United States Patent (19) (11) Patent Number: 5,145,997 Schwartz Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11) Patent Number: 5,145,997 Schwartz Et Al USOO5145997A United States Patent (19) (11) Patent Number: 5,145,997 Schwartz et al. (45) Date of Patent: Sep. 8, 1992 54 POLY (ALKYLENE OXIDE) SUBSTITUTED (57) ABSTRACT ACETOACETANILDES Poly (alkylene oxide) substituted acetoacetanilides of the formula: 75 Inventors: Russell J. Schwartz, Cincinnati; Anthony C. Zwirgzdas, Butler; Terence R. Chamberlain, Cincinnati, R all of Ohio O O (73) Assignee: Sun Chemical Corporation, Fort Lee, NH-C-CH2-c-CH3 N.J. - X-B d (21) Appl. No.: 654,163 wherein B comprises a divalent bridging moiety se 22 Filed: Feb. 12, 1991 lected from the group consisting of C1-C6 alkylene, -NHSO2-, -O-, -CO-, -COO-, and -N- 51) Int. Cl. ................... CO7C 235/84; CO7C 311/37 CHO-; X comprises a poly (alkylene oxide) having a number average molecular weight of about 200 to 52 U.S. C. .................................... 564/158; 534/561; 10,000; R comprises 0 to 4 moieties independently se 560/20, 560/21; 560/142; 564/82; 564/86; lected from the group consisting of C1-C4 alkyl, C1-C4 564/153; 564/200 alkoxy and halogen; and d is an integer of 1 to 3. The 58 Field of Search ................... 564/153, 58, 82, 86, poly (alkylene oxide) substituted acetoacetanilides are 564/200,534/561; 560/21, 22, 142 prepared by reacting a poly (alkylene oxide) mono (56) References Cited amine, diamine or triamine with isatoic anhydride fol lowed by acetoacetylation of the resultant aminobenza U.S. PATENT DOCUMENTS mide. The substituted acetoacetanilides are useful for 3,984,460 10/1976 Spivack . preparing improved diarylide pigment compositions 4,118,382 10/1978 J?ger et al. .......................... 260/154 which in turn are useful for preparing storage stable printing inks (especially of the publication gravure Primary Examiner-Richard L. Raymond type). Assistant Examiner-P. O'Sullivan Attorney, Agent, or Firm-Jack Matalon 8 Claims, No Drawings 5,145,997 1 2 POLY (ALKYLENE OXIDE) SUBSTITUTED -continued ACETOACETANLEDES fH, FIELD OF THE INVENTION 5 CH3-O-CH-CH to-CH-CH-NH; + This invention relates to novel poly (alkylene oxide) substituted acetoacetanilides and to processes for pre poly (alkylene oxide) monoamine paring such acetoacetanilides. These acetoacetanilides have been found to be useful for preparing improved diarylide pigment compositions which in turn are useful 10 for preparing storage stable printing inks (especially of the publication gravure type). DESCRIPTION OF THE INVENTION The present invention is directed to poly (alkylene 15 isatoic anhydride oxide) substituted acetoacetanilides having the general formula: Hs CH3-O-CH-CH p-CH-CH-NH-c - CO2 R 20 O O HN NH-C-CH-C-CH3 substituted monoaminobenzamide ("K") XH-B d 25 Step B wherein B comprises a divalent bridging moiety se lected from the group consisting of C1-C6 alkylene, -- -NHSO2-, -O-, -COO-, and -NHCO-; X K+...H2C=C-O ii-> comprises a poly (alkylene oxide) having a number 30 average molecular weight of about 200 to 10,000; R diketene comprises Oto 4 moieties independently selected from the group consisting of C1-C4 alkyl, C1-C4 alkoxy and halogen; and d is an integer of 1 to 3. Preferably, the Hs poly (alkylene oxide) has a number average molecular 35 CH3-O-CH2-CH-O-CH2-CH-NH-C weight of 1,000 to 3,000, R is equal to 0 moieties, d is an integer of 1, and B is -CONH-. It is particularly preferred that the poly (alkylene CH3-C-CH2-C-N oxide) be an ethylene oxide/propylene oxide copoly O O H. mer, especially those copolymers embraced by the for mula: poly (alkylene oxide) substituted acetoacetanilide ("L') Acetoacetylation (Step B) may also be performed H. using t-butylacetoacetate instead of diketene, as indi CH3 O-CH2-CH O-CH2-CH 45 cated below. Although the use of t-butylacetoacetate as the acetoacetylation agent leads to the production of wherein Q is H or CH3 and w is an integer of about 4 to t-butanol as a by-product, it is nevertheless preferred for 200, preferably 20 to 65. manufacturing purposes since diketene is considered The novel poly (alkylene oxide) substituted hazardous to transport and handle. acetoacetanilides of the present invention can be readily SO prepared by the steps of CH3 O O Step A: reacting a poly (alkylene oxide) monoamine, poly (alkylene oxide) diamine or poly (alkylene K. -- CH-i-o--CH.--CH, - G oxide) triamine with a reactant comprisingisatoic ss th anhydride (at a temperature of 20' to 130 C) so as to obtain the respective mono, bis, or tris amino CH3 benzamide-terminated poly (alkylene oxide); and L - ch,--oh Step B: acetoacetylating the substituted aminobenza mide obtained in Step A with an acetoacetylation th. agent comprising diketene or t-butylacetoacetate The poly (alkylene oxide) amines employed in Step A so as to produce the poly (alkylene oxide) substi are well known and are commercially available, e.g. as tuted acetoacetanilide. Jeffamines (R), manufactured by Texaco Chemical Com The process for preparing the poly (alkylene oxide) pany. These amines contain a polyether backbone that is substituted acetoacetanilide may be illustrated as fol- 65 based either on propylene oxide ethylene oxide or lows: mixed propylene oxide and ethylene oxide. The poly (alkylene oxide) monoamines are prepared by reaction Step A of a monohydric alcohol, followed by conversion of the 5,145,997 3 4. resulting terminal hydroxyl group to an amine. The poly (alkylene oxide) diamines are commercially avail able as several types, e.g. diamine-terminated polypro SH: Y Y SH: pylene glycols, polyether diamines based on a predomi nantly polyethylene oxide backbone as well as urea o= (=o condensates of such polyether diamines. Useful poly (alkylene oxide) triamines are those prepared by reac o= EO tion of propylene oxide with a triol, followed by amina H-N N-H tion of the terminal hydroxyl groups. For the purposes of the present invention, the poly (alkylene oxide) 10 monoamines are preferred. Further details of the prepa ration of poly (alkylene oxide) amines and their proper ties may be found in the Technical Service Bulletin Rn Rp published by the Texaco Chemical Company, entitled "The Jeffamine (R) Polyoxyalkyleneamines". 15 wherein R and R' are independently selected from the The poly (alkylene oxide) substituted acetoaceta group consisting of C1-C4 alkyl, C1-C4 alkoxy and halo nildes are useful for preparing diarylide pigments which gen; n and p are independently integers of 0 to 5; and Y exhibit excellent storage stability in aromatic solvent is Cl, CH3 or OCH3. For the purposes of the present based printing inks, e.g. publication gravure inks. The invention, the preferred pigments to be improved using diarylide pigment may be of any of the know types 20 the present poly (alkylene oxide) substituted derived from the well known reactions involving (1) acetoacetanilides are Pigment Yellow 12, Pigment Yel tetrazotizing 3,3'-dichlorobenzidine or dianisidine with low 13, Pigment Yellow 14, Pigment Yellow 17, Pig nitrous acid (which in turn is typically generated by the ment Yellow 83, Pigment 114, Pigment Yellow 126, combination of sodium nitrite and hydrochloric acid) Pigment Yellow 127, Pigment Yellow 176, and Pigment and (2) the coupling of the resultant tetrazonium salt 25 Orange 16. The following reactions are illustrative of with an acetoacetanilide. A typical diarylide pigment the manner in which the poly (alkylene oxide) substi will have the following structure. tuted acetoacetanilide corresponding to compound "L' may be employed to prepare an improved version of Pigment Yellow 12: Cl C s(O) (O) NH2 + 2(NaNO2) + 4HCl - G C C C- "(O) (O) Cl + 2NaCl + 4H2O C C O O I NH-C-CH2-C-CH3+ L +Cl- NEN HCl re H. O. H. O. I N-c-f-c-ch, N I N C 5,145,997 -continued Pigment Yellow 12 N N N-C-C-C-CH3 H. O. H. O. Plus Compound "M" plus Compound "N” shown hereinbelow: tuted acetoacetanilides of the present invention exhibit H. O. H. O. Compound "M" outstanding storage stability, showing no discernible changes in color shade, strength or rheology, even after N-c-f-c-ch, prolonged storage at elevated temperatures (over 3 N days at 50 C.). Furthermore, the elimination of mal odorous amines from the formulations provides an in N proved manufacturing environment for both the pig ment and ink producer. C The following nonlimiting examples serve to illus trate the poly (alkylene oxide) substituted acetoacetani lides and their method of preparation as well as their use in preparing improved diarylide pigments and storage stable publication gravure inks prepared from such improved diarylide pigments. Unless otherwise indi cated, all parts and percentage are by weight. Cl EXAMPLE I N Agent A: A mixture of 16.5 parts ofisatoic anhydride H. O. N. O. (96% pure) and 220 parts of a primary amine-terminated poly (ethylene oxide/propylene oxide) copolymer hav N-C-CH-C-CH3 ing a number average molecular weight of approxi C-N-CH-CH-O mately 2,000 (sold and Jeffamine (R) M 2070 by Texaco Chemical Corp.) was stirred and heated gradually to O H CH3 g-a-la.Q 80 C. until evolution of CO2 ceased. The infrared spec trum indicated that the isatoic anhydride had com Compound "N" pletely reacted as evidenced by the disappearance of the Hs | characteristic anhydride absorptions at 1748 cm-land C-N-CH-CH-O CH-CH-O CH3 1787 cm and the appearance of an amide absorption at approximately 1640 cm-1. Thereafter, 8.4 parts of diketene were added and stirring continued at 80 C. for Hi O N O about 1 hour until all the diketene had reacted as evi denced by the disappearance of its characteristic infra N red absorptions at 1891 cm31 and 1860 cm3 1.
Recommended publications
  • US EPA Inert (Other) Pesticide Ingredients
    U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs.
    [Show full text]
  • Lonza's Chemical Network Diketene and HCN Derivatives, Heterocycles
    Lonza’s chemical network Diketene and HCN derivatives, heterocycles and basic chemicals catalog Pharma&Biotech Nutrition Agriculture MaterialsScience PersonalCare Diketene and HCN derivatives, heterocycles and basic chemicals catalog Content About Lonza 3 Introduction 4 Diketene / ketene derivatives 6 Esters 6 Arylides 7 Alkylamides 8 Pyrazolones 9 Dehydroacetic acid 9 Lonzamon monomers 10 Other diketene derivatives 10 HCN derivatives 12 Heterocycles 14 Basic chemicals 16 Others 17 Alphabetical index 18 About Lonza Lonza is the global leader in the production and support of active phar- From 1897 to the present day combining Swiss tradition with global maceutical ingredients both chemically and biotechnologically. Biophar- experience, the company has had an enterprising character, adapting maceuticals are one of the key growth drivers of the pharmaceutical and its offerings and services to the needs of customers and to changing biotechnology industries. technologies. Throughout our history, we have maintained a strong culture of performance, results and dependability that is valued by all Lonza has strong capabilities in large and small molecules, peptides, of our customers. amino acids and niche bioproducts which play an important role in the development of novel medicines and healthcare products. In addition, Lonza’s cracker in Visp is the back bone of a comprehensive fully back- Lonza is a leader in cell-based research, endotoxin detection and cell ward integrated chemical network. Our product portfolio consists of therapy manufacturing. Furthermore, the company is a leading provider HCN- and diketene derivatives as well as basic chemicals which are key of chemical and biotech ingredients to the nutrition, hygiene, preserva- raw materials and intermediates for many sophisticated applications.
    [Show full text]
  • US EPA, Inert (Other) Pesticide Ingredients in Pesticide Products
    Inert Ingredients ordered by CAS Number Updated August 2004 CAS PREFIX NAME List No. 50-21-5 Lactic acid 4B 50-70-4 Sorbitol 4A 50-81-7 L- Ascorbic acid 4A 50-99-7 Dextrose 4A 51-03-6 Piperonyl butoxide 3 51-05-8 Procaine hydrochloride 3 51-55-8 Atropine 3 52-51-7 2- Bromo-2-nitro-propane-1,3-dio 3 54-21-7 Sodium salicylate 3 56-81-5 Glycerol (glycerin) 1,2,3 propanetriol 4A 56-86-0 L- Glutamic acid 3 56-95-1 Chlorhexidine diacetate 3 57-10-3 Hexadecanoic acid 4A 57-11-4 Stearic acid 4A 57-13-6 Urea 4A 57-48-7 D- Fructose 4B 57-50-1 Sugar 4A 57-55-6 Propylene glycol 4B 57-88-5 (3.beta.)- Cholest-5-en-3-ol 4B 58-08-2 1H- Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 4B 58-56-0 Thiamine mononitrate 4B 58-85-5 Biotin 3 58-86-6 D- Xylose 4B 58-95-7 Vitamin E acetate 3 59-30-3 Folic acid 4B 59-40-5 N-(2- Quinoxalinyl)sulfanilide 3 59-67-6 Nicotinic acid 3 60-00-4 Ethylenediaminetetraacetic acid (EDTA) 4B 60-12-8 Benzeneethanol 3 60-29-7 Ethane, 1,1'-oxybis- 3 60-33-3 Linoleic acid 3 61-73-4 C.I. Basic Blue 9 3 62-33-9 Ethylenediaminetetraacetic acid (EDTA), calcium4B 62-54-4 Acetic acid, calcium salt 4A 63-42-3 D-(+)-Lactose 4A 63-68-3 L- Methionine 4B 64-02-8 Ethylenediaminetetraacetic acid (EDTA), tetraso4B 64-17-5 Ethanol 4B 64-18-6 Formic acid 3 64-19-7 Acetic acid 4B 64-86-8 Colchicine 3 65-85-0 Benzoic acid 4B 66-71-7 1,10- Phenanthroline 3 67-03-8 Thiamin hydrochloride 3 67-43-6 1,1,4,7,7- Diethylenetriaminepentaacetic acid 3 67-48-1 Choline chloride 4B 67-56-1 Methyl alcohol 3 67-63-0 2- Propanol 4B 67-64-1 Acetone 3 67-68-5 Dimethyl
    [Show full text]
  • Ketene Reactions. I. the Addition of Acid Chlorides
    KETENE REACTIONS. I. THE ADDITION OF ACID CHLORIDES TO DIMETHYLKETENE. II. THE CYCLOADDITION OF KETENES TO CARBONYL COMPOUNDS APPROVED: Graduate Committee: Major Professor Committee Member.rr^- Committee Member Committee Member Director of the Department of Chemistry Dean' of the Graduate School Smith, Larry, Ketene Reactions. I. The Addition of Acid Chlorides to DimethyIketene. II. The Cycloaddition of Ketenes to Carbonvl Compounds. Doctor of Philosophy (Chemistry), December, 1970, 63 pp., 3 tables, bibliography, 62 titles. Part I describes the addition of several acid chlorides to dimethylketene. The resulting 3-ketoacid chlorides were isolated and characterized. The reactivities of acid chlorides were found to parallel the parent acid pKa's. A reactivity order of ketenes toward acid chlorides was established. Dimethylketene is more reactive than ketene which is more reactive than diphenylketene. Attempts to effect the addition of an acid halide to a ketene produced by in situ dehydro- halogenation yielded a-halovinyl esters. The addition of acid chlorides to ketenes was concluded to be an ionic process dependent upon the nucleophilic character of the ketene oc- carbon and the polarity of the carbon-chlorine bond in the acid chloride. Part II describes the cycloaddition of several aldo- ketenes to chloral. The ketenes were generated in situ by dehydrohalogenation and dehalogenation of appropriately substituted acyl halides. Both cis- and trans-4-trichloro- Miyl-2-oxetanones are produced in the cycloadditions with the sterically hindered cis isomer predominating. Isomer distributions were determined by vpc or nmr analysis of the reaction solutions. Production of the ketenes by dehalo- genation resulted in enhanced reactivity of the carbonyl compounds.
    [Show full text]
  • Market Offerings Diketene & HCN Derivatives, Heterocycles & Basic
    Performance Products Market Offerings Diketene & HCN Derivatives, Heterocycles & Basic Chemicals Network Content About Lonza 3 Introduction 4 Product Overview 6 Pharma 8 Colorants 11 Agro 13 Nutrition 16 Coatings and Composites 17 Flavor & Fragrance 20 Oil & Gas 21 Other Markets 22 2 Performance Intermediates – Lonza’s Chemical Network – Diketene and HCN Derivatives, Heterocycles and Basic Chemicals Catalog About Lonza Lonza is one of the world’s leading and most-trusted suppliers to Founded in 1897 in the Swiss Alps, Lonza today is a well-respected the pharmaceutical, biotech and specialty ingredients markets. We global company with more than 40 major manufacturing and R&D harness science and technology to create products that support safer facilities and approximately 9,800 full-time employees worldwide. and healthier living and that enhance the overall quality of life. The company generated sales of CHF 3.8 billion in 2015 and is or- ganized into two market-focused segments: Pharma&Biotech and Not only are we a custom manufacturer and developer, Lonza also Specialty Ingredients. Further information can be found at www. offers services and products ranging from active pharmaceutical in- lonza.com gredients and stem-cell therapies to drinking water sanitizers, from vitamin B3 compounds and organic personal care ingredients to Our teams are continuously working to expand this product portfo- agricultural products, and from industrial preservatives to micro- lio. For further information, please contact your Lonza representa- bial control solutions that combat dangerous viruses, bacteria and tive or reach our team at [email protected] other pathogens. Lonza’s Chemical Network – Diketene and HCN Derivatives, Heterocycles and Basic Chemicals Catalog – Performance Intermediates 3 Diketenes / Ketenes Hydrogen Cyanide (HCN) Diketene is a colorless liquid produced by dimerization of ketene.
    [Show full text]
  • Particularly Hazardous Substances Human Reproductive Page 1 of 25 March 2011 Carcinogen Hazard
    Particularly Hazardous Substances Human Reproductive Page 1 of 25 March 2011 Carcinogen Hazard CAS Number order Acutely Probable Reactive Female Known Toxic Male CAS Fetal Number Chemical 00–00–1 Nickel compounds 00–00–2 Chromium [VI] Compunds 00–00–3 Cadmium compounds 00–00–4 Chlorophenols (polychlorophenols) 00–00–5 Hexachlorocyclohexanes 00–00–6 Lead compounds, inorganic 00–00–7 Methyl and other organic mercury compounds 00–01–0 Polychlorinated biphenyls (PCBs) ‐ all forms 00–01–1 Organolithium compounds 00–01–3 Botulinum Toxins 00–01–4 Clostridium perfringens, epsilon toxin 00–01–5 Conotoxins 00–01–6 Ricin isolates 00–01–7 Saxitoxins 00–01–8 Staphylococcal enterotoxins 00–01–9 Tetrodotoxins 00–02–0 Tricothecene mycotoxins 50–00–0 Formaldehyde (Formalin) (Paraformaldeyde) 50–06–6 Phenobarbital 50–07–7 Mitomycin C 50–18–0 Cyclophosphamide 50–29–3 DDT [p,p'‐DDT] 50–32–8 Benzo[a]pyrene 50–35–1 Thalidomide 50–55–5 Reserpine 51–21–8 5‐Fluorouracil 51–28–5 Dinitrophenol Particularly Hazardous Substances Human Reproductive Page 2 of 25 March 2011 Carcinogen Hazard CAS Number order Acutely Probable Reactive Female Known Toxic Male CAS Fetal Number Chemical 51–52–5 Propylthiouracil 51–75–2 HN2 (nitrogen mustard‐2) 51–79–6 Ethyl carbamate (Urethane) 52–24–4 Thiotepa 52–67–5 Valine, 3‐mercapto‐, D‐ 53–70–3 Dibenz [a,h]anthracene 53–96–3 2‐acetylaminofluorene 54–62–6 Aminopterin 55–18–5 N‐Nitrosodiethylamine 55–63–0 Nitrogycerine 55–86–7 Nitrogen Mustard Hydrochloride 55–98–1 1,4‐Butanediol dimethanesulfonate (Busulfan; Myleran) 56–04–2 Methylthiouracil
    [Show full text]
  • TIH/PIH List
    Hazardous Materials Designated as TIH/PIH (consolidated AAR and Railinc lists) 3/12/2007 STCC Proper Shipping Name 4921402 2-CHLOROETHANAL 4921495 2-METHYL-2-HEPTANETHIOL 4921741 3,5-DICHLORO-2,4,6-TRIFLUOROPYRIDINE 4921401 ACETONE CYANOHYDRIN, STABILIZED 4927007 ACROLEIN, STABILIZED 4921019 ALLYL ALCOHOL 4923113 ALLYL CHLOROFORMATE 4921004 ALLYLAMINE 4904211 AMMONIA SOLUTION 4920360 AMMONIA SOLUTIONS 4904209 AMMONIA, ANHYDROUS 4904210 AMMONIA, ANHYDROUS 4904879 AMMONIA, ANHYDROUS 4920359 AMMONIA, ANHYDROUS 4923209 ARSENIC TRICHLORIDE 4920135 ARSINE 4932010 BORON TRIBROMIDE 4920349 BORON TRICHLORIDE 4920522 BORON TRIFLUORIDE 4936110 BROMINE 4920715 BROMINE CHLORIDE 4918505 BROMINE PENTAFLUORIDE 4936106 BROMINE SOLUTIONS 4918507 BROMINE TRIFLUORIDE 4921727 BROMOACETONE 4920343 CARBON MONOXIDE AND HYDROGEN MIXTURE, COMPRESSED 4920399 CARBON MONOXIDE, COMPRESSED 4920511 CARBON MONOXIDE, REFRIGERATED LIQUID 4920559 CARBONYL FLUORIDE 4920351 CARBONYL SULFIDE 4920523 CHLORINE 4920189 CHLORINE PENTAFLUORIDE 4920352 CHLORINE TRIFLUORIDE 4921558 CHLOROACETONE, STABILIZED 4921009 CHLOROACETONITRILE 4923117 CHLOROACETYL CHLORIDE 4921414 CHLOROPICRIN 4920516 CHLOROPICRIN AND METHYL BROMIDE MIXTURES 4920547 CHLOROPICRIN AND METHYL BROMIDE MIXTURES 4920392 CHLOROPICRIN AND METHYL CHLORIDE MIXTURES 4921746 CHLOROPIVALOYL CHLORIDE 4930204 CHLOROSULFONIC ACID 4920527 COAL GAS, COMPRESSED 4920102 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920303 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920304 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920305 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920101 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920300 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920301 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920324 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920331 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920165 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S. 4920378 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S. 4920379 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S.
    [Show full text]
  • KODAK Laboratory Chemicals HC{{~
    KODAK Laboratory Chemicals ISSN 0096-221 X Volume 55, No. 3, 1984 THE CHEMISTRY OF THE DDUCT Chem No. 50157 By Robert J . Clemens 2,2,6-Tr1methyi-4H-1 ,3-dloxln-4-one Exploratory Organic Chemlstly Re sea rch Labora1ory Eastman Chemicals Division Tennessee Eastman Company Kingsport, Tennessee CAS Registry Number: 5394-63-8 Introduction Typical Assay: 97% min Boiling Range: 65-67·c 0.2 Torr (typical) Diketene is widely used in synthetic Density (20.C): 1.09 g cml organic chemistry, especially for the Synonyms: Diketene-acetone Adduct; TKO preparation of acetoacetates and List Price: $15.50.500 g heterocycles. The extreme reactivity of diketene, along with its lachrymatory The incorporation of the elements of diketene into pigment, pharmaceutical, and nature and instability to room temperature agricultural chemicals is an important area of synthetic chemistry. In cooperation storage, make diketene inconvenient to with Eastman Chemicals Division. Kingsport, Tennessee, we are pleased to announce use. Unfortunately, few alternatives are the availability of 2,2,6-trimethyi-4H-1,3-dioxin-4-one, a versatile synthetic organic available. intermediate that can often be used in place of diketene. but which is much more Diketene reacts with acetone to form a convenient to store and handle. In addition, 2.2,6-trimethyi-4H-1,3-dioxin-4-one has a 1:1 adduct, 2,2,6-trimethyi-4H-1 ,3-dloxin-4- unique chemistry and can therefore be used to prepare new compounds not possible one (1), 1 in excellent yield. 2.3 This with diketenc. As illustrated in the accompanying article, reactions of this dioxinone dioxinone (l) is a nonlachrymatory liquid normally requ1re no catalyst.
    [Show full text]
  • Basic Chemicals and Performance Brochure
    Performance Products Market Offerings Diketene & HCN Derivatives, Heterocycles & Basic Chemicals Network Content About Lonza Lonza is one of the world’s leading and most-trusted suppliers to Founded in 1897 in the Swiss Alps, Lonza today is a well-respected About Lonza 3 the pharmaceutical, biotech and specialty ingredients markets. We global company with more than 40 major manufacturing and R&D harness science and technology to create products that support safer facilities and approximately 9,800 full-time employees worldwide. Introduction 4 and healthier living and that enhance the overall quality of life. The company generated sales of CHF 3.8 billion in 2015 and is or- ganized into two market-focused segments: Pharma&Biotech and Product Overview 6 Not only are we a custom manufacturer and developer, Lonza also Specialty Ingredients. Further information can be found at www. offers services and products ranging from active pharmaceutical in- lonza.com Pharma 8 gredients and stem-cell therapies to drinking water sanitizers, from vitamin B3 compounds and organic personal care ingredients to Our teams are continuously working to expand this product portfo- Colorants 11 agricultural products, and from industrial preservatives to micro- lio. For further information, please contact your Lonza representa- bial control solutions that combat dangerous viruses, bacteria and tive or reach our team at [email protected] Agro 13 other pathogens. Nutrition 16 Coatings and Composites 17 Flavor & Fragrance 20 Oil & Gas 21 Other Markets 22 2 Performance Intermediates – Lonza’s Chemical Network – Diketene and HCN Derivatives, Heterocycles and Basic Chemicals Catalog Lonza’s Chemical Network – Diketene and HCN Derivatives, Heterocycles and Basic Chemicals Catalog – Performance Intermediates 3 Diketenes / Ketenes Hydrogen Cyanide (HCN) New Business Development Diketene is a colorless liquid produced by dimerization of ketene.
    [Show full text]
  • Reaction of 2,2,6-Trimethyl-1,3-Dioxin-4-One with Isocyanate Derivatives and the Synthesis of 2,3,4,6-Tetra-O-Acetyl- Dglucopyranosyl Phenyl Carbodiimide
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-1987 Reaction of 2,2,6-Trimethyl-1,3-Dioxin-4-One with Isocyanate Derivatives and the Synthesis of 2,3,4,6-Tetra-O-Acetyl- Dglucopyranosyl Phenyl Carbodiimide Tung Van Le Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Pharmacology Commons Recommended Citation Van Le, Tung, "Reaction of 2,2,6-Trimethyl-1,3-Dioxin-4-One with Isocyanate Derivatives and the Synthesis of 2,3,4,6-Tetra-O-Acetyl-Dglucopyranosyl Phenyl Carbodiimide" (1987). Master's Theses. 1258. https://scholarworks.wmich.edu/masters_theses/1258 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. REACTION OF 2,2,6-TRIMETHYL-1,3-DIOXIN-4-ONE WITH ISOCYANATE DERIVATIVES AND THE SYNTHESIS OF 2,3,4,6-TETRA-O-ACETYL-D- GLUCOPYRANOSYL PHENYL CARBODIIMIDE by Tung Van Le A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Arts Department of Chemistry Western Michigan University Kalamazoo, Michigan April 1987 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTION OF 2,2,6-TRIMETHYL-l,3-DIOXIN-4-ONE WITH ISOCYANATE DERIVATIVES AND THE SYNTHESIS OF 2,3,4,6,-TETRA-O-ACETYL- D-GLUCOPYRANOSYL PHENYL CARBODIIMIDE Tung Van Le, M.A.
    [Show full text]
  • A Process for the Production of 2-Alkyl Or 2-Cycloalkyl-4-Methyl-6-Hydroxypyrimidines Joseph T
    University of Richmond UR Scholarship Repository Chemistry Faculty Publications Chemistry 1979 A Process for the Production of 2-Alkyl or 2-Cycloalkyl-4-methyl-6-hydroxypyrimidines Joseph T. Blackwell III John T. Gupton University of Richmond, [email protected] Teruko U. Miyazaki James B. Nabors Joseph R. Pociask Follow this and additional works at: http://scholarship.richmond.edu/chemistry-faculty- publications Part of the Organic Chemistry Commons Recommended Citation Blackwell, Joseph T., III, John T. Gupton, Teruko U. Miyazaki, James B. Nabors, and Joseph R. Pociask. A Process for the Production of 2-Alkyl or 2-Cycloalkyl-4-methyl-6-hydroxypyrimidines. US Patent 4163848, filed August 8, 1978, and issued August 7, 1979. This Patent is brought to you for free and open access by the Chemistry at UR Scholarship Repository. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. United States Patent c191 [11) 4,163,848 Blackwell, III et al. [45] Aug. 7, 1979 [54] PROCESS FOR THE PRODUCTION OF [56] References Cited 2-ALKYL- OR U.S. PATENT DOCUMENTS CYCLOALKYL-4-METHYL-6-HYDROX· YPYRIMIDINES 3,997,536 12/1976 Boller et al. ........ .. .. ..... ... ..... 544/319 4,012,506 3/1977 Balke et al ........................... 544/319 4,014,879 3/1977 Balke et al ........................... 544/319 [75] Inventors: J01eph T. Blackwell, ID, 4,018,771 4/i977 Gupton et al. ....................... 544/319 Greensboro; John T. Gupton, 4,052,396 10/1977 Pociask ................................ 544/319 Jamestown; Teruko U. Miyazaki, 4,052,397 10/1977 Blackwell et al ...................
    [Show full text]
  • WO 2013/069816 Al 16 May 2013 (16.05.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/069816 Al 16 May 2013 (16.05.2013) P O P C T (51) International Patent Classification: ON KABUSHIKI KAISHA, 30-2 Shimomaruko 3-chome, G03G 9/09 (2006.01) G03G 9/087 (2006.01) Ohta-ku, Tokyo, 1468501 (JP). (21) International Application Number: (74) Agents: ABE, Takuma et al; C/O CANON KABUSHIKI PCT/JP2012/079591 KAISHA, 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 1468501 (JP). (22) International Filing Date: 8 November 2012 (08.1 1.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, 201 1-246928 10 November 201 1 (10. 11.201 1) JP KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (71) Applicant: CANON KABUSHIKI KAISHA [JP/JP]; 30- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 1468501 (JP). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (72) Inventors: HASEGAWA, Yuki; C/O CANON KA TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]