Microtus Agrestis): INSIGHTS from GENETIC, KARYOTYPIC and MORPHOMETRIC DATA

Total Page:16

File Type:pdf, Size:1020Kb

Microtus Agrestis): INSIGHTS from GENETIC, KARYOTYPIC and MORPHOMETRIC DATA CRYPTIC SPECIATION IN THE FIELD VOLE (Microtus agrestis): INSIGHTS FROM GENETIC, KARYOTYPIC AND MORPHOMETRIC DATA Joana Maria Jorge Pereira de Castro Paupério Doutoramento em Biologia Departamento de Biologia 2012 Orientador Paulo Célio Alves, Professor Auxiliar, Faculdade de Ciências da Universidade do Porto Coorientador Jeremy Byron Searle, Professor, University of York Ao Adriano e às minhas três princesas, Nota prévia: Na elaboração desta dissertação, e nos termos do número 2 do Artigo 4º do Regulamento Geral dos Terceiros Ciclos de Estudos da Universidade do Porto e do Artigo 31º do D.L. 74/2006, de 24 de Março, com a nova redação introduzida pelo D.L. 230/2009, de 14 de Setembro, foi efetuado o aproveitamento total de um conjunto coerente de trabalhos de investigação já publicados ou submetidos para publicação em revistas internacionais indexadas e com arbitragem científica, os quais integram alguns dos capítulos da presente tese. Tendo em conta que os referidos trabalhos foram realizados com a colaboração de outros autores, o candidato esclarece que, em todos eles, participou ativamente na sua conceção, na obtenção, análise e discussão de resultados, bem como na elaboração da sua forma publicada. This research was supported by Programa Operacional Potencial Humano – Quadro de Referência Estratégico National funds from the European Social fund and the Portuguese Ministério de Educação e Ciência through a PhD fellowship (Fundação para a Ciência e a Tecnologia, FCT - SFRH/BD/27369/2006). This work was developed in This thesis should be cited as: Paupério J (2012) Cryptic speciation in the field vole (Microtus agrestis): insights from genetic, karyotypic and morphometric data. PhD Thesis, University of Porto, Porto, Portugal. ACKNOWLEDGEMENTS Lots of people contributed to the content of this thesis. Either by giving samples, suggestions or support, or by making me think about things or just by being present... To all I would like to say: Thank you! I would like to thank my two supervisors, Paulo and Jeremy, without them this thesis would not have been accomplished. Paulo, já me aturas há bastante tempo… há mais de uma década!!! E, na verdade és totalmente responsável pelo tema desta tese. Foste tu que me puseste o ’bichinho do agrestis atrás da orelha’... mostraste-me os primeiros trabalhos realizados pela Maarit com esta espécie… Obrigada por isso! Obrigada também por me teres acompanhado todos estes anos, por todas as tuas sugestões, ensinamentos, pelo teu companheirismo, apoio e amizade e também pelo entusiasmo que sempre demonstraste com este trabalho e que sempre me deu grande ânimo. Jeremy, it has been a pleasure to know you and work with you! Thanks a lot for being so welcoming and for sharing with me all your knowledge and experience not only in the lab but also in our field trips. You were my good luck charm for finding voles…The voles seemed to throw themselves into the pool at CIBIO whenever you were in town! I enjoyed a lot my time in York, specially our nice suppers with Sofia’s chocolate mousse and our memorable conversations about pudding... ups, sorry, I meant to say the continuous hard work! Thank you for being such a good supervisor! I would also like to thank the institutions that made this work possible. To FCT, for the attribution of my PhD fellowship. To CIBIO and Professor Nuno Ferrand for the opportunity of developing this study in this excellent research centre. And to the University of York, for welcoming me during my stays. I also want to express my appreciation to the institutions that gave me the appropriate permits for trapping and collecting tissue samples from field voles both in Portugal and northern Spain: Instituto da Conservação da Natureza e da Biodiversidade, Consejería de Medio Ambiente do Gobierno del Principado de Asturias, Consellería de Medio Ambiente y Desenvolvemento Sostible de Galicia, Servició Territorial de Medio Ambiente de la Comunidad Autónoma de Castilla Léon, Parque Nacional Picos da Europa, Dirección General de Biodiversidad de la Comunidad Autónoma de Cantabria, Departamento de Agricultura de la Deputación Foral de Bizkaia, Departamento de Medio Ambiente de la Diputación Foral de Álava, Dirección General de Medio Natural da Comunidad Autónoma de Cataluña. The results presented in this thesis wouldn’t have been accomplished without the contribution of a great number of people and institutions. First of all to Maarit Jaarola, thank you for your availability in answering my doubts and sending me some of your samples. It was a pleasure to have you as a co-author of the first paper of the thesis! To Alejandro Centeno-Cuadros, Alfonso Ceña, Antoni Arrizabalaga and the Museum of Natural Science of Granollers, António Mira and the PERSIST project team, Augusto de Castro, Beatriz e Vasco Alves, Carlos Fonseca, Carlos Nores, Cristianne Bastos-Silveira, Enrique Castiéns, Fernando Jubete, Guilherme Dias, Hélia Gonçalves, Jacinto Róman, José António Godoy, José Manuel Grosso-Silva, Maria José Lopez-Fuster and the University of Barcelona, the Portuguese National Tissue Bank/National Institute for Nature and Biodiversity Conservation (BTVS/ICNB), Rocio Rosa-García, Sara Afonso, Vanessa Mata, Verónica Gomes and Zbyszek Boratynski, thanks a lot for providing samples for this study! I am also grateful to Maria da Luz Mathias and the University of Lisbon, for lending some field materials. And, as not only people may contribute to a PhD thesis, I would also like to express my gratitude in a special way to Rafi (Paulo’s dog), Tomás and Manuchau (Pedro’s cats) and Fran (Guilherme’s cat). To the York gang, Mabel, Sofia, Ellie, Rodrigo, Sophie, Natalia, Jerry, Dan, Frida, Bruce, Mike, Nancy and Ollie thank you guys for being so welcoming! Despite the rainy weather, I really enjoyed the time I spend in York! Jerry, thank you for teaching me the ways around the lab and for getting me started in the molecular analysis. I was very happy that we could collaborate in part of the work developed in the thesis and hopefully we will continue to work together in the next projects. Natalia, the other mum in the lab, with you I shared my family homesickness and I learned a lot, especially how to be efficient in the lab! Thank you for that! Rodrigo, I really enjoyed our field trip in northern Spain. We’ve seen very nice places and trapped lots of voles, and some shrews… Thank you for all our conservations and discussions, I learned a lot with that. Mabelita, cariño… how nice was your company… I couldn’t have done it without you! Thank you for all the moments we spent at the lab and in the city… thanks a lot for keeping me company. Thanks for teaching me all about the karyotypes and working with me on the paper, it turned out to be a very promising work! I really enjoyed your visit to Porto and hope you can come and visit us soon! Sofia, a minha companheira portuguesa nas terras britânicas! Que boas as nossas conversas, os nossos jantares e passeios na cidade… Obrigado por me ajudares a superar as saudades de casa e da minha família! Com a tua companhia tudo foi mais fácil! Obrigado por tudo!!!! Aos meus colegas do CIBIO, em especial ao gabinete do GEPE mas não só, um muito obrigado. Sónia, Peter spider man, Xico, Francisco, Raquel, Cândida, Ana, Fátima, João, Verónica, Tiago meus colegas de gabinete ou no lab, em um ou outro momento muito obrigado pelas conversas, dicas e pela companhia. Tarroso, obrigada pelas eternas ajudas no arcgis! À Ana Silva, Alexandra, Joana, Rómulo, agradeço a ajuda no trabalho de campo e na análise das egagrópilas. Ao Zef e ao Miguel Carneiro, muito obrigado pelas conversas e discussões sobre species trees e evolução dos Microtus. Zef, a tua participação nessa fase do trabalho foi essencial. À Sandra e à Sara muito obrigado por estarem sempre disponíveis e fazerem sempre todos os possíveis para tornarem o nosso trabalho mais fácil! Aos colegas do lab da FCUP (Tiago, Sandra, Pedro e Zé Manel) obrigadinha por me terem acompanhado nestes últimos momentos de escrita. Tiago, obrigada pelo apoio, por me responderes às minhas dúvidas, mesmo as mais idiotas, pelos teus treinos de relaxamento… Às meninas do CTM (e meninos) muito obrigado por me terem acolhido quando precisei de ir analisar os meus crânios. Diana, obrigado por tudo o que me ensinaste, a tua experiência foi fundamental para o sucesso deste trabalho! À Hélia, por toda a ajuda que me deste no campo, pela amizade e por todas as amostras que me conseguiste, um muito obrigado. És a minha colaboradora nº 1. Ao Ricardo Pita e ao António Mira (Universidade de Évora) por todo o apoio que sempre me deram. António, obrigada pela disponibilidade e pela maneira como sempre me apoiaste neste trabalho. Ricardo, obrigada por me ensinares a capturar os Microtus…as dicas que me deste foram essenciais para o sucesso das minhas saídas de campo. À Soraia, tem sido um prazer trabalhar contigo! O teu companheirismo, amizade e ajuda foram fundamentais para este trabalho! Obrigado! Catas, companheira! Demos os nossos primeiros passos na ciência juntas e apesar de termos seguido caminhos um pouco diferentes estiveste sempre presente. Muito obrigado pela tua amizade, pelos momentos de hiperventilação conjunta e por estares sempre disponível mesmo nos momentos menos bons. A todos os meus amigos, que não vou nomear (eles sabem quem são) muito obrigado por serem quem são e por estarem presentes! Obrigado, Mariana Sampaio, pelo desenho maravilhoso que fizeste para a minha capa. E finalmente, aos meus pais, por todo o apoio que sempre me deram! Sem eles não estaria aqui hoje. A toda a minha família pela amizade e ajuda que sempre nos deram.
Recommended publications
  • Catalogue of the Type Specimens Deposited in the Department of Entomology, National Museum, Prague, Czech Republic*
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.iv.2014 Volume 54(1), pp. 399–450 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:7479D174-4F1D-4465-9EEA-2BBB5E1FC2A2 Catalogue of the type specimens deposited in the Department of Entomology, National Museum, Prague, Czech Republic* Polyneoptera Lenka MACHÁýKOVÁ & Martin FIKÁýEK Department of Entomology, National Museum in Prague, Kunratice 1, CZ-148 00 Praha 4-Kunratice, Czech Republic & Department of Zoology, Faculty of Sciences, Charles University in Prague, Viniþná 7, CZ-128 43, Praha 2, Czech Republic; e-mails: [email protected]; m¿ [email protected] Abstract. Type specimens from the collection of the polyneopteran insect orders (Dermaptera, Blattodea, Orthoptera, Phasmatodea) deposited in the Department of Entomology, National Museum, Prague are catalogued. We provide precise infor- mation about types of 100 taxa (5 species of Dermaptera, 3 species of Blattodea, 4 species of Phasmatodea, 55 species of Caelifera, and 33 species of Ensifera), including holotypes of 38 taxa. The year of publication of Calliptamus tenuicer- cis anatolicus MaĜan, 1952 and Calliptamus tenuicercis iracus MaĜan, 1952 are corrected. The authorship of the names traditionally ascribed to J. Obenberger is discussed in detail. Only the name Podisma alpinum carinthiacum Obenberger, 1926 is available since the publication by OBENBERGER (1926a). ‘Stenobothrus (Stauroderus) biguttulus ssp. bicolor Charp. 1825’ and ‘Stenobothrus (Stau- roderus) ssp. collinus Karny’ sensu OBENBERGER (1926a,b) refer to Gryllus bicolor Charpentier, 1825 and Stauroderus biguttulus var. collina Karny, 1907, respectively, which both have to be considered available already since their original descriptions by CHARPENTIER (1825) and KARNY (1907). Key words.
    [Show full text]
  • Further Assessment of the Genus Neodon and the Description of a New Species from Nepal
    RESEARCH ARTICLE Further assessment of the Genus Neodon and the description of a new species from Nepal 1³ 2 2 3 Nelish PradhanID , Ajay N. Sharma , Adarsh M. Sherchan , Saurav Chhetri , 4 1³ Paliza Shrestha , C. William KilpatrickID * 1 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 2 Center for Molecular Dynamics±Nepal, Kathmandu, Nepal, 3 Department of Biology, Trinity University, San Antonio, Texas, United States of America, 4 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, United States of America a1111111111 ³ These authors are joint senior authors on this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Recent molecular systematic studies of arvicoline voles of the genera Neodon, Lasiopod- omys, Phaiomys, and Microtus from Central Asia suggest the inclusion of Phaiomys leu- OPEN ACCESS curus, Microtus clarkei, and Lasiopodomys fuscus into Neodon and moving Neodon juldaschi into Microtus (Blanfordimys). In addition, three new species of Neodon (N. linz- Citation: Pradhan N, Sharma AN, Sherchan AM, Chhetri S, Shrestha P, Kilpatrick CW (2019) Further hiensis, N. medogensis, and N. nyalamensis) have recently been described from Tibet. assessment of the Genus Neodon and the Analyses of concatenated mitochondrial (Cytb, COI) and nuclear (Ghr, Rbp3) genes recov- description of a new species from Nepal. PLoS ered Neodon as a well-supported monophyletic clade including all the recently described ONE 14(7): e0219157. https://doi.org/10.1371/ and relocated species. Kimura-2-parameter distance between Neodon from western Nepal journal.pone.0219157 compared to N. sikimensis (K2P = 13.1) and N. irene (K2P = 13.4) was equivalent to genetic Editor: Johan R.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Sexual Dimorphism in Brain Transcriptomes of Amami Spiny Rats (Tokudaia Osimensis): a Rodent Species Where Males Lack the Y Chromosome Madison T
    Ortega et al. BMC Genomics (2019) 20:87 https://doi.org/10.1186/s12864-019-5426-6 RESEARCHARTICLE Open Access Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome Madison T. Ortega1,2, Nathan J. Bivens3, Takamichi Jogahara4, Asato Kuroiwa5, Scott A. Givan1,6,7,8 and Cheryl S. Rosenfeld1,2,8,9* Abstract Background: Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex- determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results: RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g.
    [Show full text]
  • Novltates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novltates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3064, 34 pp., 8 figures, 2 tables June 10, 1993 Philippine Rodents: Chromosomal Characteristics and Their Significance for Phylogenetic Inference Among 13 Species (Rodentia: Muridae: Murinae) ERIC A. RICKART1 AND GUY G. MUSSER2 ABSTRACT Karyotypes are reported for 13 murines be- bers of 50 and 88, respectively, indicating longing to the endemic Philippine genera Apomys, substantial chromosomal variability within that Archboldomys, Batomys, Bullimus, Chrotomys, genus. Archboldomys (2N = 26, FN = 43) has an Phloeomys, and Rhynchomys, and the widespread aberrant sex chromosome system and a karyotype genus Rattus. The karyotype of Phloeomys cum- that is substantially different from other taxa stud- ingi (2N = 44, FN = 66) differs from that of P. ied. The karyotype ofBullimus bagobus (2N = 42, pallidus (2N = 40, FN = 60), and both are chro- FN = ca. 58) is numerically similar to that of the mosomally distinct from other taxa examined. Two native Rattus everetti and the two non-native spe- species of Batomys (2N = 52), Chrotomys gon- cies ofRattus, R. tanezumi and R. exulans. Chro- zalesi (2N = 44), Rhynchomys isarogensis (2N = mosomal data corroborate some phylogenetic re- 44), and Apomys musculus (2N = 42) have FN = lationships inferred from morphology, and support 52-53 and a predominance of telocentric chro- the hypothesis that the Philippine murid fauna is mosomes. Two other species ofApomys have dip- composed of separate clades representing inde- loid numbers of30 and 44, and fundamental num- pendent ancestral invasions of the archipelago. INTRODUCTION The Philippine Islands support a remark- Heaney and Rickart, 1990; Musser and Hea- ably diverse murine rodent fauna, including ney, 1992).
    [Show full text]
  • Rodent Societies: an Ecological & Evolutionary Perspective
    Chapter 16 Neural Regulation of Social Behavior in Rodents J. Thomas Curtis, Yan Liu, Brandon J. Aragona, and Zuoxin Wang ocial behavior arises from a complex interplay since behaviors such as aggression likely derive from the of numerous and often-competing sensory stimuli, the mating system. S physiological and motivational states of the partici- Rodents are a diverse group of creatures that inhabit a pants, and the ages and genders of the individuals involved. wide variety of ecological niches. As might be expected of Overlying the internal responses to a social encounter are such diversity, rodents display a wide range of mating sys- a variety of external factors, such as the context in which tems. Males and females of many species often have differ- the encounter occurs, the time of year, environmental con- ent mating strategies (Waterman, chap. 3, Solomon and ditions, and the outcomes of previous social interactions. Keane, chap. 4, this volume). However, some environmental To further complicate the situation, each individual in a so- conditions require extensive cooperation between the sexes cial encounter must be able to adjust its own actions de- for reproductive success (Kleiman 1977). In these cases, the pending on the responses of other animals. Given such com- mating strategies of the two sexes may converge and a plexity, a detailed understanding of the neural basis of social monogamous mating system may arise. Only about 3% of behavior would seem next to impossible. Nonetheless, con- mammalian species have been categorized as being monog- siderable progress has been made. By examining individual amous (Kleiman 1977).
    [Show full text]
  • Ther5 1 017 024 Golenishchev.Pm6
    Russian J. Theriol. 5 (1): 1724 © RUSSIAN JOURNAL OF THERIOLOGY, 2006 The developmental conduit of the tribe Microtini (Rodentia, Arvicolinae): Systematic and evolutionary aspects Fedor N. Golenishchev & Vladimir G. Malikov ABSTRACT. According to the recent data on molecular genetics and comparative genomics of the grey voles of the tribe Microtini it is supposed, that their Nearctic and Palearctic groups had independently originated from different lineages of the extinct genus Mimomys. Nevertheless, that tribe is considered as a natural taxon. The American narrow-skulled voles are referred to a new taxon, Vocalomys subgen. nov. KEY WORDS: homology, homoplasy, phylogeny, vole, Microtini, evolution, taxonomy. Fedor N. Golenishchev [[email protected]] and Vladimir G. Malikov [[email protected]], Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, Saint-Petersburg 199034, Russia. «Êàíàë ðàçâèòèÿ» ïîëåâîê òðèáû Microtini (Rodentia, Arvicolinae): ñèñòåìàòèêî-ýâîëþöèîííûé àñïåêò. Ô.Í. Ãîëåíèùåâ, Â.Ã. Ìàëèêîâ ÐÅÇÞÌÅ.  ñîîòâåòñòâèè ñ ïîñëåäíèìè äàííûìè ìîëåêóëÿðíîé ãåíåòèêè è ñðàâíèòåëüíîé ãåíîìè- êè ñåðûõ ïîëåâîê òðèáû Microtini äåëàåòñÿ âûâîä î íåçàâèñèìîì ïðîèñõîæäåíèè íåàðêòè÷åñêèõ è ïàëåàðêòè÷åñêèõ ãðóïï îò ðàçíûõ ïðåäñòàâèòåëåé âûìåðøåãî ðîäà Mimomys. Íåñìîòðÿ íà ýòî, äàííàÿ òðèáà ñ÷èòàåòñÿ åñòåñòâåííûì òàêñîíîì. Àìåðèêàíñêèå óçêî÷åðåïíûå ïîëåâêè âûäåëÿþòñÿ â ñàìîñòîÿòåëüíûé ïîäðîä Vocalomys subgen. nov. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ãîìîëîãèÿ, ãîìîïëàçèÿ, ôèëîãåíèÿ, ïîëåâêè, Microtini, ýâîëþöèÿ, òàêñîíîìèÿ. Introduction The history of the group in the light of The Holarctic subfamily Arvicolinae Gray, 1821 is the molecular data known to comprise a number of transberingian vicari- ants together with a few Holarctic forms. Originally, The grey voles are usually altogether regarded as a the extent of their phylogenetic relationships was judged first-hand descendant of the Early Pleistocene genus on their morphological similarity.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • A-Nadachowski.Vp:Corelventura
    Acta zoologica cracoviensia, 50A(1-2): 67-72, Kraków, 31 May, 2007 The taxonomic status of Schelkovnikov’s Pine Vole Microtus schelkovnikovi (Rodentia, Mammalia) Adam NADACHOWSKI Received: 11 March, 2007 Accepted: 20 April, 2007 NADACHOWSKI A. 2007. The taxonomic status of Schelkovnikov’s Pine Vole Microtus schelkovnikovi (Rodentia, Mammalia). Acta zoologica cracoviensia, 50A(1-2): 67-72. Abstract. A comparison of morphological and karyological traits as well as an analysis of ecological preferences and the distribution pattern support the opinion that Microtus schelkovnikovi does not belong to subgenus Terricola and is the sole member of its own taxonomic species group. Hyrcanicola subgen. nov. comprises a single species Microtus (Hyrcanicola) schelkovnikovi, an endemic and relict form, inhabiting the Hyrcanian broad-leaved forest zone of Azerbaijan and Iran. Key-words: Systematics, new taxon, voles, Hyrcanian forests. Adam NADACHOWSKI, Institute of Systematics and Evolution of Animals, Polish Acad- emy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: [email protected] I. INTRODUCTION Schelkovnikov’s Pine Vole (Microtus schelkovnikovi SATUNIN, 1907) is one of the most enig- matic voles represented in natural history collections by only 45-50 specimens globally. This spe- cies was described by K. A. SATUNIN, on the basis of a single male specimen collected by A. B. SHELKOVNIKOV, July 6, 1906 near the village of Dzhi, in Azerbaijan (SATUNIN 1907). Next, 14 specimens from Azerbaijan, were found by KH.M.ALEKPEROV 50 years later in 1956 and 1957 (ALEKPEROV 1959). ELLERMAN (1948) described a new subspecies of Pine Vole Pitymys subterra- neus dorothea, on the basis of 3 females, collected by G.
    [Show full text]
  • ARTICULATA 1993 8(2): 1 -22 SYSTEMATIK to the Knowledge Of
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Articulata - Zeitschrift der Deutschen Gesellschaft für Orthopterologie e.V. DGfO Jahr/Year: 1993 Band/Volume: 8_2_1993 Autor(en)/Author(s): Storozhenko Sergey Artikel/Article: To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae: Catantopinae) of the Eastern Palearctlca 1-22 Deutschen Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/ ARTICULATA 1993 8(2): 1 -22 SYSTEMATIK To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae: Catantopinae) of the Eastern Palearctlca Sergey Storozhenko Abstract Data on the grasshoppers of the tribe Melanoplini SCUDDER, 1897 (= Podismini JACOBSON, 1905 = Parapodisminae INOUE, 1985, syn. n) of Eastern Palearctica are given. Podisma kanoi sp. n. and Podisma sapporensis ashibetsuensis ssp. n. from Japan are described. The new synonyms are established: Rhinopodisma MISTSHENKO, 1954 = Aserratus HUANG, 1981, syn. n., Sinopodisma CHANG, 1940 = Pedopodisma ZHENG, 1980, syn. n., Parapodisma MISTSHENKO, 1947 = Pseudoparapodisma INOUE, 1985, syn. n., Monopterus FISCHER-WALDHEIM, 1846 = Bohemanella RAMME, 1951, syn.n. Tribe Melanoplini SCUDDER, 1897 Type genus: Melanoplus STAL, 1873. Notes The tribe Melanoplini was established by S.SCUDDER (1897) as a group Melanopli. JACOBSON (1905) proposed Podismini as a new name for this group. In the most modem classification the position of tribe Melanoplini is following: MISTSHENKO (1952) considered it as a tribe Podismini of subfamily Catanto­ pinae (Acrididae); UVAROV (1966) as Catantopinae (without division on tribes); DIRSH (1975) as subfamily Podisminae of family Catantopidae; HARZ (1975) as tribe Podismini of subfamily Catantopinae (Acrididae); VICKERY & KEVAN (1983) as subfamily Melanoplinae of family Acrididae with two tribes (Melanoplini and Podismini) and YIN (1984) as subfamily Podisminae of family Oedipodidae.
    [Show full text]
  • Molecular Identification of Three Sympatric Species of Wood Mice (Apodemus Sylvaticus, A
    Molecular Ecology Notes (2001) 1, 260–263 PRIMERBlackwell Science, Ltd NOTE Molecular identification of three sympatric species of wood mice (Apodemus sylvaticus, A. flavicollis, A. alpicola) in western Europe (Muridae: Rodentia) J. R. MICHAUX,*† S. KINET,† M.-G. FILIPPUCCI,‡ R. LIBOIS,§ A. BESNARD† and F. CATZEFLIS† *Unité de recherches zoogéographiques, ULg, Quai Van Beneden, 22; 4020 Liège, Belgique, †Labo. Paléontologie, cc064, ISEM, 34095 Montpellier cedex 05, France, ‡Dipartimento di Biologia, Universita di Roma ‘Tor Vergata’, Rome 00173, Italy, §Museu Nacional de Historial Natural, rua da Escola politecnica, 58, 1269–102 Lisboa, Portugal Abstract The woodmouse (Apodemus sylvaticus) and yellow-necked fieldmouse (Apodemus flavicollis) are sympatric and even syntopic in many regions throughout their European range. Their field discrimination on the basis of external characters is a real challenge for many fields of research. The problem is even more complicated in the Alpine chain where they live sympatrically with a third similar species: A. alpicola. A rapid and simple method is proposed to discriminate the three species in processing field-collected biopsies as well as ethanol-preserved museum samples. Keywords: Apodemus, cytochrome b, molecular typing, species-specific primers Received 21 May 2001; revision accepted 21 May 2001 The woodmouse (Apodemus sylvaticus) and yellow-necked Alpine mouse. A. alpicola resembles A. flavicollis to such a fieldmouse (Apodemus flavicollis) are very common mammals high degree that it was previously considered to be a in Europe. They are widespread in many western and subspecies of the latter (Musser et al. 1996). central European countries although A. flavicollis is not Although the three Apodemus species can be distin- found in the southern Iberian peninsula, western France, guished by skull morphometry (Niethammer 1978; Storch northern Belgium and the Netherlands (Montgomery 1999).
    [Show full text]
  • A Karyogram Study on Eighteen Species of Japanese Acrididae (Orthoptera) (With 36 Figures)
    Title A Karyogram Study on Eighteen Species of Japanese Acrididae (Orthoptera) (With 36 Figures) Author(s) MOMMA, Eizi Citation 北海道帝國大學理學部紀要, 9(1), 59-69 Issue Date 1943-07 Doc URL http://hdl.handle.net/2115/27051 Type bulletin (article) File Information 9(1)_P59-69.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A Karyogram. Study on Eighteen Species of Japanese Acrididae (Orthoptera)l) By Eizi Momma Zoological Institute, Faculty of Science, Hokkaido Imperial University, Sapporo (W1~th 36 Figures) During these forty years the cytological investigations of the Acridian grasshoppers have been extensively carried out by a number of investigators, and considerable contributions have been devoted to the advance of animal cytology. The orthopteran insects, especially those of the Acrididae, have proved very favourable as material for the study of chromosomes, on account of the fact that their chromosomes are large in size having clear morphological features and are relatively low in number. Over one hundred of species have been cytologically investigated since the pioneer work of McClung ('00) in this field, demonstrating many valuable and • important facts and their bearing on problems of general cytology. One of the important matters confronting the students of Acridian chromosomes is to determine the interrelationships of the chromosome complexes in the different species. The extensive studies by McClung and his colleagues have established a great uniformity and constancy of the chromosome numbers in the Acrididae. Efforts made by these investigators greatly served to homologize individual chromosomes in closely related genera and species. Recently Ramachandra Rao (,37) has made a comparative study of the chromosomes in eight genera of Pyrgomorphinae (Acrididae), in view of finding the chromosomal relationship exist­ ing among the members of this subfamily.
    [Show full text]