde 0-30 100-125 [10], [11] Acetaminophen see Paracetamol Acetazolamide (4-) 10-20267 25-30 2-6 (-13) [3], [12], [13], [14], [11] Acetohexamide 20-70 500 1.3 [15] Acetone (2-) 5-20 100-400; 20008 550 (6-)8-31 [11], [16], [17] Acetonitrile 0.77 32 [11] Acetyldigoxin 0.0005-0.00083 0.0025-0.003 0.005 40-70 [18], [19], [20], [21], [22], [23], [24], [25], [26], [27] 1 Substance Blood-plasma concentration (mg/L) t½ (h) Ref. therapeutic (“normal”) toxic (from) comatose-fatal (from) Acetylsalicylic acid (ASS, ASA) 20-2002 300-3502 (400-) 5002 3-202; 37 [28], [29], [30], [31], [32], [33], [34] Acitretin appr. 0.01-0.05112 2-46 [35], [36] Acrivastine -0.07 1-2 [8] Acyclovir 0.4-1.5203 2-583 [37], [3], [38], [39], [10] Adalimumab (TNF-antibody) appr. 5-9 146 [40] Adipiodone(-meglumine) 850-1200 0.5 [41] Äthanol see Ethanol -139 Agomelatine 0.007-0.3310 0.6311 1-2 [4] Ajmaline (0.1-) 0.53-2.21 (?) 5.58 1.3-1.6, 5-6 [3], [42] Albendazole 0.5-1.592 8-992 [43], [44], [45], [46] Albuterol see Salbutamol Alcuronium 0.3-3353 3.3±1.3 [47] Aldrin -0.0015 0.0035 50-1676 (as dieldrin) [11], [48] Alendronate (Alendronic acid) < 0.005322 -6 [49], [50], [51] Alfentanil 0.03-0.64 0.6-2.396 [52], [53], [54], [55] Alfuzosine 0.003-0.06 3-9 [8] 2 Substance Blood-plasma concentration (mg/L) t½ (h) Ref.
    [Show full text]