Probing Polyproline Structure and Dynamics by Photoinduced Electron Transfer Provides Evidence for Deviations from a Regular Polyproline Type II Helix

Total Page:16

File Type:pdf, Size:1020Kb

Probing Polyproline Structure and Dynamics by Photoinduced Electron Transfer Provides Evidence for Deviations from a Regular Polyproline Type II Helix Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix So¨ ren Doose*, Hannes Neuweiler†, Hannes Barsch, and Markus Sauer* Applied Laser Physics and Laser Spectroscopy, University of Bielefeld, Universita¨tsstrasse 25, 33615 Bielefeld, Germany Edited by Harold A. Scheraga, Cornell University, Ithaca, NY, and approved September 14, 2007 (received for review June 15, 2007) Polyprolines are well known for adopting a regular polyproline Proline is unique among the natural amino acids in having a side type II helix in aqueous solution, rendering them a popular stan- chain that is cyclized to the backbone, restricting its conformational dard as molecular ruler in structural molecular biology. However, space considerably (12). Polyprolines have been characterized by single-molecule spectroscopy studies based on Fo¨rster resonance various spectroscopic techniques (1, 7, 8, 13–21). Two main con- energy transfer (FRET) have revealed deviations of experimentally formations depending on the isomerization state of the prolyl bond observed end-to-end distances of polyprolines from theoretical were identified: the polyproline type I helix (PPI) with all peptide predictions, and it was proposed that the discrepancy resulted bonds in the cis conformation (14); and the polyproline type II helix from dynamic flexibility of the polyproline helix. Here, we probe (PPII) with all peptide bonds being trans isomers (15, 16). However, end-to-end distances and conformational dynamics of poly-L- the notion that polyprolines constitute a system as well defined in prolines with 1–10 residues using fluorescence quenching by structure as suggested by crystallography has been questioned. photoinduced-electron transfer (PET). A single fluorophore and a Whereas most studies suggested that polyprolines with Ͼ3–5 resi- tryptophan residue, introduced at the termini of polyproline pep- dues form a PPII structure in aqueous solution (19), experimental tides, serve as sensitive probes for distance changes on the sub- evidence for significant deviations from this ideal structure was nanometer length scale. Using a combination of ensemble fluo- found by ensemble FRET (22), single-molecule FRET (7, 8, 23), rescence and fluorescence correlation spectroscopy, we and NMR studies (13, 20). Inspired by molecular dynamics simu- demonstrate that polyproline samples exhibit static structural lations, it was suggested that the PPII structure of polyprolines heterogeneity with subpopulations of distinct end-to-end dis- resembles a continuously bend worm-like chain with a persistence tances that do not interconvert on time scales from nano- to length, i.e., the length on which significant bending becomes milliseconds. By observing prolyl isomerization through changes in appreciable, smaller than thought previously (8, 22). On the other PET quenching interactions, we provide experimental evidence hand, theoretical studies predicted reduced end-to-end distances that the observed heterogeneity can be explained by interspersed caused by small amounts of interspersed cis isomers (24, 25). cis isomers. Computer simulations elucidate the influence of trans/ It is known that the amino acid tryptophan (Trp) can effi- cis isomerization on polyproline structures in terms of end-to-end ciently quench the emission of some strongly fluorescent oxazine distance and provide a structural justification for the experimen- and rhodamine derivatives either through transient collision or tally observed effects. Our results demonstrate that structural by formation of a nonfluorescent complex that is stabilized by heterogeneity inherent in polyprolines, which to date are com- hydrophobic interactions (26, 27). The contact-induced quench- monly applied as a molecular ruler, disqualifies them as appropri- ing process based on PET requires overlap of fluorophore and ate tool for an accurate determination of absolute distances at a quencher molecular orbitals, i.e., van der Waals contact, and molecular scale. thus is sensitive to subnanometer distances (28). Because PET can effectively switch off fluorescence only upon van der Waals fluorescence correlation spectroscopy ͉ molecular ruler ͉ contact between fluorophore and Trp, it can be used as a prolyl isomerization ͉ biopolymer ͉ Förster resonance energy transfer measuring rod probing whether the distance between the two moieties is above or below a critical distance. Related dynamics luorescence spectroscopy provides a variety of tools to mea- down to nanosecond time scales can be investigated by analyzing Fsure distances, monitor dynamics, or observe molecular PET interactions using fluorescence correlation spectroscopy interactions with sensitivity far beyond that of other biophysical (PET–FCS) (27, 29–31). techniques. Distance-dependent interactions between fluoro- In this work we investigate poly-L-prolines by using contact- phores and fluorescence-quenching molecular compounds, such induced PET between a site-specifically attached fluorophore (F) as Fo¨rster resonance energy transfer (FRET) or photoinduced electron transfer (PET), are capable of reporting on processes on the nanometer length scale, below the diffraction limit generally Author contributions: S.D. and H.N. contributed equally to this work; S.D., H.N., and M.S. designed research; S.D., H.N., and H.B. performed research; S.D., H.N., and H.B. analyzed imposed on optical techniques. Although much information is data; and S.D., H.N., and M.S. wrote the paper. gained from relative distances or distance changes, the quest for The authors declare no conflict of interest. precise determination of absolute distances has been ongoing This article is a PNAS Direct Submission. ever since Stryer and Haugland presented the application of FRET as a spectroscopic ruler (1). FRET is a nonradiative Freely available online through the PNAS open access option. dipole–dipole interaction between two fluorophores (donor D Abbreviations: F, fluorophore; FCS, fluorescence correlation spectroscopy; FRET, Fo¨rster resonance energy transfer; NHS, N-hydroxysuccinimidyl; PET, photoinduced electron trans- and acceptor A) that can serve as a spectroscopic ruler on length fer; PPII, polyproline type II; QY, quantum yield. Ϸ Ϸ scales between 2 and 10 nm (2–6). Structurally well defined *To whom correspondence may be addressed. E-mail: [email protected] or model systems (molecular rulers) are needed for validation of [email protected]. spectroscopic rulers as much as the latter are essential for †Present address: Medical Research Council Centre for Protein Engineering, Hills Road, structural investigations. Since the seminal work of Stryer and Cambridge CB2 0QH, United Kingdom. Haugland with polyprolines as a molecular ruler, both polypep- This article contains supporting information online at www.pnas.org/cgi/content/full/ tides and polynucleotides with well defined structures were used 0705605104/DC1. to validate Fo¨rster theory (4, 7–11). © 2007 by The National Academy of Sciences of the USA 17400–17405 ͉ PNAS ͉ October 30, 2007 ͉ vol. 104 ͉ no. 44 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0705605104 Downloaded by guest on October 2, 2021 and the amino acid Trp: F–(Pro)x–Trp with 0 Ͻx Ͻ10. Computa- tional models of polyproline assuming a regular PPII helix dem- onstrate that for x Ͼ6 residues, fluorescence-quenching contact formation between Trp and fluorophore is not possible because of steric separation. In fluorescence experiments, however, we find significant quenching even for constructs where fluorophore and Trp are spaced by Ͼ6 residues. To investigate conformational dynamics of polyproline peptides, we analyzed the time evolution of fluorescence quenching by time-resolved spectroscopy and FCS experiments. We found that fluorescence-quenched chain config- urations are essentially nonfluorescent on time scales from nano- to milliseconds. Furthermore, we observed considerable steady-state fluorescence changes upon induced prolyl cis/trans isomerization. The observed effects are in agreement with computational models of end-to-end distances of a PPII helix distorted by cis-prolyl isomers. Results and Discussion Steady-State Fluorescence Quenching Experiments of Polyproline Conjugates. We investigated F–(Pro)x–Trp conjugates with three different fluorophores F (MR121, MR113, and R6G) and 0 Ͻx Ͻ10 by using steady-state fluorescence spectroscopy, time- resolved spectroscopy, and FCS (Fig. 1). Steady-state fluores- cence measurements revealed a strong dependence of the steady-state quantum yield (QYss, calculated from the fluores- cence emission I of the quenched molecule relative to I0 of a nonquenched control sample) on the number of proline residues (Fig. 1). From investigating bimolecular interactions between BIOPHYSICS Trp and various fluorophores, we know that QYss is reduced through static and dynamic quenching processes based on PET between fluorophore and Trp. Static quenching describes for- Fig. 1. PET quenching interactions in polyprolines: steady-state fluores- Ͻ Ͻ mation of efficiently quenched complexes in which fluorophore cence, time-resolve fluorescence, and FCS data for F–(Pro)x–Trp with 0 x 10 and Trp favor a stacked configuration that is stabilized by and F being MR121, MR113, and R6G. The number of particles N0 (filled hydrophobic interactions (32). Dynamic quenching takes place squares) as detected in FCS are shown compared with static ensemble QY (open squares) for polyprolines labeled with
Recommended publications
  • Structural Insights Into Membrane Fusion Mediated by Convergent Small Fusogens
    cells Review Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens Yiming Yang * and Nandini Nagarajan Margam Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected] Abstract: From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease. Keywords: fusogen; SNARE; FAST; atlastin; spanin; myomaker; myomerger; membrane fusion 1. Introduction Citation: Yang, Y.; Margam, N.N. Structural Insights into Membrane Membrane fusion
    [Show full text]
  • Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices
    Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices Julian L. Kessler1, Grace Kang1, Zhao Qin2, Helen Kang1, Frank G. Whitby3, Thomas E. Cheatham III4, Christopher P. Hill3, Yang Li1,*, and S. Michael Yu1,5 1Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA 2Department of Civil & Environmental Engineering, Collagen of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA 3Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 4Department of Medicinal Chemistry, College of Pharmacy, L. S. Skaggs Pharmacy Research Institute, University of Utah, Salt Lake City, Utah 84112, USA 5Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA *Corresponding Author: Yang Li ([email protected]) Abstract The triple-helical structure of collagen, responsible for collagen’s remarkable biological and mechanical properties, has inspired both basic and applied research in synthetic peptide mimetics for decades. Since non-proline amino acids weaken the triple helix, the cyclic structure of proline has been considered necessary, and functional collagen mimetic peptides (CMPs) with diverse sidechains have been difficult to produce. Here we show that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, allowing synthesis of thermally stable triple-helical CMPs with unprecedented sidechain diversity. We found that the N-glys stabilize the triple helix by sterically promoting the preorganization of individual CMP chains into the polyproline-II helix conformation. Our findings were supported by the crystal structures of two atomic-resolution N-gly-containing CMPs, as well as experimental and computational studies spanning more than 30 N-gly-containing peptides.
    [Show full text]
  • Chiral Dualism As an Instrument of Hierarchical Structure Formation in Molecular Biology
    S S symmetry Article Chiral Dualism as an Instrument of Hierarchical Structure Formation in Molecular Biology Vsevolod A. Tverdislov * and Ekaterina V. Malyshko * Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, 119234 Moscow, Russia * Correspondence: [email protected] (V.A.T.); [email protected] (E.V.M.) Received: 6 March 2020; Accepted: 2 April 2020; Published: 8 April 2020 Abstract: The origin of chiral asymmetry in biology has attracted the attention of the research community throughout the years. In this paper we discuss the role of chirality and chirality sign alternation (L–D–L–D in proteins and D–L–D–L in DNA) in promoting self-organization in biology, starting at the level of single molecules and continuing to the level of supramolecular assemblies. In addition, we also discuss chiral assemblies in solutions of homochiral organic molecules. Sign-alternating chiral hierarchies created by proteins and nucleic acids are suggested to create the structural basis for the existence of selected mechanical degrees of freedom required for conformational dynamics in enzymes and macromolecular machines. Keywords: chirality; proteins; nucleic acids; hierarchy of structures; folding; molecular machines 1. Introduction The origin and potential role of chiral asymmetry in biology have attracted the attention of the research community throughout the years [1–18]. Although, at the macroscopic level, nonbiological structures with a homochiral molecular basis are not known, living organisms have been engaged
    [Show full text]
  • From Sequence to Structure
    1 From Sequence to Structure The genomics revolution is providing gene sequences in exponentially increasing numbers. Converting this sequence information into functional information for the gene products coded by these sequences is the challenge for post-genomic biology. The first step in this process will often be the interpretation of a protein sequence in terms of the three- dimensional structure into which it folds. This chapter summarizes the basic concepts that underlie the relationship between sequence and structure and provides an overview of the architecture of proteins. 1-0 Overview: Protein Function and Architecture 1-1 Amino Acids 1-2 Genes and Proteins 1-3 The Peptide Bond 1-4 Bonds that Stabilize Folded Proteins 1-5 Importance and Determinants of Secondary Structure 1-6 Properties of the Alpha Helix 1-7 Properties of the Beta Sheet 1-8 Prediction of Secondary Structure 1-9 Folding 1-10 Tertiary Structure 1-11 Membrane Protein Structure 1-12 Protein Stability: Weak Interactions and Flexibility 1-13 Protein Stability: Post-Translational Modifications 1-14 The Protein Domain 1-15 The Universe of Protein Structures 1-16 Protein Motifs 1-17 Alpha Domains and Beta Domains 1-18 Alpha/Beta, Alpha+Beta and Cross-Linked Domains 1-19 Quaternary Structure: General Principles 1-20 Quaternary Structure: Intermolecular Interfaces 1-21 Quaternary Structure: Geometry 1-22 Protein Flexibility 1-0 Overview: Protein Function and Architecture Binding TATA binding protein Myoglobin Specific recognition of other molecules is central to protein function. The molecule that is bound (the ligand) can be as small as the oxygen molecule that coordinates to the heme group of myoglobin, or as large as the specific DNA sequence (called the TATA box) that is bound—and distorted—by the TATA binding protein.
    [Show full text]
  • Structure of Coiled Fp-Hairpins and P P-Corners
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 284, number 2, 288-202 FEES 0985 1 June 1991 0 1991 Federation of European Biochemical Societies 00145793/91/43.50 ADONIS 001457939100561U Structure of coiled Fp-hairpins and P_P-corners A.V. Efimov Instilureqf Protein Research, Academy of Scierrces of the USSR, 142292 Pushchino. Moscow Region, USSR Received 9 April 199 1 Two types of super-secondary structure, coiled kp-hairpins and P_&corners, are considered in this paper. A P_@orner can be represented as a long &/I-hairpin folded orthogonally on itself so that the strands, when passing from one layer to the other. rotate in a right-handed direction about an imaginary axis. It is shown that a /?--~-hairpin. forming a coiled coil structure or a /I-/l-corner. is right-handed when viewed from the concave side. These unique arrangements of /?-strands in the coiled /I-p-hairpins and /Y-/korners are of particular value in protein modclling and prediction. Antiparallel j&sheet: Conformation: Protein: Strand: Structure 1. INTRODUCTION for the residues in the large and small rings, respective- ly, as used by Salemme and Weather ford [3]. The inter- In a P-P-hairpin, a polypeptide chain folds back on chain Cp-atom contact distances are different for the itself so that the two adjacent strands form an an- large and small hydrogen-bonded rings and are equal to tiparallel &sheet. &&Hairpins are widespread in pro- 3.7 A and 5.7 A, respectively.
    [Show full text]
  • 3-Substituted Prolines: from Synthesis to Structural Applications, from Peptides to Foldamers †
    Molecules 2013, 18, 2307-2327; doi:10.3390/molecules18022307 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review 3-Substituted Prolines: From Synthesis to Structural † Applications, from Peptides to Foldamers Céline Mothes 1,2,3, Cécile Caumes 1,2,3, Alexandre Guez 1,2,3, Héloïse Boullet 1,2,3, Thomas Gendrineau 4,5, Sylvain Darses 4,5, Nicolas Delsuc 1,2,3, Roba Moumné 1,2,3, Benoit Oswald 6, Olivier Lequin 1,2,3 and Philippe Karoyan 1,2,3,* 1 Laboratoire des BioMolécules, Université Pierre et Marie Curie-Sorbonne Universités, UMR 7203 and FR 2769, Paris, 75005, France 2 CNRS, UMR 7203, Paris, 75005, France 3 Département de Chimie, École Normale Supérieure, Paris, 75005, France 4 Laboratoire Charles Friedel, Ecole Normale Supérieure de Chimie de Paris, UMR 7223, 11 rue Pierre et Marie Curie, Paris, 75005, France 5 CNRS, UMR 7223, Paris, 75005, France 6 Genzyme Pharmaceuticals, Eichenweg 1, CH-4410 Liestal, Switzerland † In memory of Daniel Scheidegger. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-1-4432-2447; Fax: +33-1-4432-2444. Received: 1 February 2013; in revised form: 5 February 2013 / Accepted: 6 February 2013 / Published: 19 February 2013 Abstract: Among the twenty natural proteinogenic amino acids, proline is unique as its secondary amine forms a tertiary amide when incorporated into biopolymers, thus preventing hydrogen bond formation. Despite the lack of hydrogen bonds and thanks to conformational restriction of flexibility linked to the pyrrolidine ring, proline is able to stabilize peptide secondary structures such as -turns or polyproline helices.
    [Show full text]
  • Bilayer Thickness Determines the Alignment of Model Polyproline Helices in Lipid Membranes† Cite This: Phys
    PCCP View Article Online PAPER View Journal | View Issue Bilayer thickness determines the alignment of model polyproline helices in lipid membranes† Cite this: Phys. Chem. Chem. Phys., 2019, 21, 22396 Vladimir Kubyshkin, *ab Stephan L. Grage, c Anne S. Ulrich cd and Nediljko Budisa ab Our understanding of protein folds relies fundamentally on the set of secondary structures found in the proteomes. Yet, there also exist intriguing structures and motifs that are underrepresented in natural biopolymeric systems. One example is the polyproline II helix, which is usually considered to have a polar character and therefore does not form membrane spanning sections of membrane proteins. In our work, we have introduced specially designed polyproline II helices into the hydrophobic membrane milieu and used 19F NMR to monitor the helix alignment in oriented lipid bilayers. Our results show that these artificial hydrophobic peptides can adopt several different alignment states. If the helix is shorter than the thickness of the hydrophobic core of the membrane, it is submerged into the bilayer with its Creative Commons Attribution 3.0 Unported Licence. long axis parallel to the membrane plane. The polyproline helix adopts a transmembrane alignment when its length exceeds the bilayer thickness. If the peptide length roughly matches the lipid thickness, Received 28th May 2019, a coexistence of both states is observed. We thus show that the lipid thickness plays a determining role in Accepted 16th September 2019 the occurrence of a transmembrane polyproline II helix. We also found that the adaptation of polyproline II DOI: 10.1039/c9cp02996f helices to hydrophobic mismatch is in some notable aspects different from a-helices.
    [Show full text]
  • Synthesis and Conformational Analysis of Macrocyclic Peptides Consisting of Both A-Helix and Polyproline Helix Segments
    Synthesis and Conformational Analysis of Macrocyclic Peptides Consisting of Both a-Helix and Polyproline Helix Segments Sung-ju Choi,1 Soo hyun Kwon,1 Tae-Hyun Kim,2 Yong-beom Lim1 1 Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea 2 Department of Chemistry, Incheon National University, Incheon 406-840, Korea Received 29 April 2013; revised 18 June 2013; accepted 9 July 2013 Published online 19 July 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22356 INTRODUCTION ABSTRACT: eptides have been used, as isolated monomeric mol- ecules or as basic building blocks for self-assembly Macrocycles are interesting molecules because their topo- into nanostructures, to mimic the functions of natu- logical features and constrained properties significantly ral proteins. Peptides have several advantages in that affect their chemical, physical, biological, and self- they can be relatively easily synthesized and have Pbroader chemical diversity than natural proteins.1,2 However, assembling properties. In this report, we synthesized unique macrocyclic peptides composed of both an a-helix peptides typically have unstable molecular conformations due to their lack of the multiple stabilizing interactions pro- and a polyproline segment and analyzed their conforma- vided by a folded protein environment.3,4 Such conforma- tional properties. We found that the molecular stiffness of tional instability can significantly limit the affinity and the rod-like polyproline segment and the relative orienta- selectivity of peptide epitopes for target receptors. Therefore, tion of the two different helical segments strongly affect the the maintenance and stabilization of the actively folded form of peptides are important for increasing their biomacromo- efficiency of the macrocyclization reaction.
    [Show full text]
  • Assignment of Local Protein Structure with Different Strategies
    Assignment of Local Protein Structure with Different Strategies Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt in englischer Sprache von Jan Zacharias aus Hannover Berlin, Oktober 2014 Die vorliegende Arbeit wurde unter Anleitung von Prof. Dr. E. W. Knapp im Zeitraum von 05.2010 - 08.2014 am Institut für Chemie / Physikalische und Theoretische Chemie der Freien Universität Berlin im Fachbereich Biologie, Chemie und Pharmazie durchgeführt. 1. Gutachter: Prof. Dr. Ernst-Walter Knapp 2. Gutachter: Prof. Dr. Markus Wahl Disputation am 16.12.2014 Preamble This thesis summarizes my doctoral research work. It is mainly based on the following two peer-reviewed journal publications: J. Zacharias and E. W. Knapp, “Geometry motivated alternative view on local protein back- bone structures.,” Protein Sci. , vol. 22, no. 11, pp. 1669–74, Nov. 2013. http://dx.doi.org/10.1002/pro.2364 J. Zacharias and E.-W. Knapp, “Protein Secondary Structure Classification Revisited: Pro- cessing DSSP Information with PSSC.,” J. Chem. Inf. Model. , Jun. 2014. http://dx.doi.org/10.1021/ci5000856 Acknowledgements This work was carried out at the Freie Universität Berlin in the group of Prof. Ernst-Walter Knapp. I would like to thank him for fruitful discussions and his valuable support. Arturo Robertazzi for proofreading this manuscript. Nadia Elghobashi-Meinhardt for proofreading both papers. All members of the Knapp Group that created a cooperative and friendly working environ- ment. Meiner Familie für beständige moralische und gelegentliche finanzielle Unterstützung. Statutory Declaration I hereby testify that this thesis is the result of my own work and research, except for any ex- plicitly referenced material, whose source can be found in the bibliography.
    [Show full text]
  • Structural Role of Isolated Extended Strands in Proteins
    Protein Engineering vol. 16 no. 5 pp. 331±339, 2003 DOI: 10.1093/protein/gzg046 Stranded in isolation: structural role of isolated extended strands in proteins Narayanan Eswar1, C.Ramakrishnan and N.Srinivasan2 for the formation of a-helix in proteins is suggested to be the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, formation of intra-segment hydrogen bonding (Presta and India Rose, 1988). Deviation from the characteristic hydrogen bonding patterns in a-helices and b-sheets is known to result 1Present address: Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, San in distortions in these structures (Richardson et al., 1978; Francisco, CA 94143-2240, USA Barlow and Thornton, 1988). These regions of distortion are 2To whom correspondence should be addressed. often found to be solvated. For example, the kink produced by a E-mail: [email protected] proline residue in the middle of an a-helix and the existence of Reasons for the formation of extended-strands (E-strands) a b-bulge in b-sheets are well known. in proteins are often associated with the formation of b- The amino acid residue preferences and van der Waals sheets. However E-strands, not part of b-sheets, commonly stabilizing interactions are also characteristics of a-helices and occur in proteins. This raises questions about the struc- b-strands in proteins (Street and Mayo, 1999). The conforma- tural role and stability of such isolated E-strands. Using a tional entropy for the rotation of side chains is suggested to be a dataset of 250 largely non-homologous and high-resolution key feature in the preference or otherwise of an amino acid type (<2 AÊ ) crystal structures of proteins, we have identi®ed to occur in a-helix or b-sheet form (Presta and Rose, 1988; 518 isolated E-strands from 187 proteins.
    [Show full text]
  • The Proline-Rich Domain of Tonb Possesses an Extended Polyproline II-Like Conformation of Sufficient Length to Span the Periplasm of Gram-Negative Bacteria
    The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria Silvia Domingo Kohler,1 Annemarie Weber,2 S. Peter Howard,3 Wolfram Welte,2* and Malte Drescher1* 'Department of Chemistry, University of Konstanz, Konstanz 78457, Germany 2Department of Biology, University of Konstanz, Konstanz 78457, Germany 3Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5 DOl: 10.1 002/pro.345 Abstract: TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram-negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin-label pulsed EPR (Double Electron-Electron Resonance, DEER) and CD spectroscopy to show that the proline-rich segment of TonB exists in a PPII-like conformation. The result implies that the proline-rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram-negative bacteria. Keywords: TonB; outer membrane; active transport; EPR; DEER; polyproline 11 Introduction ing of phages such as T1 (eponymous) and <jlBO.2 The TonB from Escherichia coli and its homologues are TonB system is also critical for uptake of bacterial critical for the uptake of siderophores and a number toxins like colicin la and B3 and certain antibiotics 4 of other nutrients through the outer membrane of (albomycin, rifamycin, and microcin 25 ).
    [Show full text]
  • The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis
    International Journal of Molecular Sciences Review The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis Vladimir Kubyshkin 1,* and Nediljko Budisa 1,2,* 1 Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg, MB R3T 2N2, Canada 2 Department of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany * Correspondence: [email protected] (V.K.); [email protected] or [email protected] (N.B.); Tel.: +1-204-474-9321 or +49-30-314-28821 (N.B.) Received: 24 September 2019; Accepted: 3 November 2019; Published: 5 November 2019 Abstract: A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix.
    [Show full text]