(VOC) and Organophosphate Flame Retardants (OPFR) in Building Materials

Total Page:16

File Type:pdf, Size:1020Kb

(VOC) and Organophosphate Flame Retardants (OPFR) in Building Materials Identification of volatile organic compounds (VOC) and organophosphate flame retardants (OPFR) in building materials Daniel Duberg 2017-05-29 Exam project, 15 HP, Chemistry Supervisor: Thanh Wang, Josefin Persson Examiner: Tuulia Hyötyläinen Abstract Humans today spend most of their time in various indoor settings such as housing, schools and workplaces. The quality of the indoor environment is therefore of great significance for our wellbeing. However, it has been suggested that the indoor environment contains over 6000 organic compounds, such as various volatile organic compounds (VOC). Around 500 of these compounds is believed to be due to emissions from different surrounding building materials such as insulation, plastic film, sealants and flooring. This study targeted building materials from three low energy preschools that were sampled and analyzed for emissions of VOCs and nine different organophosphate flame retardant compounds (OPFR) using a gas chromatograph coupled to a mass spectrometer (GC/MS). Low energy buildings are buildings that is particularly air tight to be so energy efficient as possible. The study uses a qualitative approach and therefore mainly identifies possible contribution from building materials to indoor environment. More than 100 different VOCs was identified and the most noticeable were meta-, ortho- and para-xylene, toluene, n-hexane and propylene glycol, all but the last compound is associated with hazardous health effects. The building materials that emitted the largest amounts of VOCs was sealants and adhesives. Linoleum flooring and acrylic was also large emitters. Tris(1-chloro-2-propyl) phosphate (TCIPP) were identified in all samples and all nine targeted OPFR compounds were identified in the various material samples and dust samples. T-Flex tape and plastic film was the sample materials that emitted most OPFR compounds. Contents Abstract ................................................................................................................................................... 2 Introduction ............................................................................................................................................. 5 Background .............................................................................................................................................. 5 Indoor exposure .................................................................................................................................. 5 Indoor air quality ................................................................................................................................. 6 Low-energy buildings .......................................................................................................................... 6 Building materials ................................................................................................................................ 6 Emission testing ................................................................................................................................... 7 Volatile organic compounds (VOCs) and semi-volatile organic compound (SVOC) ............................ 7 OPFRs ................................................................................................................................................... 7 Materials and methods ........................................................................................................................... 9 Selected materials ............................................................................................................................... 9 Materials .............................................................................................................................................. 9 OPFRs and nBFRs ................................................................................................................................. 9 VOCs .................................................................................................................................................. 10 Emission sampling ............................................................................................................................. 10 Method .............................................................................................................................................. 10 Emission tests of building materials .................................................................................................. 10 Sampling and analytical procedure of OPFRs .................................................................................... 11 Analytical procedure of VOCs ............................................................................................................ 12 Dust and air sampling, preparation and analysis .............................................................................. 12 Results ................................................................................................................................................... 13 Emission of VOCs ............................................................................................................................. 14 Emissions of OPFRs ............................................................................................................................ 17 Emissions from building materials according to the literature ......................................................... 19 Discussion .............................................................................................................................................. 20 Emissions of VOCs ............................................................................................................................. 20 Emissions of OPFRs ............................................................................................................................ 22 Building materials .............................................................................................................................. 23 Analysis and evaluation ..................................................................................................................... 23 VOCs .............................................................................................................................................. 23 OPFRs ............................................................................................................................................. 24 Conclusions ............................................................................................................................................ 24 Acknowledgment ................................................................................................................................... 24 References ............................................................................................................................................. 25 Appendix A ........................................................................................................................................ 28 Appendix B ........................................................................................................................................ 32 Appendix C............................................................................................................................................. 34 Introduction Humans today spend most of their time indoors and the indoor environment have been proven to cause inconvenience, especially among those who are oversensitive due to, for example, allergies and asthma. (1) A house that causes symptoms among its inhabitants is called “sick house” and it is believed that low air exchange rate combined with chemical emissions from building materials is one of the causes to these problems. (2) Since regulations have become stricter for buildings to lower their energy usage, low energy houses have become more common during the last decade due to their energy efficiency and low contribution to the climate. (3, 4) To investigate the potential contribution of chemical emissions from building materials to the indoor environment in low energy houses, three preschools around the Örebro region were selected. From the three preschools, approximately 13 building material samples were collected consisting of flooring, insulation, paint, adhesive, plastic film, sealant and tape. Volatile organic compounds (VOCs) and organophosphate flame retardants (OPFRs) were the chemical compounds of interest in this survey and all materials were analyzed for their content by two separate methods. To see possible correlation between VOC emissions from building materials and indoor environment, the material analysis was compared to air samples collected from the same preschools. Aims of project - To evaluate VOCs and OPFRs in building materials from three low-energy preschools. - To evaluate if emissions from building materials contributes to the indoor air quality. - To compare the composition of the identified chemical compounds with those found in other studies. Background Indoor exposure Humans are currently exposed to a wide range of industrial chemicals in our everyday life and a contributing factor is the amount of time spent in different indoor settings, which is approximately 20 hours per day. The risk of spending too much time in indoor settings could lead to increased exposure of chemicals that can be emitted from furniture,
Recommended publications
  • Phosphorus Oxychloride CAS No
    Product Safety Summary Phosphorus Oxychloride CAS No. 10025-87-3 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information in the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names Phosphorus oxychloride Phosphorus trichloride oxide Phosphoric trichloride POCl 3 Product Overview Solvay Novecare does not sell phosphorus oxychloride directly to consumers. Phosphorus oxychloride (POCl3) is used as a chemical intermediate to produce a variety of products which are used in several applications including manufacture of triarylphosphate esters which are used as flame retardants as well as an intermediate in the production of pharmaceutical, textile and agricultural chemicals. Phosphorus oxychloride is used in industrial applications and other processes where workplace exposures can occur. Consumer exposure does not occur as phosphorus oxychloride is not used in any commercially available product. Phosphorus oxychloride is dangerous to human health. Phosphorus oxychloride may be fatal if inhaled, highly toxic if swallowed, harmful if absorbed through skin and can cause severe burns which may result in scarring. Phosphorus oxychloride is consumed in manufacturing processes. POCl3 can make its way into the environment through unintentional releases (spills). POCl3 will not bioaccumulate but is not biodegradable. POCl3 in higher concentrations can be harmful to aquatic life due to formation of acids from the hydrolysis of POCl3. When released into the atmosphere, phosphorus oxychloride exists as vapor.
    [Show full text]
  • Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6
    EPA Document# EPA-740-D-20-010 April 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6 April 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................5 ABBREVIATIONS AND ACRONYMS ..................................................................................................6 EXECUTIVE SUMMARY .......................................................................................................................8 1 INTRODUCTION ............................................................................................................................11 2 SCOPE OF THE EVALUATION ...................................................................................................11 2.1 Reasonably Available Information ..............................................................................................11 Search of Gray Literature ...................................................................................................... 12 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 13 Search of TSCA Submissions ................................................................................................ 19 2.2 Conditions of Use ........................................................................................................................19 Categories
    [Show full text]
  • OFR Staff Plan
    Staff Briefing Package Project Plan: Organohalogen Flame Retardant Chemicals Assessment July 1, 2020 CPSC Consumer Hotline and General Information: 1-800-638-CPSC (2772) CPSC's Web Site: http://www.cpsc.gov THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Acknowledgments The preparation, writing, and review of this report was supported by a team of staff. We acknowledge and thank team members for their significant contributions. Michael Babich, Ph.D., Directorate for Health Sciences Charles Bevington, M.P.H., Directorate for Health Sciences Xinrong Chen, Ph.D., D.A.B.T., Directorate for Health Sciences Eric Hooker, M.S., D.A.B.T., Directorate for Health Sciences Cynthia Gillham, M.S., Directorate for Economic Analysis John Gordon, Ph.D., Directorate for Health Sciences Kristina Hatlelid, Ph.D., M.P.H., Directorate for Health Sciences Barbara Little, Attorney, Office of the General Counsel Joanna Matheson, Ph.D., Directorate for Health Sciences ii THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Table of Contents Briefing Memo ............................................................................................................................... iv 1. Executive summary .............................................................................................................. 5 2. Introduction .........................................................................................................................
    [Show full text]
  • SDS) Is Provided for Compliance with Applicable Regulations of the Hazard Communication Standard of 2012 (HCS/HAZCOM 2012) Found in §29 CFR 1910.1200
    Safety Data Sheet Section 1 – Identification of the Mixture and of the Company Product Identification Primary Identifier(s) Used on the Label Berryman TRANSMISSION & POWER STEERING SEALER Product Synonym(s) blend “PSTS” Product Number(s) 0712 and 0755 Relevant Identified Uses and Uses Advised Against Recommended Uses automatic transmission and power steering pump seal conditioner Uses Advised Against not for use in manual transmissions Manufacturer/Supplier Details Berryman Products, Inc. 3800 E Randol Mill Rd Arlington, TX 76011 (800) 433-1704 (USA/Canada) (817) 640-2376 (international) www.BerrymanProducts.com Emergency 2424----HourHour Telephone Number(s) ––– InfoTrac, Inc. (800) 535-5053 (USA/Canada) (352) 323-3500 (international) Section 2 – Hazards Identification Classification of the Substance or Mixture (29 CFR 1910.1200) Physical Hazards Health Hazards Eye Irritant – Category 2B Specific Target Organ Toxicity - Repeated Exposure – Category 2 (blood/blood system) Environmental Hazard - Chronic – Category 1 Allocation of Label Elements Chemical Identity Berryman TRANSMISSION & POWER STEERING SEALER Pictograms Signal Word WARNING Hazard Statements H320 – Causes eye irritation. H373 – May cause damage to blood/blood system through prolonged or repeated exposure. H410 – Very toxic to aquatic life with long-lasting effects. Safety Data Sheet ––– Page 111 of 999 Berryman Products, Inc. ––– part #s 0712 and 0755 Prevention Precautionary Statements P101 – Keep out of reach of children. P102 – Read label before use. P260 – Do not breathe fumes, gas, mist, vapor, or spray. P264 – Wash thoroughly with soap and water after handling. P273 – Avoid release to the environment. Response Precautionary Statements P314 – Get medical advice/attention if you feel unwell. P391 – Collect spillage. P305/P351/P338 – IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • In Vivo Characterisation of the Toxicological Properties of Dphp, One of the Main Degradation Product of Aryl Phosphate Esters
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888057; this version posted December 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In vivo characterisation of the toxicological properties of DPhP, one of the main degradation product of aryl phosphate esters. Samia Ruby1*, Jesús Marín-Sáez2*, Aurélie Fildier3*, Audrey Buleté3, Myriam Abdallah1, Jessica Garcia4, Julie Deverchère1, Loïc Spinner3, Barbara Giroud3, Sébastien Ibanez5, Thierry Granjon5, Claire Bardel6,7, Béatrice Fervers1, Alain Puisieux1, Emmanuelle Vulliet3, Léa Payen1,4†, Arnaud M. Vigneron1† 1 Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Lé on Bé rard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France. 2 Department of Chemistry and Physics, Analytical Chemistry Area, University of Almería, Research Centre for Agricultural and Food Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain 3 Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université de Lyon, Université de Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France 4 Université de Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Centre Hospitalier Lyon–Sud, Biochemistry, pharmacotoxicology, and molecular biology department, Pierre Bénite, France 5Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, F-69622 Lyon, France 6 Department of biostatistics, Hospices Civils de Lyon, Lyon, France 7 Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F- 69622 Villeurbanne, France *These authors contribute equally to this work † To whom correspondence should be addressed: Léa Payen- Arnaud M.
    [Show full text]
  • SDS for Taylor Mason's Hygrometer
    SAFETY DATA SHEET Preparation Date: 3/11/2015 Revision Date: 3/11/2015 Revision Number: G1 Product identifier Product code: T2256 Product Name: TRIETHYL PHOSPHATE Other means of identification Synonyms: Ethyl phosphate TEP Triethoxyphosphine oxide Phosphoric acid, triethyl ester CAS #: 78-40-0 RTECS # TC7900000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Used as a catalyst in the production of acetic anhydride by the ketene process, as a desensitizing agent for peroxides, and as a solvent and plasticizer for cellulose acetate. Solvent; plasticizer for resins, plastics, gums; catalyst; lacquer remover. As a plasticizer, solvent, fire-retarding agent, anti-foaming agent As an ethylating agent, and as a raw material to prepare insecticides such as tetraethyl pyrophosphate. As ethylating agent; formation of polyesters which are used as insecticides.. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 4 Serious eye damage/eye irritation Category 2A Label elements Product code: T2256 Product name: TRIETHYL 1 / 12 PHOSPHATE Warning Hazard statements Harmful if swallowed Causes serious eye irritation Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear eye/face protection IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE of TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., Assignor to Monsanto Chemical Company, St
    Patented Oct. 23, 1951 2,572,806 UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE OF TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., assignor to Monsanto Chemical Company, St. Louis, Mo., a corporation of Delaware No Drawing. Application May 1, 1948, Serial No. 24,683 2 Claims, (C. 260-461) 2 This invention relates to compositions con enty known to the art. A still further object of taining increased amounts of tetraethyl pyro this invention is to provide biological toxicant phosphate, and more. particularly to a process compositions containing increased amounts of for the manufacture of tetraethyl pyrophosphate. tetraethyl pyrophosphate which poSSeSS over Compositions containing tetraethyl pyrophos 5. S00% greater biological activity for the combat phate are widely used as agricultural economic ing and control of pests such as aphids and mites poisons, particularly against many insects such than do the compositions containing tetraethyl as aphids and against many acarina such as the pyrophosphate which are presently known to red Spider mites, however, such compositions may the art. be used generally against the lower forms of life O In the practice of this invention, the mixtures which, in the past, have been combatted by the of reaction products from the processes of this use of nicotine or nicotine salts. Furthermore, invention contain substantially 40%, that is tetraethyl pyrophosphate has been found useful 38-45%, of tetraethyl pyrophosphate as con in the preparation of insectivoricide and rodenti trasted with the processes of the prior art which cide compositions. 5 yielded mixtures of the reaction productS con While the art has disclosed several methods for taining only 10-15% of the tetraethyl pyrophoS the preparation of tetraethyl pyrophosphate, phate.
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]
  • Toxicological Profile for Phosphate Ester Flame Retardants
    PHOSPHATE ESTER FLAME RETARDANTS 293 8. REGULATIONS, ADVISORIES, AND GUIDELINES MRLs are substance specific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors and other responders to identify contaminants and potential health effects that may be of concern at hazardous waste sites. The international and national regulations, advisories, and guidelines regarding phosphate ester flame retardants in air, water, and other media are summarized in Table 8-1. ATSDR has derived an intermediate-duration oral MRL of 0.6 mg/kg/day for TCEP based on an increased incidence of brain lesions in female Fischer-344 rats dosed by gavage 5 days/week for 16 weeks (NTP 1991a). The MRL was derived using benchmark modeling of incidence data for brain lesions in female rats. The predicted dose associated with a 10% extra risk (BMD10) for brain lesions was 143.41 mg/kg/day; the lower 95% confidence limit on this dose (BMDL10) was 85.07 mg/kg/day. An uncertainty factor of 100 was used (10 for animal to human extrapolation and 10 for human variability). ATSDR has derived a chronic-duration oral MRL of 0.2 mg/kg/day for TCEP based on an increased incidence of renal tubule epithelial hyperplasia in female Fischer-344 rats dosed by gavage 5 days/week for 2 years (NTP 1991a). The MRL was derived using benchmark modeling of incidence data for renal lesions in female rats. The BMD10 for renal lesions was 48.00 mg/kg/day; the BMDL10 was 32.82 mg/kg/day. An uncertainty factor of 100 was used (10 for animal to human extrapolation and 10 for human variability).
    [Show full text]
  • TOX/2018/39 COMMITTEE on TOXICITY of CHEMICALS in FOOD, CONSUMER PRODUCTS and the ENVIRONMENT (COT) Phosphate-Based Flame Retard
    This is a preliminary paper for discussion. It does not represent the views of the Committee and must not be quoted, cited or reproduced. TOX/2018/39 COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT (COT) Phosphate-Based Flame Retardants and the Potential for Developmental Toxicity: A Scoping Paper Issue 1. The Committee is asked to consider the potential for developmental toxicity of phosphate-based flame retardants, which are being introduced in UK products to replace brominated flame retardants as these are banned or restricted for use. Background 2. Due to the stringent requirements of the Furniture and Furnishings (Fire) (Safety) Regulations 1988 in the UK, the use of flame retardants is greater in the UK than the rest of Europe. The legislation has set levels of fire resistance for domestic furniture, furnishings and upholstery products that are largely achieved by the use of chemical flame retardants. 3. Flame retardants are commonly used on furnishings and upholstery (e.g. sofas, carpets, curtains and fabric blinds) (NIH, 2016), as well as polyurethane foam used in child car seats and mattresses (Cooper et al., 2016). They are also added or applied to electronics and electrical devices such as computers and televisions as well as many materials used in building and construction, such as electrical wires and cables and insulation material (NIH, 2016). 4. Until recently, brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) were the most common chemical flame retardant used for furnishing and textiles (Hendriks and Westerink, 2015). In 2004, two commercial mixtures of PBDEs, namely penta-BDE and octa-BDE, were banned in the European Union (EU) and phased out in the United States based on their neurotoxicity as well as the potential for bioaccumulation and persistence (Noyes and Stapleton, 2014).
    [Show full text]
  • Triphenyl Phosphate (TPP)
    EPA Document# EPA-740-R-20-010 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Triphenyl Phosphate (TPP) CASRN 115-86-6 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .......................................................................................................................9 1 INTRODUCTION ............................................................................................................................12 2 SCOPE OF THE EVALUATION ...................................................................................................12 2.1 Reasonably Available Information ..............................................................................................12 Search of Gray Literature ...................................................................................................... 13 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 14 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................24 Categories
    [Show full text]
  • Supplemental Information for Exposure Use Assessment Pbts
    EPA Document # EPA-740-R1-8003 June 2018 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Supplemental Information for the Exposure and Use Assessment of Five Persistent, Bioaccumulative and Toxic Chemicals Peer Review Draft June 2018 Contents Appendix A. Supplemental Document for Decabromodiphenyl ethers (DecaBDE) ...................................................... 7 A.1 Literature Search Strategy ........................................................................................................................... 7 A.1.1. Database (Peer-reviewed) Search Strategies ...................................................................................... 8 A.1.2. Gray Literature Search Strategies ........................................................................................................ 9 A.1.3. Supplemental Search Strategy .......................................................................................................... 15 Backward Search ........................................................................................................................................... 15 Google Scholar Search ................................................................................................................................... 15 A.1.4. Literature Search Results ................................................................................................................... 15 A.2 Literature Screening Strategy ....................................................................................................................
    [Show full text]