Modeling of the Three-Dimensional Structure of Proteins with the Typical Leucine-Rich Repeats Andrey V Kajava1 ,2*, Gilbert Vassart 3 and Shoshana J Wodak 2

Total Page:16

File Type:pdf, Size:1020Kb

Modeling of the Three-Dimensional Structure of Proteins with the Typical Leucine-Rich Repeats Andrey V Kajava1 ,2*, Gilbert Vassart 3 and Shoshana J Wodak 2 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats Andrey V Kajava1 ,2*, Gilbert Vassart 3 and Shoshana J Wodak 2 1Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges, s/Lausanne, Switzerland, 2 Unite de Conformation des Macromolecules Biologiques, Universite Libre de Bruxelles, CP160/16, P2, Av P. Heger 1050 Bruxelles, Belgium, and 31nstitut de Recherche Interdisciplinaire and Service de Genetique Medicale Facult6 de Medecine, University Libre de Bruxelles, Campus Erasme, 1070 Bruxelles, Belgium Background: Leucine-rich repeats (LRRs) are present to model the three-dimensional structure of the most in proteins with diverse functions. The horseshoe- common LRR units. These modeled units were then shaped structure of a ribonuclease inhibitor (RI), with a used to build the three-dimensional structure of the parallel sheet lining the inner circumference of the extracellular domain of the thyrotropin receptor (TSHR) horseshoe and a helices flanking its outer circumference, - a 'typical' LRR protein. is the only X-ray structure containing these repeats to be Conclusions: The modeled TSHR structure adopts a determined. Despite the fact that the lengths and non-globular arrangement, similar to that in RI. The sequences of the RI repeats differ from those of the most 3 regions of this typical LRR protein are the same as in commonly occurring LRRs, it was deemed worthwhile the RI structure, whereas the a helices are shorter and the to derive a three-dimensional structural framework of conformations of the at3 and aotconnections are differ- these more typical LRR proteins, using the RI structure ent. As a result of these differences it was not possible to as a template. pack together typical LRR units using repeats such as Results: Sequence alignments of 569 LRRs from 68 those found in RI. This mutually exclusive relationship is proteins were obtained by a profile search and used in a supported by sequence analysis. The predicted structure comparative sequence analysis to distinguish between of the typical LRRs obtained here can be used to build residues with a probable structural role and those models for any of the known LRR proteins and the which seemed essential for function. This knowledge, approach used for the prediction could be applied to along with the known atomic structure of RI, was used other proteins containing internal repeats. Structure 15 September 1995, 3:867-877 Key words: atomic structure, leucine-rich repeats, molecular modeling, thyrotropin receptor Introduction lengths can be obtained from the analysis of 569 repeats Long, tandem arrays of a leucine-rich repeat (LRR) found in 68 different LRR proteins selected by have been found in the primary structure of many pro- sequence-profile searching [8] of the GENPEPT data- teins of diverse origin, function and cellular location [1]. base [9]. In accordance with this two-peak distribution Included among over 60 known LRR proteins are (Fig. la), LRR proteins can be divided into two sub- receptors for hormones [2], cell-adhesion molecules [3], families. The main peak of the distribution contains extracellular matrix binding glycoproteins [4], enzymes more than 90% of the LRRs. The characteristic repre- [5] and tyrosine kinase receptors [6]. In spite of the keen sentative of the most common subfamily (referred to as interest in these proteins and extensive knowledge about 'typical' hereafter) is a 24-residue LRR. RI, with its 28 their sequences, little was known about the spatial to 29-residue LRRs [10], belongs to the other, much arrangement of the LRR. The solution of the crystal less populated LRR subfamily. Comparative sequence structure of porcine ribonuclease inhibitor (RI) [7], a analysis also revealed differences in the consensus protein with LRRs, can be considered as a breakthrough sequences for the repeat in these two subfamilies in the understanding of the three-dimensional (3D) (Fig. lb). An 11-residue segment of the LRR (under- structure of LRR proteins. In the RI molecule, LRRs lined in Fig. lb), corresponding in the structure of RI to correspond to structural units that consist of a short the 3 strand and consecutive loop region, is conserved {3 strand and an a helix. These units form a superhelix in both subfamilies, whereas the remaining parts of the and are arranged so that all the [3 strands and a helices repeat are different. This suggests that although RI and are parallel to a common axis, resulting in a non-globu- the typical LRR proteins probably have the same gen- lar, horseshoe-shaped molecule with a curved parallel eral spatial arrangement and even the same 3 strand 13 sheet lining the inner circumference of the horseshoe arrangement at the atomic level, the overall 3D structure and the a helices flanking its outer circumference. of the typical LRR proteins may differ in significant Analysis of the LRR lengths and sequences (see the ways from that of RI. Materials and methods section), however, indicates that the repeats of the RI are somewhat atypical examples of Analysis of the known data led us to believe that theoreti- the LRR family. An idea of the distribution of the LRR cal prediction and molecular modeling of the typical LRR *Corresponding author. © Current Biology Ltd ISSN 0969-2126 867 868 Structure 1995, Vol 3 No 9 Results and discussion Assumption of identity of the 3 structure in all LRR proteins Accurate sequence alignments are critical for correct homology modeling. Our first step, therefore, was selec- tion of the most complete set of LRR proteins by profile searching [8] and their comprehensive sequence align- ment (see Materials and methods section). The sequence analysis showed that all LRRs (including RI) have a highly conserved 11-residue stretch which has the consensus sequence LxxLxLxxNxL (Fig. lb), where L indicates leucine or bulky, non-polar residues, N indicates asparagine or cysteine, and X is any amino acid. In the crystal structure of RI, the first seven residues of this conserved motif form a parallel sheet which lines the inside wall of the 'horseshoe'. The leucines (or sometimes valine, isoleucine, phenylalanine or methionine) are directed towards the inside of this structure, forming a continuous hydrophobic core. After this seven-residue 13 region, each strand changes direction by 900. In this half-turn conformation the NH and CO of the peptide groups cannot form hydrogen bonds with neighboring strands and have to be directed towards the non-polar core of the molecule. This would be energetically unfavorable, but a conserved asparagine (or cysteine) is positioned right after the 13 strand so that it is able to form Fig. 1. Results of sequence-profile searches. (a) Length distribu- a network of specific hydrogen bonds with these NH tion of 569 leucine-rich repeats (LRRs) found in 68 different pro- and CO groups, thus satisfying their hydrogen-bonding teins. The black area within a histogram bar indicates the potential. The last conserved residue in this pattern is a occurrence of the repeats belonging to the 28-residue subfamily of LRR. The grey area indicates occurrence of the more common bulky non-polar residue (usually leucine) which, in RI, is 24-residue subfamily repeats. (b) Characteristic sequence pat- directed into the hydrophobic core. Being conserved in terns for the 28-residue (black) and for 24-residue (grey) LRR sub- all LRR sequences, this 'P3 structure+asparagine-ladder' family. The representative repeats were taken from RI [10] and part of the repeat would therefore be expected to adopt a from carboxypeptidase N 15] sequences, respectively. The identi- similar spatial structure. Assuming that this is correct, the cal parts of the repeats are underlined. Capital letters represent residues that are conserved within the subfamilies. Highly con- molecular modeling task is then limited to the construc- served residues are in bold. tion of the remaining part of the typical LRR, which differs in sequence from the RI LRRs. proteins, on the basis of the known RI structure, would be instrumental in improving our understanding of their 3D Prediction of the topology structure. The prediction of the 3D structure of proteins is Analysis of known protein structures has shown that pro- clearly a highly risky undertaking yielding results which teins with repetitive primary structures also contain are, in general, not reliable. In cases of proteins with repet- repetitive modules in their 3D structure [11]. On the itive sequence, however, a priori theoretical structural pre- basis of this one can conclude, even in the absence of dictions have been much more successful. Examples of information on the RI crystal structure, that the structure these proteins are fibril proteins which have 2-4 residue of LRR proteins involves a repetitive 3D arrangement. periodicities (e.g. silk fibroin, collagen and tropomyosin) As the sequences of the typical LRRs are similar those of [11] or bead-like proteins with 30-40 residue periodicities the RI LRRs, it is natural to assume that the 3D struc- (e.g. zinc-finger proteins [12]). These predictions have tural arrangement of proteins containing these repeats is been significantly facilitated by the assumption of regular similar. Thus, the topology of the typical LRR protein is spatial arrangement, the possibility of distinguishing probably also of the superhelix type, with one side, between structurally and functionally important residue formed by the parallel 13structure and the other com- conservations, and by sets of indirect experimental evi- posed of fragments with an unknown conformation dence. There are also a few examples of successful predic- packed collinearly side by side. tion by homology modeling [13]. The proteins of the more populated LRR subfamily fulfil all of the above The second assumption implies a horseshoe shape in all requirements - they are repetitive and the structure of a LRR superhelices.
Recommended publications
  • Structural Insights Into Membrane Fusion Mediated by Convergent Small Fusogens
    cells Review Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens Yiming Yang * and Nandini Nagarajan Margam Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected] Abstract: From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease. Keywords: fusogen; SNARE; FAST; atlastin; spanin; myomaker; myomerger; membrane fusion 1. Introduction Citation: Yang, Y.; Margam, N.N. Structural Insights into Membrane Membrane fusion
    [Show full text]
  • Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices
    Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices Julian L. Kessler1, Grace Kang1, Zhao Qin2, Helen Kang1, Frank G. Whitby3, Thomas E. Cheatham III4, Christopher P. Hill3, Yang Li1,*, and S. Michael Yu1,5 1Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA 2Department of Civil & Environmental Engineering, Collagen of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA 3Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 4Department of Medicinal Chemistry, College of Pharmacy, L. S. Skaggs Pharmacy Research Institute, University of Utah, Salt Lake City, Utah 84112, USA 5Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA *Corresponding Author: Yang Li ([email protected]) Abstract The triple-helical structure of collagen, responsible for collagen’s remarkable biological and mechanical properties, has inspired both basic and applied research in synthetic peptide mimetics for decades. Since non-proline amino acids weaken the triple helix, the cyclic structure of proline has been considered necessary, and functional collagen mimetic peptides (CMPs) with diverse sidechains have been difficult to produce. Here we show that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, allowing synthesis of thermally stable triple-helical CMPs with unprecedented sidechain diversity. We found that the N-glys stabilize the triple helix by sterically promoting the preorganization of individual CMP chains into the polyproline-II helix conformation. Our findings were supported by the crystal structures of two atomic-resolution N-gly-containing CMPs, as well as experimental and computational studies spanning more than 30 N-gly-containing peptides.
    [Show full text]
  • Chiral Dualism As an Instrument of Hierarchical Structure Formation in Molecular Biology
    S S symmetry Article Chiral Dualism as an Instrument of Hierarchical Structure Formation in Molecular Biology Vsevolod A. Tverdislov * and Ekaterina V. Malyshko * Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, 119234 Moscow, Russia * Correspondence: [email protected] (V.A.T.); [email protected] (E.V.M.) Received: 6 March 2020; Accepted: 2 April 2020; Published: 8 April 2020 Abstract: The origin of chiral asymmetry in biology has attracted the attention of the research community throughout the years. In this paper we discuss the role of chirality and chirality sign alternation (L–D–L–D in proteins and D–L–D–L in DNA) in promoting self-organization in biology, starting at the level of single molecules and continuing to the level of supramolecular assemblies. In addition, we also discuss chiral assemblies in solutions of homochiral organic molecules. Sign-alternating chiral hierarchies created by proteins and nucleic acids are suggested to create the structural basis for the existence of selected mechanical degrees of freedom required for conformational dynamics in enzymes and macromolecular machines. Keywords: chirality; proteins; nucleic acids; hierarchy of structures; folding; molecular machines 1. Introduction The origin and potential role of chiral asymmetry in biology have attracted the attention of the research community throughout the years [1–18]. Although, at the macroscopic level, nonbiological structures with a homochiral molecular basis are not known, living organisms have been engaged
    [Show full text]
  • From Sequence to Structure
    1 From Sequence to Structure The genomics revolution is providing gene sequences in exponentially increasing numbers. Converting this sequence information into functional information for the gene products coded by these sequences is the challenge for post-genomic biology. The first step in this process will often be the interpretation of a protein sequence in terms of the three- dimensional structure into which it folds. This chapter summarizes the basic concepts that underlie the relationship between sequence and structure and provides an overview of the architecture of proteins. 1-0 Overview: Protein Function and Architecture 1-1 Amino Acids 1-2 Genes and Proteins 1-3 The Peptide Bond 1-4 Bonds that Stabilize Folded Proteins 1-5 Importance and Determinants of Secondary Structure 1-6 Properties of the Alpha Helix 1-7 Properties of the Beta Sheet 1-8 Prediction of Secondary Structure 1-9 Folding 1-10 Tertiary Structure 1-11 Membrane Protein Structure 1-12 Protein Stability: Weak Interactions and Flexibility 1-13 Protein Stability: Post-Translational Modifications 1-14 The Protein Domain 1-15 The Universe of Protein Structures 1-16 Protein Motifs 1-17 Alpha Domains and Beta Domains 1-18 Alpha/Beta, Alpha+Beta and Cross-Linked Domains 1-19 Quaternary Structure: General Principles 1-20 Quaternary Structure: Intermolecular Interfaces 1-21 Quaternary Structure: Geometry 1-22 Protein Flexibility 1-0 Overview: Protein Function and Architecture Binding TATA binding protein Myoglobin Specific recognition of other molecules is central to protein function. The molecule that is bound (the ligand) can be as small as the oxygen molecule that coordinates to the heme group of myoglobin, or as large as the specific DNA sequence (called the TATA box) that is bound—and distorted—by the TATA binding protein.
    [Show full text]
  • Structure of Coiled Fp-Hairpins and P P-Corners
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 284, number 2, 288-202 FEES 0985 1 June 1991 0 1991 Federation of European Biochemical Societies 00145793/91/43.50 ADONIS 001457939100561U Structure of coiled Fp-hairpins and P_P-corners A.V. Efimov Instilureqf Protein Research, Academy of Scierrces of the USSR, 142292 Pushchino. Moscow Region, USSR Received 9 April 199 1 Two types of super-secondary structure, coiled kp-hairpins and P_&corners, are considered in this paper. A P_@orner can be represented as a long &/I-hairpin folded orthogonally on itself so that the strands, when passing from one layer to the other. rotate in a right-handed direction about an imaginary axis. It is shown that a /?--~-hairpin. forming a coiled coil structure or a /I-/l-corner. is right-handed when viewed from the concave side. These unique arrangements of /?-strands in the coiled /I-p-hairpins and /Y-/korners are of particular value in protein modclling and prediction. Antiparallel j&sheet: Conformation: Protein: Strand: Structure 1. INTRODUCTION for the residues in the large and small rings, respective- ly, as used by Salemme and Weather ford [3]. The inter- In a P-P-hairpin, a polypeptide chain folds back on chain Cp-atom contact distances are different for the itself so that the two adjacent strands form an an- large and small hydrogen-bonded rings and are equal to tiparallel &sheet. &&Hairpins are widespread in pro- 3.7 A and 5.7 A, respectively.
    [Show full text]
  • 3-Substituted Prolines: from Synthesis to Structural Applications, from Peptides to Foldamers †
    Molecules 2013, 18, 2307-2327; doi:10.3390/molecules18022307 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review 3-Substituted Prolines: From Synthesis to Structural † Applications, from Peptides to Foldamers Céline Mothes 1,2,3, Cécile Caumes 1,2,3, Alexandre Guez 1,2,3, Héloïse Boullet 1,2,3, Thomas Gendrineau 4,5, Sylvain Darses 4,5, Nicolas Delsuc 1,2,3, Roba Moumné 1,2,3, Benoit Oswald 6, Olivier Lequin 1,2,3 and Philippe Karoyan 1,2,3,* 1 Laboratoire des BioMolécules, Université Pierre et Marie Curie-Sorbonne Universités, UMR 7203 and FR 2769, Paris, 75005, France 2 CNRS, UMR 7203, Paris, 75005, France 3 Département de Chimie, École Normale Supérieure, Paris, 75005, France 4 Laboratoire Charles Friedel, Ecole Normale Supérieure de Chimie de Paris, UMR 7223, 11 rue Pierre et Marie Curie, Paris, 75005, France 5 CNRS, UMR 7223, Paris, 75005, France 6 Genzyme Pharmaceuticals, Eichenweg 1, CH-4410 Liestal, Switzerland † In memory of Daniel Scheidegger. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-1-4432-2447; Fax: +33-1-4432-2444. Received: 1 February 2013; in revised form: 5 February 2013 / Accepted: 6 February 2013 / Published: 19 February 2013 Abstract: Among the twenty natural proteinogenic amino acids, proline is unique as its secondary amine forms a tertiary amide when incorporated into biopolymers, thus preventing hydrogen bond formation. Despite the lack of hydrogen bonds and thanks to conformational restriction of flexibility linked to the pyrrolidine ring, proline is able to stabilize peptide secondary structures such as -turns or polyproline helices.
    [Show full text]
  • Bilayer Thickness Determines the Alignment of Model Polyproline Helices in Lipid Membranes† Cite This: Phys
    PCCP View Article Online PAPER View Journal | View Issue Bilayer thickness determines the alignment of model polyproline helices in lipid membranes† Cite this: Phys. Chem. Chem. Phys., 2019, 21, 22396 Vladimir Kubyshkin, *ab Stephan L. Grage, c Anne S. Ulrich cd and Nediljko Budisa ab Our understanding of protein folds relies fundamentally on the set of secondary structures found in the proteomes. Yet, there also exist intriguing structures and motifs that are underrepresented in natural biopolymeric systems. One example is the polyproline II helix, which is usually considered to have a polar character and therefore does not form membrane spanning sections of membrane proteins. In our work, we have introduced specially designed polyproline II helices into the hydrophobic membrane milieu and used 19F NMR to monitor the helix alignment in oriented lipid bilayers. Our results show that these artificial hydrophobic peptides can adopt several different alignment states. If the helix is shorter than the thickness of the hydrophobic core of the membrane, it is submerged into the bilayer with its Creative Commons Attribution 3.0 Unported Licence. long axis parallel to the membrane plane. The polyproline helix adopts a transmembrane alignment when its length exceeds the bilayer thickness. If the peptide length roughly matches the lipid thickness, Received 28th May 2019, a coexistence of both states is observed. We thus show that the lipid thickness plays a determining role in Accepted 16th September 2019 the occurrence of a transmembrane polyproline II helix. We also found that the adaptation of polyproline II DOI: 10.1039/c9cp02996f helices to hydrophobic mismatch is in some notable aspects different from a-helices.
    [Show full text]
  • Synthesis and Conformational Analysis of Macrocyclic Peptides Consisting of Both A-Helix and Polyproline Helix Segments
    Synthesis and Conformational Analysis of Macrocyclic Peptides Consisting of Both a-Helix and Polyproline Helix Segments Sung-ju Choi,1 Soo hyun Kwon,1 Tae-Hyun Kim,2 Yong-beom Lim1 1 Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea 2 Department of Chemistry, Incheon National University, Incheon 406-840, Korea Received 29 April 2013; revised 18 June 2013; accepted 9 July 2013 Published online 19 July 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22356 INTRODUCTION ABSTRACT: eptides have been used, as isolated monomeric mol- ecules or as basic building blocks for self-assembly Macrocycles are interesting molecules because their topo- into nanostructures, to mimic the functions of natu- logical features and constrained properties significantly ral proteins. Peptides have several advantages in that affect their chemical, physical, biological, and self- they can be relatively easily synthesized and have Pbroader chemical diversity than natural proteins.1,2 However, assembling properties. In this report, we synthesized unique macrocyclic peptides composed of both an a-helix peptides typically have unstable molecular conformations due to their lack of the multiple stabilizing interactions pro- and a polyproline segment and analyzed their conforma- vided by a folded protein environment.3,4 Such conforma- tional properties. We found that the molecular stiffness of tional instability can significantly limit the affinity and the rod-like polyproline segment and the relative orienta- selectivity of peptide epitopes for target receptors. Therefore, tion of the two different helical segments strongly affect the the maintenance and stabilization of the actively folded form of peptides are important for increasing their biomacromo- efficiency of the macrocyclization reaction.
    [Show full text]
  • Assignment of Local Protein Structure with Different Strategies
    Assignment of Local Protein Structure with Different Strategies Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt in englischer Sprache von Jan Zacharias aus Hannover Berlin, Oktober 2014 Die vorliegende Arbeit wurde unter Anleitung von Prof. Dr. E. W. Knapp im Zeitraum von 05.2010 - 08.2014 am Institut für Chemie / Physikalische und Theoretische Chemie der Freien Universität Berlin im Fachbereich Biologie, Chemie und Pharmazie durchgeführt. 1. Gutachter: Prof. Dr. Ernst-Walter Knapp 2. Gutachter: Prof. Dr. Markus Wahl Disputation am 16.12.2014 Preamble This thesis summarizes my doctoral research work. It is mainly based on the following two peer-reviewed journal publications: J. Zacharias and E. W. Knapp, “Geometry motivated alternative view on local protein back- bone structures.,” Protein Sci. , vol. 22, no. 11, pp. 1669–74, Nov. 2013. http://dx.doi.org/10.1002/pro.2364 J. Zacharias and E.-W. Knapp, “Protein Secondary Structure Classification Revisited: Pro- cessing DSSP Information with PSSC.,” J. Chem. Inf. Model. , Jun. 2014. http://dx.doi.org/10.1021/ci5000856 Acknowledgements This work was carried out at the Freie Universität Berlin in the group of Prof. Ernst-Walter Knapp. I would like to thank him for fruitful discussions and his valuable support. Arturo Robertazzi for proofreading this manuscript. Nadia Elghobashi-Meinhardt for proofreading both papers. All members of the Knapp Group that created a cooperative and friendly working environ- ment. Meiner Familie für beständige moralische und gelegentliche finanzielle Unterstützung. Statutory Declaration I hereby testify that this thesis is the result of my own work and research, except for any ex- plicitly referenced material, whose source can be found in the bibliography.
    [Show full text]
  • Structural Role of Isolated Extended Strands in Proteins
    Protein Engineering vol. 16 no. 5 pp. 331±339, 2003 DOI: 10.1093/protein/gzg046 Stranded in isolation: structural role of isolated extended strands in proteins Narayanan Eswar1, C.Ramakrishnan and N.Srinivasan2 for the formation of a-helix in proteins is suggested to be the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, formation of intra-segment hydrogen bonding (Presta and India Rose, 1988). Deviation from the characteristic hydrogen bonding patterns in a-helices and b-sheets is known to result 1Present address: Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, San in distortions in these structures (Richardson et al., 1978; Francisco, CA 94143-2240, USA Barlow and Thornton, 1988). These regions of distortion are 2To whom correspondence should be addressed. often found to be solvated. For example, the kink produced by a E-mail: [email protected] proline residue in the middle of an a-helix and the existence of Reasons for the formation of extended-strands (E-strands) a b-bulge in b-sheets are well known. in proteins are often associated with the formation of b- The amino acid residue preferences and van der Waals sheets. However E-strands, not part of b-sheets, commonly stabilizing interactions are also characteristics of a-helices and occur in proteins. This raises questions about the struc- b-strands in proteins (Street and Mayo, 1999). The conforma- tural role and stability of such isolated E-strands. Using a tional entropy for the rotation of side chains is suggested to be a dataset of 250 largely non-homologous and high-resolution key feature in the preference or otherwise of an amino acid type (<2 AÊ ) crystal structures of proteins, we have identi®ed to occur in a-helix or b-sheet form (Presta and Rose, 1988; 518 isolated E-strands from 187 proteins.
    [Show full text]
  • The Proline-Rich Domain of Tonb Possesses an Extended Polyproline II-Like Conformation of Sufficient Length to Span the Periplasm of Gram-Negative Bacteria
    The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria Silvia Domingo Kohler,1 Annemarie Weber,2 S. Peter Howard,3 Wolfram Welte,2* and Malte Drescher1* 'Department of Chemistry, University of Konstanz, Konstanz 78457, Germany 2Department of Biology, University of Konstanz, Konstanz 78457, Germany 3Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5 DOl: 10.1 002/pro.345 Abstract: TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram-negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin-label pulsed EPR (Double Electron-Electron Resonance, DEER) and CD spectroscopy to show that the proline-rich segment of TonB exists in a PPII-like conformation. The result implies that the proline-rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram-negative bacteria. Keywords: TonB; outer membrane; active transport; EPR; DEER; polyproline 11 Introduction ing of phages such as T1 (eponymous) and <jlBO.2 The TonB from Escherichia coli and its homologues are TonB system is also critical for uptake of bacterial critical for the uptake of siderophores and a number toxins like colicin la and B3 and certain antibiotics 4 of other nutrients through the outer membrane of (albomycin, rifamycin, and microcin 25 ).
    [Show full text]
  • The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis
    International Journal of Molecular Sciences Review The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis Vladimir Kubyshkin 1,* and Nediljko Budisa 1,2,* 1 Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg, MB R3T 2N2, Canada 2 Department of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany * Correspondence: [email protected] (V.K.); [email protected] or [email protected] (N.B.); Tel.: +1-204-474-9321 or +49-30-314-28821 (N.B.) Received: 24 September 2019; Accepted: 3 November 2019; Published: 5 November 2019 Abstract: A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix.
    [Show full text]