Trace Element Variations in a Series of Sediment Cores 318

Total Page:16

File Type:pdf, Size:1020Kb

Trace Element Variations in a Series of Sediment Cores 318 TRACE ELEMENT VARIATIONS IN A SERIES OF SEDIMENT CORES 318. Figure 27. Variation of a range of elements with depth along a series of free fall and gravity cores. 319. F ee Fall Core No0 320. Free Fall Core No8 500 25... 321, Free Fall Core No 9 i i 1.1,1 Lt.! 5 w I 1100 laiam. Fe x01 Mn 322. Free Fall Core No14. 010 20 ‘0 140 290 590 topo 4,00 50p0 10,000 13.13.1111. Cu Ni Fex01 Mn - 21.5 a) a 10 1 20 25 323. Free Fall Core No 15 p.p.m. 3 2 4 . Free Fal I Core No 18 590 tgoo 2,goo___.5,900 Woo 13.13.m. Cup Ni Fe x0.1 Mn 20 25- 30- 325. Free Fall Core No 20 00 p.p.m. 326. Gravity Core , STN. 6274 5111 000 P.P.m. 30- 40- 50- 60- 70- 8 90- 327. Landergren (1969). In general, Mn shows an antipathetic relation- ship to Fe but this is not always well defined. The variation of the CaCO content within sediment cores (table 16) appears to be 3 too small to influence the trace element distribution within cores but the CaCO content of cores from different locations appear to 3 vary markedly indicating the influence of the sedimentary environ- ment on the CaCO content of the sediment. 3 The most significant feature of the data is the lack of significant enrichment of manganese in the upper layer of any of the free fall cores compared with the data for gravity core 6274 where manganese enrichment in the upper 10" of the core is more marked. Whilst this data w ,uld appear to indicate the absence of any significant migration of manganese in deep sea sediments in agreement with the findings of Chester and Hughes (1969), it may merely reflect the loss of the upper layers of sediment during free fall coring and for this reason no unambiguous interpretation of data can be given. In view of the high redox potential of the upper 2 ft of sediment (table 19) which in general exceeds +300 mV, and the absence of any well developed redox gradient in the sedi- ment, it is tentatively suggested that manganese remobilisation is not occurring on any significant scale in the upper 3 ft of sediment cores from area 4c. The significance of the erratic distribution of trace elements within the sediment cores is more difficult to define and can probably be interpreted only in terms of a complete study of the trace element partition between several phases within the sediment. Microscopic investigation of the acid leach residue of the sediment at intervals along the length of the core revealed small quantities of fragmented manganese oxides in the size range 50-100 µ which vary considerably in size and concentration down 328. the length of the core. Similar grains have been reported in ponded sediment from the North Atlantic (van Andel and Komer, 1969), in sediment cores from the Central Atlantic (Archer, pers. comm.) and in sediments from the Puerto Rico Trench (Conolly and Ewing, 1967). Van Andel (pers. comm.) reports that, although rounded micronodules have been observed in abundance in sediment cores from the Pacific, those from the Atlantic are "angular with broken edges and often rather spongy, botryoidal or con- sisting of numerous coagulating small spheres identical with the nattre of the crust on adjacent rocks". Attempts to separate these fragments for analysis by handpicking or using heavy liquids proved unsatisfactory because of the fine grain size of the parti- cles and their low concentration in the sediment. Selective methods of dissolution were not attempted because of the finding of Chester and Hughes (1967) that carbonates and adsorbed elements were also taken into solution under the conditions required for the dissolution of manganese oxides. For this reason,no quantitative estimate of the contribution of these particles to the variability of trace element distribution along the sediment core could be made. Particle counting techniques did, however, fail to reveal any correlation between the particle distribution in the sediment and the manganese content suggesting that other factors may influence the trace element variation in sediments. The origin of these granules in the sediment cores is not well understood but the fragmentary nature of the granules and the absence of concentric growth patterns within the granules suggests that these particles are not micronodules as suggested by Chester and Hughes (1969). This conclusion is supported by the fact that dissolution of the outer coating of the granules in 507: HC1 fails to reveal the presence of any nucleus on which the manganese coating could accrete. In addition, the distribution 329. of fragments within the sediment column shows no evidence of manganese migration since the fragments do not appear to be enriched in the upper layers of the cores and show no similarity with the sharp bands of micronodules and manganese spots described by Wangersky and Joensuu (1967) or the fine grained, opaque granules of manganese minerals formed by the precipitation of remobilised manganese and described by Lynn and Bonatti (1965). By'contrast, the fragments display irregular surfaces similar to ground frag- ments of granular manganese crusts suggesting a fragmentary origin for these particles and indicating that the independent growth of these granules below the sediment-water interface does not occur. To illustrate possible differences in the origin of these fragments, a comparison of the texture of these fragments from area 4c and from core CUSP 15P from the North Pacific is presented in fig. 28. Two possibilities may be invoked to account for the occur- rence of these granules. The first is that the crustal fragments are dispersed down the sediment core on impact of the corer with overlying manganese crustal material. This hypothesis is rejected in view of the low probability of contact of the corer with a manganese crust at the sediment surface. The second is that the granules result from the fragmentation of granular crusts on the sca floor during normal erosional processes and the particles become distributed on the sediment surface by bottom currents activity. Whilst this hypothesis is unsatisfactory in many respects, recent work by Riedel and Funnel (1964), Laughton (1967) and Ericson et al (1961) has shown the importance of erosional processes on the deep sea floor and it is not inconceivable the sediment slumping, bottom current activity or even the influence of benthonic organisms could lead to this type of fragmentation. Wiseman (pers. comm.) has shown the author nodules from the Pacific Ocean in which fragmentation has occurred along certain cleavage planes ILLUSTRATION OF MANGANESE GRANULES 330. Figure 28a. Photograph of manganese granules from area 4c sediment core. Magnification 40 x. Figure 28b. Photograph of manganese micronodules from core CUSP 15P from the North Pacific. Magnification 15 x. Specimen donated' by Dr. R. Chester. 3310. 0 332. and manganese has subsequently been deposited on the cleaved surface, suggesting that fragmentation of manganese nodules can occur spontaneously within the marine environment. Whilst discussion of the transport of fine grained particles has been mainly restricted to tidal environments (Inman 1949, Menard 1950, Bagnold 1963, 1968, Hunt 1967), the observation of bottom current velocities of the order of 9-18 cms./sec. by Swallow and Worthington (1961) and the suggestion of Heezen et al (1966) that geostrophic bottom currents are the principle agents controlling the shape of the continental rise indicates that the lateral transport of fine grained material may occur in a pelagic environment, possibly by turbulent suspension. A recent discussion of this problem has been presented by van Andel and Komar (1969). The antipathetic relation of Mn and Fe in the sediment core and the marked enrichment of Fe relative to Mn in the sediment compared with manganese nodules indicates that iron must be present in the sediment predominantly in some phase other than manganiferous granules, possibly in the clay mineral fraction. This distribution of iron between several phases is in agreement with the findings of Chester and Hughes (1967) that only 1.5% of the total iron is present in the form of micronodules and 95% in clay minerals. The correlation of Ni and Mn suggests that these elements may be associated together in the manganiferous phase, although s•me partitioning between phases may occur. This agrees with the conclusion of Chester and Hughes (1967) that Ni is partitioned equally between manganiferous micronodules and clay minerals in a North Pacific deep sea clay core and there appears to be no evidence that Ni is incorporated exclusively into the Mn02 phase of deep sea sediments as suggested by Carvajal and Landergren (1969), The poor correlation of Cu with Mn and the enrichment of Cu relative to Mn in the sediment suggest that Cu is also partitioned between several 333. phases. The problem is, however, complicated since the manganese fragments may well be thermodynamically metastable with respect to dissolution below the sediment-water interface and compositional changes of these fragments may therefore be occuring within the sediment due to preferential dissolution of the adsorbed species on the surface of the granules. A strict comparison of the composition of these fragments with that of nodules may therefore be invalid. It is significant in this context, however, that Cronan and Tooms (1969) have shown that sub-surface nodules have a composition similar to that of surface nodules from the same region. From the preceeding discussion it is suggested that manganese crustal fragments play an important role in influencing the trace element distribution in pelagic sediments from area 4c and it is tentatively concluded that these fragments are not forming as micronodules below the sediment-water interface.
Recommended publications
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Abstract Volume & Fieldtrip Guidebook
    SGA Student Conference Mineral resources for the society Prague, April 15‐19, 2011 Society for Geology Applied to Mineral Deposits & Charles University in Prague, Czech Republic SGA Student Conference Mineral resources for the society Prague, April 15‐19, 2011 ABSTRACT VOLUME & FIELD TRIP GUIDEBOOK Editor Kateřina Schlöglová 1 SGA Student Conference Mineral resources for the society Prague, April 15‐19, 2011 Contents Program of the conference 4 Abstract Volume Hydrotermal Alteration and Mass Change Calculations at the Mastra Au‐Ag Deposit, 8 Gümüşhane, Turkey Neslihan ASLAN & Miğraç AKÇAY Qualitative and quantitative analysis of talc from Western Carpathians 9 Vladimír ČAVAJDA, Peter UHLÍK & Ľubica PUŠKELOVÁ The Kombat Deposit in Namibia: A possible IOCG deposit 10 Nikola DENISOVÁ Geology and mineralization of the polymetallic Salt River deposit near Pofadder, 11 Namaqualand metamorphic province, South Africa Thomas DITTRICH, Bernhard SCHULZ, Jens GUTZMER, Keith OSBURN & Craig R. McCLUNG Application and significance of Vickers Microhardness Measurments for coal 12 Anne ENGLER Reactive fluid flow and origin of the fracture‐controlled greisens in the Krušné hory Mts., 13 Czech Republic Matylda HEŘMANSKÁ & David DOLEJŠ Low‐temperature alteration of metamict Y, REE, Nb, Ta, Ti oxide minerals 14 Nikola HEROLDOVÁ & Radek ŠKODA Grade and tonnage model for orogenic gold deposits in Finland and comparison with 15 Swedish, Zimbabwean, and Australian Southern Cross deposits Janne HOKKA Alteration styles and geochemical zonation at the Raitevarri
    [Show full text]
  • Articles and Also and Instrumental Development
    Atmos. Chem. Phys., 19, 12631–12686, 2019 https://doi.org/10.5194/acp-19-12631-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. A review of experimental techniques for aerosol hygroscopicity studies Mingjin Tang1, Chak K. Chan2, Yong Jie Li3, Hang Su4,5, Qingxin Ma6, Zhijun Wu7, Guohua Zhang1, Zhe Wang8, Maofa Ge9, Min Hu7, Hong He6,10,11, and Xinming Wang1,10,11 1State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 2School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China 3Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China 4Center for Air Pollution and Climate Change Research, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China 5Department of Multiphase Chemistry, Max Planck Institute for Chemistry, Mainz 55118, Germany 6State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 7State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China 8Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China 9State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China 10University of Chinese Academy of Sciences, Beijing 100049, China 11Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China Correspondence: Mingjin Tang ([email protected]) and Chak K.
    [Show full text]
  • Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China
    minerals Article Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China Shengjiang Du 1,2, Hanjie Wen 3,4,*, Shirong Liu 3, Chaojian Qin 3, Yongfeng Yan 5, Guangshu Yang 5 and Pengyu Feng 5 1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; [email protected] 2 Chinese Academy of Geological Science, Beijing 100037, China 3 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; [email protected] (S.L.); [email protected] (C.Q.) 4 University of Chinese Academy of Sciences, Beijing 100049, China 5 Kunming University of Science and Technology, Kunming 650093, China; [email protected] (Y.Y.); [email protected] (G.Y.); [email protected] (P.F.) * Correspondence: [email protected] Received: 26 June 2020; Accepted: 17 July 2020; Published: 23 July 2020 Abstract: The Sanbao Mn–Ag (Zn-Pb) deposit located in the Laojunshan ore district is one of the most important deposits that has produced most Ag and Mn metals in southeastern Yunnan Province, China. Few studies are available concerning the distribution and mineralization of Ag, restricting further resource exploration. In this study, detailed mineralogy, chronology, and geochemistry are examined with the aim of revealing Ag occurrence and its associated primary base-metal and supergene mineralization. Results show that manganite and romanèchite are the major Ag-bearing minerals. Cassiterite from the Mn–Ag ores yielded a U–Pb age of 436 17 Ma, consistent with ± the Caledonian age of the Nanwenhe granitic pluton.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    9. GEOCHEMICAL EXPRESSION OF EARLY DIAGENESIS IN MIDDLE EOCENE-LOWER OLIGOCENE PELAGIC SEDIMENTS IN THE SOUTHERN LABRADOR SEA, SITE 647, ODP LEG 1051 M. A. Arthur,2 W. E. Dean,3 J. C. Zachos,2 M. Kaminski,4 S. Hagerty Rieg,2 and K. Elmstrom2 ABSTRACT Geochemical analyses of the middle Eocene through lower Oligocene lithologic Unit IIIC (260-518 meters below seafloor [mbsf]) indicate a relatively constant geochemical composition of the detrital fraction throughout this deposi­ tional interval at Ocean Drilling Program (ODP) Site 647 in the southern Labrador Sea. The main variability occurs in redox-sensitive elements (e.g., iron, manganese, and phosphorus), which may be related to early diagenetic mobility in anaerobic pore waters during bacterial decomposition of organic matter. Initial preservation of organic matter was me­ diated by high sedimentation rates (36 m/m.y.). High iron (Fe) and manganese (Mn) contents are associated with car­ bonate concretions of siderite, manganosiderite, and rhodochrosite. These concretions probably formed in response to elevated pore-water alkalinity and total dissolved carbon dioxide (C02) concentrations resulting from bacterial sulfate reduction, as indicated by nodule stable-isotope compositions and pore-water geochemistry. These nodules differ from those found in upper Cenozoic hemipelagic sequences in that they are not associated with methanogenesis. Phosphate minerals (carbonate-fluorapatite) precipitated in some intervals, probably as the result of desorption of phosphorus from iron and manganese during reduction. The bulk chemical composition of the sediments differs little from that of North Atlantic Quaternary abyssal red clays, but may contain a minor hydrothermal component. The silicon/ aluminum (Si/Al) ratio, however, is high and variable and probably reflects original variations in biogenic opal, much of which is now altered to smectite and/or opal CT.
    [Show full text]
  • Manganese Deposits of Western Utah
    Manganese Deposits of Western Utah GEOLOGICAL SURVEY BULLETIN 979-A Manganese Deposits of Western Utah By MAX D. CRITTENDEN, JR. , MANGANESE DEPOSITS OF UTAH, PART 1 GEOLOGICAL SURVEY BULLETIN 979-A A report on known deposits west of the lllth meridian * UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 19S1 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 50 cents (paper cover) CONTENTS Fag* Abstract.__________________________________________________________ 1 Introduction._._____.__________----_______-______-_--_------.__-__ 1 History of mining and production__.._______.______.___.__-___-_____ 2 Occurrence and age of the deposits_________-_____-_.-__-__-_-__--_- 6 Mineralogy _--____._____---_--_---_------------------------------- 7 Descriptions of the manganese minerals....____.__--_____-__-..__ 8 Oxides...___-__.--_--------___-_-_.-- . _ 8 Carbonates.___-____.__-____________-_-___-----_--------__ 9 Silicate.,_ _____-----_____--__-_______-_---___-__--___._--. 9 Relative stability and manganese content______--_----------_----_ 10 Oxidation and enrichment._____________________________________ 10 Classification and origin of the deposits....______.__._____---.___.-_-_ 11 General discussion_____________________________________________ 11 Syngenetic deposits_-_--____-----_--------------_-------__-_-.- 13 Bedded depositS-__________-_____._____..__________________ 13 Spring
    [Show full text]
  • A Review of Experimental Techniques for Aerosol Hygroscopicity Studies
    Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-398 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 3 May 2019 c Author(s) 2019. CC BY 4.0 License. 1 A review of experimental techniques for aerosol hygroscopicity studies 2 3 Mingjin Tang,1,* Chak K Chan,2,* Yong Jie Li,3 Hang Su,4,5 Qingxin Ma,6 Zhijun Wu,7 Guohua 4 Zhang,1 Zhe Wang,8 Maofa Ge,9 Min Hu,7 Hong He,6,10,11 Xinming Wang1,10,11 5 6 1 State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of 7 Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, 8 Chinese Academy of Sciences, Guangzhou 510640, China 9 2 School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 10 China 11 3 Department of Civil and Environmental Engineering, Faculty of Science and Technology, 12 University of Macau, Avenida da Universidade, Taipa, Macau, China 13 4 Center for Air Pollution and Climate Change Research (APCC), Institute for Environmental 14 and Climate Research (ECI), Jinan University, Guangzhou 511443, China 15 5 Department of Multiphase Chemistry, Max Planck Institute for Chemistry, Mainz 55118, 16 Germany 17 6 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research 18 Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 19 7 State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of 20 Environmental Sciences and Engineering, Peking University, Beijing 100871, China 21 8 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 22 Hong Kong, China 23 9 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of 24 Chemistry, Chinese Academy of Sciences, Beijing 100190, China 25 10 University of Chinese Academy of Sciences, Beijing 100049, China 1 Atmos.
    [Show full text]
  • Meteoric Be and Be As Process Tracers in the Environment
    Chapter 5 Meteoric 7Be and 10Be as Process Tracers in the Environment James M. Kaste and Mark Baskaran 7 10 Abstract Be (T1/2 ¼ 53 days) and Be (T1/2 ¼ occurring Be isotopes of use to Earth scientists are the 7 1.4 Ma) form via natural cosmogenic reactions in the short-lived Be (T1/2 ¼ 53.1 days) and the longer- 10 atmosphere and are delivered to Earth’s surface by wet lived Be (T1/2 ¼ 1.4 Ma; Nishiizumi et al. 2007). and dry deposition. The distinct source term and near- Because cosmic rays that cause the initial cascade of constant fallout of these radionuclides onto soils, vege- neutrons and protons in the upper atmosphere respon- tation, waters, ice, and sediments makes them valuable sible for the spallation reactions are attenuated by tracers of a wide range of environmental processes the mass of the atmosphere itself, production rates of operating over timescales from weeks to millions of comsogenic Be are three orders of magnitude higher in years. Beryllium tends to form strong bonds with oxygen the stratosphere than they are at sea-level (Masarik and atoms, so 7Be and 10Be adsorb rapidly to organic and Beer 1999, 2009). Most of the production of cosmo- inorganic solid phases in the terrestrial and marine envi- genic Be therefore occurs in the upper atmosphere ronment. Thus, cosmogenic isotopes of beryllium can be (5–30 km), although there is trace, but measurable used to quantify surface age, sediment source, mixing production as oxygen atoms in minerals at the Earth’s rates, and particle residence and transit times in soils, surface are spallated (in situ produced; see Lal 2011, streams, lakes, and the oceans.
    [Show full text]
  • 4. a Growth Model for Polymetallic Nodules
    A GEOLOGICAL MODEL OF POLYMETALLIC NODULE DEPOSITS IN THE CLARION‐CLIPPERTON FRACTURE ZONE ISA TECHNICAL STUDY SERIES Technical Study No. 1 Global Non‐Living Resources on the Extended Continental Shelf: Prospects at the year 2000 Technical Study No. 2 Polymetallic Massive Sulphides and Cobalt‐Rich Ferromanganese Crusts: Status and Prospects Technical Study No. 3 Biodiversity, Species Ranges and Gene Flow in the Abyssal Pacific Nodule Province: Predicting and Managing the Impacts of Deep Seabed Mining Technical Study No. 4 Issues associated with the Implementation of Article 82 of the United Nations Convention on the Law of the Sea Technical Study No. 5 Non‐Living resources of the Continental Shelf beyond 200 nautical miles: Speculations on the Implementation of Article 82 of the United Nations Convention on the Law of the Sea PAGE | II A GEOLOGICAL MODEL OF POLYMETALLIC NODULE DEPOSITS IN THE CLARION‐ CLIPPERTON FRACTURE ZONE This report contains a summary of two documents – A Geological Model of Polymetallic Nodule Deposits in the Clarion‐Clipperton Fracture Zone and a Prospector’s Guide prepared under the project ‘Development of a Geological Model of Polymetallic Nodule Deposits in the Clarion‐Clipperton Fracture Zone, Pacific Ocean’. ISA TECHNICAL STUDY: NO. 6 International Seabed Authority Kingston, Jamaica PAGE | III The designation employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the International Seabed Authority concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers or maritime boundaries. All rights reserved.
    [Show full text]
  • ECONOMIC ASPECTS of NODULE MINING Although Deep-Sea
    CHAPTER 11 ECONOMIC ASPECTS OF NODULE MINING J. L. MERO INTRODUCTION Although deep-sea manganese nodules were discovered over a'century ago by scientists of the HMS Challenger expedition, few analyses of the nodules for the economically significant elements such as nickel, copper, cobalt and molybdenum were made in those early days and no consideration was given to these deposits as a possible commercial source of metals until the early 1950's when the mining of the nodules was advocated as a possible source of manganese (Mero, 1952). As the result of a haul of nodules taken in relatively shallow water (900 m) about 370 km east of Tahiti on the western edge of the Tuamoto Plateau during the 1957-58 International Geophysical Year (the nodules contained about 2% of cobalt, a valuable metal at that particular time), a study was initiated by the Institute of Marine Resources of the University of California to determine if it might be economic to mine and process the nodules for their cobalt, nickel and copper contents. The results of that study were favourable' with respect to the technical and economic factors involved in mining and processing the nodules. All the research and development in this matter dates from the release of the report describing the results of that study (Mero, 1958). To the present time (1975) over $150 million* has been expended in the exploration of the nodule deposits and in the development of mining and processing systems. An additional $100 million is to be spent in the next few years in these activities.
    [Show full text]
  • Understanding Second-Person Storytelling
    Evgenia Iliopoulou Because of You: Understanding Second-Person Storytelling Lettre Evgenia Iliopoulou born in 1986, lives in Zurich, Switzerland, and specializes in narratology, theory of literature and interdisciplinary approaches within Comparative Literature. She holds an undergraduate degree in Greek Philology from her hometown University of Patras, Greece, and an MA in Comparative Literature from Ludwig Maximilian University of Munich, Germany. In 2014, during her doctoral studies, Zurich University sponsored her participation in the summer session of School of Theory and Criticism at Cornell University in the US. Evgenia Iliopoulou Because of You: Understanding Second-Person Storytelling This work was accepted as a PhD thesis by the Faculty of Arts and Social Scien- ces, University of Zurich in the fall semester 2017 on the recommendation of the Doctoral Committee: Prof. Dr. Thomas Fries «main supervisor», Prof. Dr. Sandro Zanetti. Published with the support of the Swiss National Science Foundation. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Na- tionalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de This work is licensed under the Creative Commons Attribution-NonCommercial-No- Derivatives 4.0 (BY-NC-ND) which means that the text may be used for non-commer- cial purposes, provided credit is given to the author. For details go to http://creativecommons.org/licenses/by-nc-nd/4.0/ To create an adaptation, translation, or derivative of the original work and for commer- cial use, further permission is required and can be obtained by contacting rights@ transcript-verlag.de Creative Commons license terms for re-use do not apply to any content (such as graphs, figures, photos, excerpts, etc.) not original to the Open Access publication and further permission may be required from the rights holder.
    [Show full text]
  • A Complete Bibliography of Publications in Journal for the History of Astronomy
    A Complete Bibliography of Publications in Journal for the History of Astronomy Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 10 May 2021 Version 1.28 Title word cross-reference $8.95 [Had84]. $87 [CWW17]. $89.95 [Gan15]. 8 = 1;2;3 [Cov15]. $90 [Ano15f]. $95 [Swe17c]. c [Kin87, NRKN16, Rag05]. mul [Kur19]. muld [Kur19]. [Kur19]. · $100 [Apt14]. $120 [Hen15b]. $127 [Llo15]. 3 [Ano15f, Ash82, Mal10, Ste12a]. ∆ [MS04]. $135.00 [Smi96]. $14 [Sch15]. $140 [GG14]. $15 [Jar90]. $17.95 [Had84]. $19.95 -1000 [Hub83]. -4000 [Gin91b]. -601 [Mul83, Nau98]. 20 [Ost07]. 2000 [Eva09b]. [Hub83]. -86 [Mar75]. -Ft [Edd71b, Mau13]. $24.95 [Lep14, Bro90]. $27 [W lo15]. $29 -inch [Ost07]. -year [GB95]. -Year-Old [Sha14]. $29.25 [Hea15]. $29.95 [Eva09b]. [Ger17, Mes15]. 30 [Mau13]. $31.00 [Bra15]. $34 [Sul14]. $35 Zaga´_ n [CM10]. [Ano15f, Dev14b, Lau14, Mir17, Rap15a]. $38 [Dan19b, Vet19]. $39.95 [Mol14b]. /Catalogue [Kun91]. /Charles [Tur07]. $39.99 [Bec15]. $40 [Dun20, LF15, Rob86]. /Collected [Gin93]. /Heretic [Tes10]. 40 [Edd71b]. $42 [Nau98]. $45 [Kes15]. /the [War08]. $49.95 [Ree20]. $49.99 [Bec15]. $50 [Kru17, Rem15]. $55 [Bon19b]. $60 [Mal15]. 0 [Ave18, Hei14a, Oes15, Swe17c, Wlo15, 600 [GB95]. $72 [Ave18]. $79 [Wil15]. 1 2 Ash82]. [Dic97a]. 1970 [Kru08]. 1971 [Wil75]. 1973 [Doe19]. 1975 [Ost80]. 1976 [Gin02d]. 1979 1 [Ano15f, BH73a, Ber14, Bru78b, Eva87b, [Ano78d].
    [Show full text]