Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function During Fusogenic Orthoreovirus Speciation

Total Page:16

File Type:pdf, Size:1020Kb

Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function During Fusogenic Orthoreovirus Speciation viruses Article Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function during Fusogenic Orthoreovirus Speciation Yiming Yang 1, Gerard Gaspard 1, Nichole McMullen 1 and Roy Duncan 1,2,* 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] (Y.Y.); [email protected] (G.G.); [email protected] (N.M.) 2 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected] Received: 29 March 2020; Accepted: 25 June 2020; Published: 29 June 2020 Abstract: The Reoviridae family is the only non-enveloped virus family with members that use syncytium formation to promote cell–cell virus transmission. Syncytiogenesis is mediated by a fusion-associated small transmembrane (FAST) protein, a novel family of viral membrane fusion proteins. Previous evidence suggested the fusogenic reoviruses arose from an ancestral non-fusogenic virus, with the preponderance of fusogenic species suggesting positive evolutionary pressure to acquire and maintain the fusion phenotype. New phylogenetic analyses that included the atypical waterfowl subgroup of avian reoviruses and recently identified new orthoreovirus species indicate a more complex relationship between reovirus speciation and fusogenic capacity, with numerous predicted internal indels and 5’-terminal extensions driving the evolution of the orthoreovirus’ polycistronic genome segments and their encoded FAST and fiber proteins. These inferred recombination events generated bi- and tricistronic genome segments with diverse gene constellations, they occurred pre- and post-orthoreovirus speciation, and they directly contributed to the evolution of the four extant orthoreovirus FAST proteins by driving both the gain and loss of fusion capability. We further show that two distinct post-speciation genetic events led to the loss of fusion in the waterfowl isolates of avian reovirus, a recombination event that replaced the p10 FAST protein with a heterologous, non-fusogenic protein and point substitutions in a conserved motif that destroyed the p10 assembly into multimeric fusion platforms. Keywords: orthoreovirus; FAST proteins; syncytium formation; recombination; virus evolution 1. Introduction The fusogenic reoviruses are rare examples of non-enveloped viruses that induce cell–cell fusion and syncytium formation [1]. This diverse group of non-enveloped viruses, with segmented, dsRNA genomes, are members of two distinct but related genera in the Reoviridae family: the Orthoreovirus genus, whose members infect a wide range of vertebrate hosts, and the Aquareovirus genus, whose hosts are restricted to freshwater and saltwater fish [2]. Three of the five recognized and sequenced species in the Aquareovirus genus are fusogenic. Of the seven currently recognized species of orthoreoviruses, only Mammalian orthoreovirus (MRV) and Piscine orthoreovirus (PRV) lack isolates that are fusogenic. Isolates of Reptilian orthoreovirus (RRV), Mahlapitsi orthoreovirus, (MaRV), Nelson Bay orthoreovirus (NBV), Baboon orthoreovirus (BRV), and Avian orthoreovirus (ARV) all induce syncytium formation [3,4]. Furthermore, three additional orthoreovirus species have been proposed, all of which are fusogenic: Broome orthoreovirus (BrRV) from a bat, Neoavian orthoreovirus (ARVN) from wild birds, and Testudine orthoreovirus (RRVT) from a tortoise (Figure1A). The preponderance of fusogenic over Viruses 2020, 12, 702; doi:10.3390/v12070702 www.mdpi.com/journal/viruses Viruses 2020, 12, 702 2 of 20 Viruses 2020, 12, x FOR PEER REVIEW 2 of 20 non-fusogenicnon-fusogenic reoviruses reoviruses suggests suggests there there isis positivepositive evolutionary evolutionary pressure pressure to obtain to obtain and/or and maintain/or maintain the fusogenicthe fusogenic phenotype. phenotype. FigureFigure 1. The 1. The diversity diversity of of orthoreovirus orthoreovirus species,species, their their polycistronic polycistronic genome genome segments, segments, and andtheir their fusion-associatedfusion-associated small small transmembrane transmembrane (FAST) (FAST) proteins. proteins. (A) Maximum (A) Maximum likelihood likelihood unrooted unrooted phylogram basedphylogram on 23 concatenated based on 23 amino concatenated acid sequences amino ofacid the sequences seven consistently of the seven homologous consistently structural homologous proteins (corestructural shell, core proteins RdRp, (core core turret,shell, core core RdRp, NTPase, core coreturret, clamp, core NTPase, outer-shell, core outer-clamp)clamp, outer-shell, encoded outer- by the indicatedclamp) 10 encoded species by or the proposed indicated species 10 species of orthoreoviruses or proposed species (in boldface).of orthoreoviruses See Supplementary (in boldface). See Table S1 Supplementary Table S1 for a list of viruses, proteins, and accession numbers. Lowercase labels for a list of viruses, proteins, and accession numbers. Lowercase labels denote isolates within a species: denote isolates within a species: Gal and Ans are landfowl and waterfowl isolates of avian Gal and Ans are landfowl and waterfowl isolates of avian orthoreovirus (ARV); Bu and Co are bulbul and orthoreovirus (ARV); Bu and Co are bulbul and corvid isolates of neoavian orthoreovirus (ARVN). corvidBootstrap isolates values of neoavian (500 replicates) orthoreovirus are shown (ARVN). for Bootstrapbranch points values where (500 the replicates) associated are taxa shown clustered for branch pointstogether where in the less associated than 100% taxa of the clustered replicate togethertrees. The in tree less with than the 100% highest of thelog replicatelikelihood trees.is shown. The tree withBranch the highest lengths log are likelihood to scale and is measured shown. Branch by the number lengths of are substitutions to scale and per measured site. (B) Diagrams by the numberof the of substitutionspolycistronic per site.S1 and (B) DiagramsS4 genome of segments the polycistronic from the S1indicated and S4 genomeorthoreovirus segments species, from drawn the indicated to orthoreovirusapproximate species, scale. Open drawn reading to approximate frames are scale.depicted Open by rectangles, reading frames labeled are to indicate depicted the by protein rectangles, labeledproduct to indicate and color-coded the protein to productdepict functional and color-coded or evolutionary to depict protein functional relationships: or evolutionary yellow—FAST protein relationships:protein; blue—fiber yellow—FAST protein; protein; green—potential blue—fiber ce protein;ll cycle green—potential inhibitory protein; cell purple—homologous cycle inhibitory protein; purple—homologousproteins with no defined proteins functi withon; no pink—nucleocytoplasmic defined function; pink—nucleocytoplasmic shuttling protein. Numbers shuttling refer protein.to mRNA length. (C) Diagrams of the orthoreovirus FAST proteins, depicting their topology in the Numbers refer to mRNA length. (C) Diagrams of the orthoreovirus FAST proteins, depicting their plasma membrane. Structural motifs contained within their N-terminal ectodomains and C-terminal topology in the plasma membrane. Structural motifs contained within their N-terminal ectodomains cytoplasmic endodomains are color-coded as described in the legend at the bottom. Numbers indicate and C-terminal cytoplasmic endodomains are color-coded as described in the legend at the bottom. the number of residues in each protein. Numbers indicate the number of residues in each protein. Orthoreoviruses are members of the Spinareovirinae subfamily, whose virions have large turrets Spinareovirinae Orthoreovirusesat the icosahedral vertices. are members The doub ofle-layered the capsid containssubfamily, eight structural whose virionsproteins, have five of large which turrets at thecomprise icosahedral the transcriptionally vertices. The double-layeredactive core particle capsid containing contains the eight viral structuralRNA-dependent proteins, RNA five of whichpolymerase comprise (RdRp) the transcriptionally [5,6]. Two of the active three core rema particleining proteins, containing the theouter viral clamp RNA-dependent and outer shell RNA polymeraseproteins, (RdRp)assemble [5 ,into6]. heterohe Two ofxameric the three complexes remaining and proteins,form the theouter outer capsid clamp shell and[7]. During outer shell proteins,reovirus assemble endocytic into cell heterohexameric entry, cathepsins proteoly complexestically and degrade form the the outer outer clamp capsid protein shell to[ 7expose]. During reovirusthe underlying endocytic cellouter entry, shell cathepsins protein that proteolytically mediates the exit degrade of the the core outer particle clamp from protein the endocytic to expose the underlyingpathway outer into shellthe cytoplasm protein that[8]. The mediates RdRp functions the exit of from the corewithin particle the core from particle the to endocytic transcribe pathway mostly into the cytoplasm [8]. The RdRp functions from within the core particle to transcribe mostly monocistronic mRNAs from the 10 genome segments that are capped but not polyadenylated by the turret protein during the exit from the core particle [9,10]. At some stage, interactions between the viral RdRp, Viruses 2020, 12, 702 3 of 20 packaging signals in the viral mRNA, and the core shell protein result in the coordinated replication of the mRNA and the encapsidation of the 10 dsRNA genome segments inside the progeny virus core particles [11,12]. These
Recommended publications
  • Viral Gastroenteritis
    viral gastroenteritis What causes viral gastroenteritis? y Rotaviruses y Caliciviruses y Astroviruses y SRV (Small Round Viruses) y Toroviruses y Adenoviruses 40 , 41 Diarrhea Causing Agents in World ROTAVIRUS Family Reoviridae Genus Segments Host Vector Orthoreovirus 10 Mammals None Orbivirus 11 Mammals Mosquitoes, flies Rotavirus 11 Mammals None Coltivirus 12 Mammals Ticks Seadornavirus 12 Mammals Ticks Aquareovirus 11 Fish None Idnoreovirus 10 Mammals None Cypovirus 10 Insect None Fijivirus 10 Plant Planthopper Phytoreovirus 12 Plant Leafhopper OiOryzavirus 10 Plan t Plan thopper Mycoreovirus 11 or 12 Fungi None? REOVIRUS y REO: respiratory enteric orphan, y early recognition that the viruses caused respiratory and enteric infections y incorrect belief they were not associated with disease, hence they were considered "orphan " viruses ROTAVIRUS‐ PROPERTIES y Virus is stable in the environment (months) y Relatively resistant to hand washing agents y Susceptible to disinfection with 95% ethanol, ‘Lyy,sol’, formalin STRUCTURAL FEATURES OF ROTAVIRUS y 60‐80nm in size y Non‐enveloped virus y EM appearance of a wheel with radiating spokes y Icosahedral symmetry y Double capsid y Double stranded (ds) RNA in 11 segments Rotavirus structure y The rotavirus genome consists of 11 segments of double- stranded RNA, which code for 6 structural viral proteins, VP1, VP2, VP3, VP4, VP6 and VP7 and 6 non-structural proteins, NSP1-NSP6 , where gene segment 11 encodes both NSP5 and 6. y Genome is encompassed by an inner core consisting of VP2, VP1 and VP3 proteins. Intermediate layer or inner capsid is made of VP6 determining group and subgroup specifici ti es. y The outer capsid layer is composed of two proteins, VP7 and VP4 eliciting neutralizing antibody responses.
    [Show full text]
  • Novel Reovirus Associated with Epidemic Mortality in Wild Largemouth Bass
    Journal of General Virology (2016), 97, 2482–2487 DOI 10.1099/jgv.0.000568 Short Novel reovirus associated with epidemic mortality Communication in wild largemouth bass (Micropterus salmoides) Samuel D. Sibley,1† Megan A. Finley,2† Bridget B. Baker,2 Corey Puzach,3 Aníbal G. Armien, 4 David Giehtbrock2 and Tony L. Goldberg1,5 Correspondence 1Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA Tony L. Goldberg 2Wisconsin Department of Natural Resources, Bureau of Fisheries Management, Madison, WI, [email protected] USA 3United States Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, WI, USA 4Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA 5Global Health Institute, University of Wisconsin–Madison, Madison, Wisconsin, USA Reoviruses (family Reoviridae) infect vertebrate and invertebrate hosts with clinical effects ranging from inapparent to lethal. Here, we describe the discovery and characterization of Largemouth bass reovirus (LMBRV), found during investigation of a mortality event in wild largemouth bass (Micropterus salmoides) in 2015 in WI, USA. LMBRV has spherical virions of approximately 80 nm diameter containing 10 segments of linear dsRNA, aligning it with members of the genus Orthoreovirus, which infect mammals and birds, rather than members of the genus Aquareovirus, which contain 11 segments and infect teleost fishes. LMBRV is only between 24 % and 68 % similar at the amino acid level to its closest relative, Piscine reovirus (PRV), the putative cause of heart and skeletal muscle inflammation of farmed salmon. LMBRV expands the Received 11 May 2016 known diversity and host range of its lineage, which suggests that an undiscovered diversity of Accepted 1 August 2016 related pathogenic reoviruses may exist in wild fishes.
    [Show full text]
  • Structural Insights Into Membrane Fusion Mediated by Convergent Small Fusogens
    cells Review Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens Yiming Yang * and Nandini Nagarajan Margam Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected] Abstract: From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease. Keywords: fusogen; SNARE; FAST; atlastin; spanin; myomaker; myomerger; membrane fusion 1. Introduction Citation: Yang, Y.; Margam, N.N. Structural Insights into Membrane Membrane fusion
    [Show full text]
  • Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices
    Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices Julian L. Kessler1, Grace Kang1, Zhao Qin2, Helen Kang1, Frank G. Whitby3, Thomas E. Cheatham III4, Christopher P. Hill3, Yang Li1,*, and S. Michael Yu1,5 1Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA 2Department of Civil & Environmental Engineering, Collagen of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA 3Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 4Department of Medicinal Chemistry, College of Pharmacy, L. S. Skaggs Pharmacy Research Institute, University of Utah, Salt Lake City, Utah 84112, USA 5Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA *Corresponding Author: Yang Li ([email protected]) Abstract The triple-helical structure of collagen, responsible for collagen’s remarkable biological and mechanical properties, has inspired both basic and applied research in synthetic peptide mimetics for decades. Since non-proline amino acids weaken the triple helix, the cyclic structure of proline has been considered necessary, and functional collagen mimetic peptides (CMPs) with diverse sidechains have been difficult to produce. Here we show that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, allowing synthesis of thermally stable triple-helical CMPs with unprecedented sidechain diversity. We found that the N-glys stabilize the triple helix by sterically promoting the preorganization of individual CMP chains into the polyproline-II helix conformation. Our findings were supported by the crystal structures of two atomic-resolution N-gly-containing CMPs, as well as experimental and computational studies spanning more than 30 N-gly-containing peptides.
    [Show full text]
  • Genetic and Pathogenic Characterisation of 11 Avian
    www.nature.com/scientificreports OPEN Genetic and pathogenic characterisation of 11 avian reovirus isolates from northern Received: 01 July 2016 Accepted: 26 September 2016 China suggests continued evolution Published: 18 October 2016 of virulence Li Zhong*, Li Gao*, Yongzhen Liu, Kai Li, Miao Wang, Xiaole Qi, Yulong Gao & Xiaomei Wang Avian reovirus (ARV) infections characterised by severe arthritis, tenosynovitis, pericarditis, and depressed growth have become increasingly frequent in recent years. In this study, we isolated and identified 11 ARV field strains from chickens with viral arthritis and reduced growth in northern China. Comparative analysis of the σC nucleotide and amino acid sequences demonstrated that all isolates, except LN05 and JS01, were closely related to ARV S1133 and clustered in the first genetic lineage. LN05 and JS01 strains were clustered in the third lineage with the ARV 138 strain. Using S1133 as a reference, five isolates were selected to infect specific-pathogen-free chickens, and we found that the recent isolated Chinese ARV strains had higher replication ability in vivo and caused enhanced mortality than the S1133 strain. These findings suggest that the pathogenicity of Chinese ARVs has been changing in recent years and disease control may become more difficult. This study provides genetic and pathogenic characterisations of ARV strains isolated in northern China and calls for a sustained surveillance of ARV infection in China in order to support a better prevention and control of the disease. Avian reoviruses (ARVs) are important poultry pathogens that cause considerable economic losses in poultry husbandry1. ARVs were first described and isolated as the pathogenic agents responsible for tenosynovitis in young chickens in 19592.
    [Show full text]
  • Aquatic Animal Viruses Mediated Immune Evasion in Their Host T ∗ Fei Ke, Qi-Ya Zhang
    Fish and Shellfish Immunology 86 (2019) 1096–1105 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Aquatic animal viruses mediated immune evasion in their host T ∗ Fei Ke, Qi-Ya Zhang State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China ARTICLE INFO ABSTRACT Keywords: Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host Aquatic animal virus and virus would determine the occurrence of diseases. The host will fight against virus infection with various Immune evasion responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also Virus-host interactions develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review Virus targeted molecular and pathway the research advances on virus mediated immune evasions to host responses containing interferon response, NF- Host responses κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications. 1. Introduction Various antiviral responses have been revealed [19–22]. How they are overcome by different viruses? Here, we select twenty three strains Aquatic viruses have been an essential part of the biosphere, and of aquatic animal viruses which represent great harms to aquatic ani- also a part of human and aquatic animal lives.
    [Show full text]
  • Molecular Studies of Piscine Orthoreovirus Proteins
    Piscine orthoreovirus Series of dissertations at the Norwegian University of Life Sciences Thesis number 79 Viruses, not lions, tigers or bears, sit masterfully above us on the food chain of life, occupying a role as alpha predators who prey on everything and are preyed upon by nothing Claus Wilke and Sara Sawyer, 2016 1.1. Background............................................................................................................................................... 1 1.2. Piscine orthoreovirus................................................................................................................................ 2 1.3. Replication of orthoreoviruses................................................................................................................ 10 1.4. Orthoreoviruses and effects on host cells ............................................................................................... 18 1.5. PRV distribution and disease associations ............................................................................................. 24 1.6. Vaccine against HSMI ............................................................................................................................ 29 4.1. The non ......................................................37 4.2. PRV causes an acute infection in blood cells ..........................................................................................40 4.3. DNA
    [Show full text]
  • Characterization of Piscine Orthoreovirus (PRV) and Associated Diseases to Inform Pathogen Transfer Risk Assessments in British Columbia
    Canadian Science Advisory Secretariat (CSAS) Research Document 2019/035 National Capital Region and Pacific Region Characterization of piscine orthoreovirus (PRV) and associated diseases to inform pathogen transfer risk assessments in British Columbia Mark Polinski and Kyle Garver Fisheries and Oceans Canada Pacific Biological Station 3190 Hammond Bay Road Nanaimo, British Columbia, V9T 6N7 June 2019 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2019 ISSN 1919-5044 Correct citation for this publication: Polinski, M. and Garver, K. 2019. Characterization of piscine orthoreovirus (PRV) and associated diseases to inform pathogen transfer risk assessments in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/035. v + 35 p. Aussi disponible en français : Polinski, M. et Garver, K. 2019. Caractérisation de l’orthoréovirus pisciaire (RVP) et des maladies associées pour guider les évaluations des risques de transfert d’agents pathogènes en Colombie-Britannique. Secr. can. de consult. sci. du MPO, Doc. de rech. 2019/035. v + 40
    [Show full text]
  • Pathogenicity of Variant Field Isolates of Avian Reovirus And
    PATHOGENICITY OF VARIANT FIELD ISOLATES OF AVIAN REOVIRUS AND MOLECULAR CHARACTERIZATION OF BRAZILIAN VARIANTS FROM COMMERCIAL BROILERS by RAFAEL AZAMBUJA BAMPI (Under the Direction of Holly S. Sellers) ABSTRACT Avian reoviruses are the causative agent of arthritis/tenosynovitis in broilers and turkeys. Since 2011, it has been observed an increased incidence of variant reoviruses inducing tenosynovitis in commercial poultry flocks in the U.S and worldwide, raising the question of cross species infection. Two turkey reoviruses isolates from clinical cases of tenosynovitis in commercial turkey breeders, 105057 and 105208, demonstrated to be pathogenic to commercial broilers, causing tenosynovitis with clinical signs of lameness (105057) and also, enteric disease (105208). Additionally, viral shedding was poor, demonstrating limited horizontal transmission. In commercial turkeys these isolates caused clinical disease and were efficiently shed. In addition, a chicken arthritis reovirus was inoculated in turkeys, but did not cause disease. Taken together, turkey arthritis reoviruses 105057 and 105208 represent a threat for the poultry industry. Additionally, it was determined for the first time the molecular characterization of arthritis reovirus variants from lame commercial broilers from Brazil. INDEX WORDS: Avian reovirus, chicken reovirus, turkey reovirus, tenosynovitis, arthritis, myocarditis, broilers, turkeys, FTA® cards PATHOGENICITY OF VARIANT FIELD ISOLATES OF AVIAN REOVIRUS AND MOLECULAR CHARACTERIZATION OF BRAZILIAN VARIANTS FROM
    [Show full text]
  • Piscine Orthoreovirus: Distribution, Characterization and Experimental Infections in Salmonids
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Piscine orthoreovirus: Distribution, characterization and experimental infections in salmonids Vendramin, Niccolò Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vendramin, N. (2019). Piscine orthoreovirus: Distribution, characterization and experimental infections in salmonids. Technical University of Denmark, National Institute for Aquatic Resources. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DTU Aqua National Institute of Aquatic Resources Piscine orthoreovirus Distribution, characterization and experimental infections in salmonids By Niccolò Vendramin PhD Thesis Piscine orthoreovirus. Distribution, characterization and experimental infections in salmonids Philosophiae Doctor (PhD) Thesis Niccolò Vendramin Unit for Fish and Shellfish diseases National Institute for Aquatic Resources DTU-Technical University of Denmark Kgs. Lyngby 2018 2 Niccoló Vendramin‐Ph.D. Thesis Piscine orthoreovirus. Distribution, characterization and experimental infections in salmonids You can't always get what you want But if you try sometime you might find You get what you need 1969 The Rolling Stones Niccoló Vendramin‐Ph.D.
    [Show full text]
  • Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda Africana Bat Flies in South Africa
    viruses Article Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa Petrus Jansen van Vuren 1,2, Michael Wiley 3, Gustavo Palacios 3, Nadia Storm 1,2, Stewart McCulloch 2, Wanda Markotter 2, Monica Birkhead 1, Alan Kemp 1 and Janusz T. Paweska 1,2,4,* 1 Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2131, South Africa; [email protected] (P.J.v.V.); [email protected] (N.S.); [email protected] (M.B.); [email protected] (A.K.) 2 Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria 0028, South Africa; [email protected] (S.M.); [email protected] (W.K.) 3 Center for Genomic Science, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; [email protected] (M.W.); [email protected] (G.P.) 4 Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa * Correspondence: [email protected]; Tel.: +27-11-3866382 Academic Editor: Andrew Mehle Received: 27 November 2015; Accepted: 23 February 2016; Published: 29 February 2016 Abstract: We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus.
    [Show full text]
  • The Development and Application of Quantitative Reverse
    THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION FOR THE DETECTION OF AVIAN REOVIRUSES Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. ______________________ Kejun Guo Certificate of Approval: _______________________ _______________________ Sandra J. Ewald Joseph J. Giambrone, Chair Professor Professor Pathobiology and Poultry Science Poultry Science _______________________ _______________________ Vicky van Santen Richard C. Bird Associate Professor Professor Pathobiology Pathobiology ___________________ George T. Flowers Interim Dean Graduate School THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION FOR THE DETECTION OF AVIAN REOVIRUSES Kejun Guo A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 9, 2008 THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION FOR THE DETECTION OF AVIAN REOVIRUSES Kejun Guo Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. ______________________ Signature of Author ______________________ Date of Graduation iii VITA Kejun Guo, son of Qing Guo and Xiaoqing Su, was born on September 17th, 1971, in Guiyang, Guizhou province, People’s Republic of China. He graduated from Beijing Agricultural University (BAU) with the degree of Doctor of Veterinary Medicine (D.V.M.) in July, 1993. He went on to earn a Master’s degree in Traditional Chinese Veterinary Medicine from China Agricultural University (the former BAU) in July, 1997.
    [Show full text]