Annual Report 1967-68 National Chemical Laboratory Poona 1967-1968

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 1967-68 National Chemical Laboratory Poona 1967-1968 National Chemical Laboratory Poona ANNUAL REPORT 1967-68 NATIONAL CHEMICAL LABORATORY POONA 1967-1968 COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH CONTENTS INTRODUCTION SPONSORED PROJECTS PRIVATE PARTIES INTERMEDIATES 1. Benzoic acid 2. Industrial chemicals from diketene.. 3. Nonylphenol DYES 4. Alizarin 5. Anthraquinonoid intermediates and dyes 6. Chlorinated copper phthalocyanine TERPENOIDS 7. Improvements in the process for the manufacture of /-menthol from dementholised peppermint oil 8. Utilization of longifolene and A3-carene 9. Utilization of terpene-G DRUGS AND PHARMACEUTICALS 10. Calcium hypophosphite 11. Carbimazole 12. Chemical investigation of ipecac root 13. Megimide 14. Radio-opaque dyes 15. Sodium cyclamate 16. Sorbide nitrate 17. Sulphacetamide and its sodium salt CATALYSTS AND INDUSTRIAL INORGANIC CHEMICALS 18. BD-catalyst 19. Calcium silicate PULP AND CARBOHYDRATES 20. Rayon grade pulp from some species of woods PERFUMERY CHEMICALS 21. (S-Phenethyl alcohol 22. Production of perfumery grade geraniol, citronellal and citronellol from Indian lemongrass MISCELLANEOUS 23. Analysis of organic compositions of industrial importance 24. Steroids and wax from sugarcane pressmud n 25. Screening of NCL compounds by Bristol Laboratories, Syracuse, ( N. Y.) for pharmacological activity 6 CENTRAL AND STATE GOVERNMENT INSTITUTES 26. Composite drug research scheme on Indian medicinal plants .. - 7 27. Fabrication of Electron Diffraction Camera . • 7 28. Constitution of lac .. • ? 29. Lac dye .. .. 7 30. Titanium tetrachloride from ilmenite .. 8 31. Pulping of Kashmir soft woods .. .. 9 32. Investigation of mixture of hard woods from Bastar forest for dissolving pulp ,. .. 9 PL-480 SCHEMES 33. Chemical and thermodynamic properties of refractory materials at high temperatures .. .. 9 34. Work on investigations on the synthesis and properties of new type glycol monoalkyl ethers for the control of water evaporation to extend the industrial utilization of cotton seed oil .. 10 35. Wood phenolics with special reference to their use in chemotaxonomy and their biosynthesis by tissue culture studies .. .. 12 36. Investigation of the effect of heat on tung oil and derivatives of tung oil and the characterization and identification of compounds resulting from heat treatment to extend the utilization of tung oil . - 13 PILOT PLANTS 1. Aniline .. .. 14 2. Chlorination and hydrochlorination of ethylene .. 14 m 3. Phthalates 4. Dissolving pulp 5. Fine chemicals project 6. Technical preparations of some organic intermediates PRODUCT ORIENTED RESEARCH 1. Preparation of photoconductive cells 2. Tin oxide resistor 3. Ferroelectric materials 4. Thermoelectric semiconductors 5. Posistors 6. Polycrystalline silicon 7. Ferrite compositions 8. Potential catalyst materials 9. Silicones and silicone intermediates 10. Butyl titanate 11. Synthetic inorganic chemicals 11.1 Chromatographic adsorbents 11.2 Magnesium perchlorate 11.3Ascarite 12. Polytetrafluoroethylene 13. Di-o-tolylbiguanide 14. Dyes for synthetic fibres 15. Triethyl phosphate IV 16. Reactive,dyes 17. Tri ( nonylphenyl) phosphite ( Polygard ) 18. Potassium ethyl xanthate and potassium amyl xanthate 19. Vanillin 20. Hydroxyethyl starch 21. Saccharification of cellulose 22. Synthetic glycosides and other synthetic carbohydrate materials 23. Substitute for gum Arabic 24. Cellulose caprate 25. Vitamin B6 26. Diethyl-m-toluamide 27. para-Menthane hydroperoxide 28. Colchicine 29. Allantoin 30. Synthetic experiments on berberine alkaloids 31. Ethylene brassylate 32. para-Nitrophenol 33. Acetyl sulphanilyl chloride 34. Extraction of inulin from costus roots and conversion of inulin ( ex. costus roots ) to fructose .. 35. Development of stationary liquid phases and solid support for GLC instruments 36. Transformation products of citral V 37. Theophylline-caifeine 38. 19-Norsteroids and other modified steroids 39. Chamazulene from dehydrocostus lactone 40. Ion exchange resins 40.1 Styrene-DVB base cation exchange resin 40.2 Cation exchange resin from phenol-formaldehyde resin scrap 40.3 Acrylic base cation exchange resin 41. Polystyrene foams 42. Polyurethanes 42.1 Coating for nylon fabric 42.2 Typewriter rollers 42.3 Urethane rubber 42.4 Composite propellant 42.5 Material for artificial limbs 42.6 Leather coatings 43. Surface coatings 43.1 Styrenated alkyds 43.2 Linseed oil emulsion 43.3 Epoxy resin coating 44. Adhesives 44.1 Cement for diamond setting 44.2 Adhesives for staple pins :. VI 44.3 Self-sticking composition for paper labels 44.4 Rubber base adhesives 45. Rubber and allied products 45.1 Nitrile rubber 45.2 Thiokol rubber 45.3 Rubberised cork sheet 45.4 Utilization of coir pith 45.5 Latex foam backed coir 45.6 Rubber reclaiming agents 45.7 Blowing agents 46. Miscellaneous polymeric products 46.1 Studies in CNSL 46.2 Upgrading of rosin 46.3 Bus bar compound 47. Foundry chemicals 47.1 Shell moulding resin 47.2 ' Sinol' core binder 47.3 Dry core binder 47.4 Starch phosphate 47.5 Double boiled linseed oil substitute 48. Low temperature fluxes 49. Methylamines 50. Ethylenediamine VII 51. Phenacetin 52. Vitamin C and Sofbitol 53. 2,4-Dinitromonomethylaniline 54. Ethyl, acetoacetate 55. Methylol stearamide 56. Chlorination of sewage methane .. 57. Bacterial diastase 58. Preparation of biochemicals 59. Vapour phase chromatograph 60. Self-balancing potentiometric servo-recorder 61. Equipment for determination of total solid contents in latex compositions, cements and adhesives RESEARCH PROJECTS 1. Theoretical investigations on solid state and molecular physics 1.1 State of atoms in the presence of crystal and radiation fields 1.2 Electronic structure of atoms and molecules 1.3 Phonon-maguon interactions in magnetically ordered solids 1.4 Exchange interaction in magnetic solids 1.5 Interaction involving conduction electrons in magnetic metals and alloys 1.6 Superconductivity in metals and alloys 1.7 Mobility in polar semiconductors 1.8 Ligand field theory VUI 1.9 Chalcogenide spinel semiconductors 2. Materials for solid state devices 2.1 Metal-insulator-metal sandwiches 2.2 Laser materials 2.3 Photoconducting materials 3. Thin films 4. Crystal and molecular studies 4.1 Crystallography 4.2 Spectrochemical studies 5. Thermodynamic studies 5.1 Thermodynamic properties of solutions 6. Nuclear and radiation chemistry .. 6.1 Effect of radiation on chemical reactions 6.2 Mossbauer spectroscopy 6.3 Diffusion in solid state 7. Synthetic inorganic chemistry 7.1 Titanium and tin organics 7.2 Coordination polymers 7.3 Spectral studies of coordination compounds 7.4 Coordination compounds 7.5 Infrared spectra of metal chelates 7.6 Polarographic studies of copper chelates 7.7 Fluorine chemicals 8. Physico analytical chemistry 8.1 New reactions of analytical importance 9. Natural organic products 9.1 Terminalia tomentosa gum 9.2 Celastrus paniculatus IX 9.3 Utilization of {3-himachalene .. ... 63 9.4 Utilization of by-products of opium alkaloid industry 63 9.5 Oleoresins and resinoids ... - - 63 69. Wood extractives .. • • 63 9.7 Flavonoids .. • - 64 9.8 Cyperus scariosus .. - - 64 9.9 Vetiver oil .. • • 64 9.10 Acidic constituents of costus root oil .. 65 9.11 Guaicum wood oil . • • • 65 10. Synthetic organic chemistry .. • .. 65 10.1 Studies in hydride transfer .. .. 65 10.2 Vat dyes .. - 66 10.3 Biologically active compounds ,. .. 66 10.4 Anti-fertility drugs .. .. 67 10.5 Carcinostatic compounds .. .. 67 10.6 Potent analgesics .. - .. 68 10.7 New heterocyclic vat dyes .. 69 10.8 Studies on the reduction of quinones .. 69 10.9 Naturally occurring anthraquinone pigments .. 69 10.10 4-Acetomethylcoumarins .. .. 70 10.10 Synthetic studies in 4-arylcinnolines .. 71 10.12 Synthetic dyes .. .. 71 10.13 Base-catalysed reaction of lithioethylenediamine .. 73 10.14 Transformation products of eduesmol .. 73 10.15 Transformation products of carvone and limonene .. 74 10.16 Synthesis of bergamotene .. .. 74 10.17 Transformation of costunolide .. .. 75 10.18 Transformation of dehydrocostus lactone .. 75 X 10.19 Conversion of costunolide into tetrahydro- santonins .. .. 75 10.20 Synthesis of compounds related to selinane, elemane and ^-menthane .. .. 76 11. Physical organic chemistry .. .. 76 11.1 Mass spectrometry .. .. 76 11.2 Applications of NMR spectroscopy .. .. 77 11.3 Structural and stereochemical studies.. .. 79 11.4 Studies related to Mills-Nixon effect.. .. 80 11.5 Carbonium ions .. .. 81 11.6 Electronic spectra .. .. 81 12. Microbiology .. .. 81 12.1 National Collection of Industrial Microorganisms .. 81 12.2 Microbiological transformation of terpenes .. 82 12.3 Transformation of Kurchi alkaloids .. .. 83 13. Growth of plant cells .. .. 84 14. Enzymes .. .. 84 14.1 Hexokinase .. .. 84 14.2 Phytase .. .. 85 14.3 DPNase .. .. 85 14.4 Acetylcholinesterase .. .. 85 14.5 Acylphosphatase .. .. 86 14.6 Citrate-oxaloacetate lyase .. .. 86 14.7 Enzymes and the metabolism of organic acids .. 86 14.8 Nitrate and nitrite reductases .. .. 87 15. Physico-chemical studies on polymers .. 88 15.1 Stereospecific polymerization .. .. 88 15.2 Polymerization of (O-aminoenanthic acid .. 88 15.3 Degradation of long chain molecules by ultrasonics .. 89 16. Chemical engineering studies .. .. 89 XI 16.1 Interfacial tension in two and three component systems 89 16.2 Heat transfer 89 16.3 Reaction models and reactor design 90 16.4 Properties estimation 90 16.5 Mass transfer 90 16.6 Fluidization 91 16.7 Diffusion in solid catalyst 91 16.8 Distillation 92 APPENDICES A. I Service projects 93 A. II Services rendered to outside parties.
Recommended publications
  • Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6
    EPA Document# EPA-740-D-20-010 April 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6 April 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................5 ABBREVIATIONS AND ACRONYMS ..................................................................................................6 EXECUTIVE SUMMARY .......................................................................................................................8 1 INTRODUCTION ............................................................................................................................11 2 SCOPE OF THE EVALUATION ...................................................................................................11 2.1 Reasonably Available Information ..............................................................................................11 Search of Gray Literature ...................................................................................................... 12 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 13 Search of TSCA Submissions ................................................................................................ 19 2.2 Conditions of Use ........................................................................................................................19 Categories
    [Show full text]
  • US EPA Inert (Other) Pesticide Ingredients
    U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs.
    [Show full text]
  • Lonza's Chemical Network Diketene and HCN Derivatives, Heterocycles
    Lonza’s chemical network Diketene and HCN derivatives, heterocycles and basic chemicals catalog Pharma&Biotech Nutrition Agriculture MaterialsScience PersonalCare Diketene and HCN derivatives, heterocycles and basic chemicals catalog Content About Lonza 3 Introduction 4 Diketene / ketene derivatives 6 Esters 6 Arylides 7 Alkylamides 8 Pyrazolones 9 Dehydroacetic acid 9 Lonzamon monomers 10 Other diketene derivatives 10 HCN derivatives 12 Heterocycles 14 Basic chemicals 16 Others 17 Alphabetical index 18 About Lonza Lonza is the global leader in the production and support of active phar- From 1897 to the present day combining Swiss tradition with global maceutical ingredients both chemically and biotechnologically. Biophar- experience, the company has had an enterprising character, adapting maceuticals are one of the key growth drivers of the pharmaceutical and its offerings and services to the needs of customers and to changing biotechnology industries. technologies. Throughout our history, we have maintained a strong culture of performance, results and dependability that is valued by all Lonza has strong capabilities in large and small molecules, peptides, of our customers. amino acids and niche bioproducts which play an important role in the development of novel medicines and healthcare products. In addition, Lonza’s cracker in Visp is the back bone of a comprehensive fully back- Lonza is a leader in cell-based research, endotoxin detection and cell ward integrated chemical network. Our product portfolio consists of therapy manufacturing. Furthermore, the company is a leading provider HCN- and diketene derivatives as well as basic chemicals which are key of chemical and biotech ingredients to the nutrition, hygiene, preserva- raw materials and intermediates for many sophisticated applications.
    [Show full text]
  • US EPA, Inert (Other) Pesticide Ingredients in Pesticide Products
    Inert Ingredients ordered by CAS Number Updated August 2004 CAS PREFIX NAME List No. 50-21-5 Lactic acid 4B 50-70-4 Sorbitol 4A 50-81-7 L- Ascorbic acid 4A 50-99-7 Dextrose 4A 51-03-6 Piperonyl butoxide 3 51-05-8 Procaine hydrochloride 3 51-55-8 Atropine 3 52-51-7 2- Bromo-2-nitro-propane-1,3-dio 3 54-21-7 Sodium salicylate 3 56-81-5 Glycerol (glycerin) 1,2,3 propanetriol 4A 56-86-0 L- Glutamic acid 3 56-95-1 Chlorhexidine diacetate 3 57-10-3 Hexadecanoic acid 4A 57-11-4 Stearic acid 4A 57-13-6 Urea 4A 57-48-7 D- Fructose 4B 57-50-1 Sugar 4A 57-55-6 Propylene glycol 4B 57-88-5 (3.beta.)- Cholest-5-en-3-ol 4B 58-08-2 1H- Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 4B 58-56-0 Thiamine mononitrate 4B 58-85-5 Biotin 3 58-86-6 D- Xylose 4B 58-95-7 Vitamin E acetate 3 59-30-3 Folic acid 4B 59-40-5 N-(2- Quinoxalinyl)sulfanilide 3 59-67-6 Nicotinic acid 3 60-00-4 Ethylenediaminetetraacetic acid (EDTA) 4B 60-12-8 Benzeneethanol 3 60-29-7 Ethane, 1,1'-oxybis- 3 60-33-3 Linoleic acid 3 61-73-4 C.I. Basic Blue 9 3 62-33-9 Ethylenediaminetetraacetic acid (EDTA), calcium4B 62-54-4 Acetic acid, calcium salt 4A 63-42-3 D-(+)-Lactose 4A 63-68-3 L- Methionine 4B 64-02-8 Ethylenediaminetetraacetic acid (EDTA), tetraso4B 64-17-5 Ethanol 4B 64-18-6 Formic acid 3 64-19-7 Acetic acid 4B 64-86-8 Colchicine 3 65-85-0 Benzoic acid 4B 66-71-7 1,10- Phenanthroline 3 67-03-8 Thiamin hydrochloride 3 67-43-6 1,1,4,7,7- Diethylenetriaminepentaacetic acid 3 67-48-1 Choline chloride 4B 67-56-1 Methyl alcohol 3 67-63-0 2- Propanol 4B 67-64-1 Acetone 3 67-68-5 Dimethyl
    [Show full text]
  • SDS for Taylor Mason's Hygrometer
    SAFETY DATA SHEET Preparation Date: 3/11/2015 Revision Date: 3/11/2015 Revision Number: G1 Product identifier Product code: T2256 Product Name: TRIETHYL PHOSPHATE Other means of identification Synonyms: Ethyl phosphate TEP Triethoxyphosphine oxide Phosphoric acid, triethyl ester CAS #: 78-40-0 RTECS # TC7900000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Used as a catalyst in the production of acetic anhydride by the ketene process, as a desensitizing agent for peroxides, and as a solvent and plasticizer for cellulose acetate. Solvent; plasticizer for resins, plastics, gums; catalyst; lacquer remover. As a plasticizer, solvent, fire-retarding agent, anti-foaming agent As an ethylating agent, and as a raw material to prepare insecticides such as tetraethyl pyrophosphate. As ethylating agent; formation of polyesters which are used as insecticides.. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 4 Serious eye damage/eye irritation Category 2A Label elements Product code: T2256 Product name: TRIETHYL 1 / 12 PHOSPHATE Warning Hazard statements Harmful if swallowed Causes serious eye irritation Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear eye/face protection IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Ketene Reactions. I. the Addition of Acid Chlorides
    KETENE REACTIONS. I. THE ADDITION OF ACID CHLORIDES TO DIMETHYLKETENE. II. THE CYCLOADDITION OF KETENES TO CARBONYL COMPOUNDS APPROVED: Graduate Committee: Major Professor Committee Member.rr^- Committee Member Committee Member Director of the Department of Chemistry Dean' of the Graduate School Smith, Larry, Ketene Reactions. I. The Addition of Acid Chlorides to DimethyIketene. II. The Cycloaddition of Ketenes to Carbonvl Compounds. Doctor of Philosophy (Chemistry), December, 1970, 63 pp., 3 tables, bibliography, 62 titles. Part I describes the addition of several acid chlorides to dimethylketene. The resulting 3-ketoacid chlorides were isolated and characterized. The reactivities of acid chlorides were found to parallel the parent acid pKa's. A reactivity order of ketenes toward acid chlorides was established. Dimethylketene is more reactive than ketene which is more reactive than diphenylketene. Attempts to effect the addition of an acid halide to a ketene produced by in situ dehydro- halogenation yielded a-halovinyl esters. The addition of acid chlorides to ketenes was concluded to be an ionic process dependent upon the nucleophilic character of the ketene oc- carbon and the polarity of the carbon-chlorine bond in the acid chloride. Part II describes the cycloaddition of several aldo- ketenes to chloral. The ketenes were generated in situ by dehydrohalogenation and dehalogenation of appropriately substituted acyl halides. Both cis- and trans-4-trichloro- Miyl-2-oxetanones are produced in the cycloadditions with the sterically hindered cis isomer predominating. Isomer distributions were determined by vpc or nmr analysis of the reaction solutions. Production of the ketenes by dehalo- genation resulted in enhanced reactivity of the carbonyl compounds.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE of TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., Assignor to Monsanto Chemical Company, St
    Patented Oct. 23, 1951 2,572,806 UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE OF TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., assignor to Monsanto Chemical Company, St. Louis, Mo., a corporation of Delaware No Drawing. Application May 1, 1948, Serial No. 24,683 2 Claims, (C. 260-461) 2 This invention relates to compositions con enty known to the art. A still further object of taining increased amounts of tetraethyl pyro this invention is to provide biological toxicant phosphate, and more. particularly to a process compositions containing increased amounts of for the manufacture of tetraethyl pyrophosphate. tetraethyl pyrophosphate which poSSeSS over Compositions containing tetraethyl pyrophos 5. S00% greater biological activity for the combat phate are widely used as agricultural economic ing and control of pests such as aphids and mites poisons, particularly against many insects such than do the compositions containing tetraethyl as aphids and against many acarina such as the pyrophosphate which are presently known to red Spider mites, however, such compositions may the art. be used generally against the lower forms of life O In the practice of this invention, the mixtures which, in the past, have been combatted by the of reaction products from the processes of this use of nicotine or nicotine salts. Furthermore, invention contain substantially 40%, that is tetraethyl pyrophosphate has been found useful 38-45%, of tetraethyl pyrophosphate as con in the preparation of insectivoricide and rodenti trasted with the processes of the prior art which cide compositions. 5 yielded mixtures of the reaction productS con While the art has disclosed several methods for taining only 10-15% of the tetraethyl pyrophoS the preparation of tetraethyl pyrophosphate, phate.
    [Show full text]
  • (VOC) and Organophosphate Flame Retardants (OPFR) in Building Materials
    Identification of volatile organic compounds (VOC) and organophosphate flame retardants (OPFR) in building materials Daniel Duberg 2017-05-29 Exam project, 15 HP, Chemistry Supervisor: Thanh Wang, Josefin Persson Examiner: Tuulia Hyötyläinen Abstract Humans today spend most of their time in various indoor settings such as housing, schools and workplaces. The quality of the indoor environment is therefore of great significance for our wellbeing. However, it has been suggested that the indoor environment contains over 6000 organic compounds, such as various volatile organic compounds (VOC). Around 500 of these compounds is believed to be due to emissions from different surrounding building materials such as insulation, plastic film, sealants and flooring. This study targeted building materials from three low energy preschools that were sampled and analyzed for emissions of VOCs and nine different organophosphate flame retardant compounds (OPFR) using a gas chromatograph coupled to a mass spectrometer (GC/MS). Low energy buildings are buildings that is particularly air tight to be so energy efficient as possible. The study uses a qualitative approach and therefore mainly identifies possible contribution from building materials to indoor environment. More than 100 different VOCs was identified and the most noticeable were meta-, ortho- and para-xylene, toluene, n-hexane and propylene glycol, all but the last compound is associated with hazardous health effects. The building materials that emitted the largest amounts of VOCs was sealants and adhesives. Linoleum flooring and acrylic was also large emitters. Tris(1-chloro-2-propyl) phosphate (TCIPP) were identified in all samples and all nine targeted OPFR compounds were identified in the various material samples and dust samples.
    [Show full text]
  • Market Offerings Diketene & HCN Derivatives, Heterocycles & Basic
    Performance Products Market Offerings Diketene & HCN Derivatives, Heterocycles & Basic Chemicals Network Content About Lonza 3 Introduction 4 Product Overview 6 Pharma 8 Colorants 11 Agro 13 Nutrition 16 Coatings and Composites 17 Flavor & Fragrance 20 Oil & Gas 21 Other Markets 22 2 Performance Intermediates – Lonza’s Chemical Network – Diketene and HCN Derivatives, Heterocycles and Basic Chemicals Catalog About Lonza Lonza is one of the world’s leading and most-trusted suppliers to Founded in 1897 in the Swiss Alps, Lonza today is a well-respected the pharmaceutical, biotech and specialty ingredients markets. We global company with more than 40 major manufacturing and R&D harness science and technology to create products that support safer facilities and approximately 9,800 full-time employees worldwide. and healthier living and that enhance the overall quality of life. The company generated sales of CHF 3.8 billion in 2015 and is or- ganized into two market-focused segments: Pharma&Biotech and Not only are we a custom manufacturer and developer, Lonza also Specialty Ingredients. Further information can be found at www. offers services and products ranging from active pharmaceutical in- lonza.com gredients and stem-cell therapies to drinking water sanitizers, from vitamin B3 compounds and organic personal care ingredients to Our teams are continuously working to expand this product portfo- agricultural products, and from industrial preservatives to micro- lio. For further information, please contact your Lonza representa- bial control solutions that combat dangerous viruses, bacteria and tive or reach our team at [email protected] other pathogens. Lonza’s Chemical Network – Diketene and HCN Derivatives, Heterocycles and Basic Chemicals Catalog – Performance Intermediates 3 Diketenes / Ketenes Hydrogen Cyanide (HCN) Diketene is a colorless liquid produced by dimerization of ketene.
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]
  • Particularly Hazardous Substances Human Reproductive Page 1 of 25 March 2011 Carcinogen Hazard
    Particularly Hazardous Substances Human Reproductive Page 1 of 25 March 2011 Carcinogen Hazard CAS Number order Acutely Probable Reactive Female Known Toxic Male CAS Fetal Number Chemical 00–00–1 Nickel compounds 00–00–2 Chromium [VI] Compunds 00–00–3 Cadmium compounds 00–00–4 Chlorophenols (polychlorophenols) 00–00–5 Hexachlorocyclohexanes 00–00–6 Lead compounds, inorganic 00–00–7 Methyl and other organic mercury compounds 00–01–0 Polychlorinated biphenyls (PCBs) ‐ all forms 00–01–1 Organolithium compounds 00–01–3 Botulinum Toxins 00–01–4 Clostridium perfringens, epsilon toxin 00–01–5 Conotoxins 00–01–6 Ricin isolates 00–01–7 Saxitoxins 00–01–8 Staphylococcal enterotoxins 00–01–9 Tetrodotoxins 00–02–0 Tricothecene mycotoxins 50–00–0 Formaldehyde (Formalin) (Paraformaldeyde) 50–06–6 Phenobarbital 50–07–7 Mitomycin C 50–18–0 Cyclophosphamide 50–29–3 DDT [p,p'‐DDT] 50–32–8 Benzo[a]pyrene 50–35–1 Thalidomide 50–55–5 Reserpine 51–21–8 5‐Fluorouracil 51–28–5 Dinitrophenol Particularly Hazardous Substances Human Reproductive Page 2 of 25 March 2011 Carcinogen Hazard CAS Number order Acutely Probable Reactive Female Known Toxic Male CAS Fetal Number Chemical 51–52–5 Propylthiouracil 51–75–2 HN2 (nitrogen mustard‐2) 51–79–6 Ethyl carbamate (Urethane) 52–24–4 Thiotepa 52–67–5 Valine, 3‐mercapto‐, D‐ 53–70–3 Dibenz [a,h]anthracene 53–96–3 2‐acetylaminofluorene 54–62–6 Aminopterin 55–18–5 N‐Nitrosodiethylamine 55–63–0 Nitrogycerine 55–86–7 Nitrogen Mustard Hydrochloride 55–98–1 1,4‐Butanediol dimethanesulfonate (Busulfan; Myleran) 56–04–2 Methylthiouracil
    [Show full text]
  • Triphenyl Phosphate (TPP)
    EPA Document# EPA-740-R-20-010 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Triphenyl Phosphate (TPP) CASRN 115-86-6 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .......................................................................................................................9 1 INTRODUCTION ............................................................................................................................12 2 SCOPE OF THE EVALUATION ...................................................................................................12 2.1 Reasonably Available Information ..............................................................................................12 Search of Gray Literature ...................................................................................................... 13 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 14 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................24 Categories
    [Show full text]