Large Scale Charging of Electric Vehicles: Technology and Economy

Total Page:16

File Type:pdf, Size:1020Kb

Large Scale Charging of Electric Vehicles: Technology and Economy LARGE SCALE CHARGING OF ELECTRIC VEHICLES: TECHNOLOGY AND ECONOMY A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Zhe Yu January 2017 © 2017 Zhe Yu ALL RIGHTS RESERVED LARGE SCALE CHARGING OF ELECTRIC VEHICLES: TECHNOLOGY AND ECONOMY Zhe Yu, Ph.D. Cornell University 2017 The electrification of the transportation sector through the diffusion of plug-in electric vehicles (EVs), coupled with cleaner electricity generation, is consid- ered a promising pathway to reduce air pollution from on-road vehicles and to strengthen energy security. The annual new EV sales increased 8-fold since 2011. However, the market share of EVs is still less than 1% in the new ve- hicle market. One of the significant barriers to large-scale adoption of EVs is the charging facilities. Well developed EV charging services are essential for the successful launch of electric vehicles and provide valuable vehicle-to-grid (V2G) services to the smart grid. On the other hand, unplanned charging brings instability, inefficiency and higher cost to the power grid and hinders the rise of clean transportation. This work focuses on the EV charging, including the methodology, develop- ment, and economy. In different contexts, the technologies of EV charging are presented. Both online and off-line approaches are discussed, in decentralized and centralized scenarios. The interaction between the EVs and the power grid is studied, in particular for the V2G services including load shifting, frequency regulation and spinning reserves. The indirect network effect between EVs and EV charging are illustrated. A stylized model for both the EV consumers and the charging facility investor is developed, including the EV price, the coverage of the charging stations, and the price of charging. BIOGRAPHICAL SKETCH Zhe Yu received his B.E. degree from Department of Electrical Engineering, Ts- inghua University, Beijing, China in 2009, and M.S. from Department of Elec- trical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA in 2010. He is currently working toward the Ph.D. degree in the School of Electrical and Computer Engineering, Cornell University. His current research interests are in smart grid, demand response, dynamic programming and opti- mization. iii This document is dedicated to all Cornell graduate students. iv ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratitude to my advisor Prof. Tong for the continuous support of my Ph.D study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D study. Besides my advisor, I would like to thank the rest of my committee: Prof. Bitar and Prof. Li, for their insightful comments and encouragement, but also for the hard questions which incented me to widen my research from various perspectives. My sincere thanks also goes to Prof. Xu and Jianwei Xing, who provided me the stimulating discussions and precious suggestions on my work. Without their support, it would not be possible to conduct my research. Last but not the least, I would like to thank my family: my parents and my wife for supporting me spiritually throughout writing this thesis and my life in general. v TABLE OF CONTENTS Biographical Sketch . iii Dedication . iv Acknowledgements . .v Table of Contents . vi List of Tables . ix List of Figures . .x 1 Introduction 1 1.1 Electric Vehicle history . .1 1.2 Importance of EV charging. .7 1.3 Overview of technology: challenges and limitations. 10 1.4 Broad classifications of EV charging methodologies . 14 2 EV Charging Models and Energy Management Systems 16 2.1 Charging Standards . 16 2.2 Charging behavior of an EV battery . 18 2.2.1 A Simplified EV Charging model . 22 2.3 Home charging models and impacts on distribution systems. 23 2.3.1 Charging scheduling of single EV . 25 2.4 Large Scale Charging in Distribution System . 27 2.5 Large scale charging at public facilities . 29 2.6 Interaction between EV charging and the grid . 32 3 An online centralized approach of large-scale EV charging 36 3.1 An MDP Formulation of Stochastic Deadline Scheduling . 38 3.1.1 State space . 41 3.1.2 Action . 42 3.1.3 State evolution . 42 3.1.4 Reward . 44 3.1.5 Objective Function . 45 3.1.6 Constrained MDP and Optimal Policies . 45 3.1.7 A Linear Approach . 46 3.1.8 A Performance Upper Bound . 47 3.2 Deadline Scheduling as An RMAB Problem . 48 3.3 Whittle’s Index Policy . 51 3.3.1 Indexability . 51 3.3.2 Whittle’s index policy . 52 3.4 Performance of Whittle’s Index Policy for Finite-Armed Restless Bandits . 54 3.4.1 Performance in the Finite Power limit Cases . 55 3.4.2 An Upper Bound of the Gap-to-Optimality . 57 3.4.3 Least Laxity and Longer Processing Time (LLLP) Principle 57 vi 3.5 Asymptotic performance of the Whittle’s Index Policy . 58 3.6 Performance . 61 3.6.1 Asymptotic optimality . 66 3.7 Literature Review . 66 3.7.1 Worst case analysis . 68 3.7.2 Average case analysis . 71 4 EV charging for vehicle to grid services 73 4.1 Literature Review . 73 4.1.1 EVs as distributed storage and load-shifting agents . 73 4.1.2 EVs as ancillary service providers . 74 4.2 Load Shifting . 75 4.3 Frequency Regulation . 77 4.3.1 Large Scale EV Charging with Ancillary Service . 78 4.3.2 Ancillary Service Bidding . 80 4.3.3 Real-time Scheduling . 82 4.3.4 Participation of EVs in the Frequency Regulation Market . 85 5 Market Dynamics and Indirect Network Effects in Electric Vehicle D- iffusion 91 5.1 Literature Review . 94 5.2 A Sequential Game Model . 97 5.2.1 Two-sided market structure . 98 5.2.2 The investor’s decision model . 99 5.2.3 The consumer’s decision model . 101 5.2.4 The sequential game model . 104 5.3 Consumer Decisions . 105 5.3.1 Consumer Decision Model and Assumptions . 105 5.3.2 Consumer Decisions and EV Market Share . 106 5.4 Investor Decisions . 110 5.4.1 Investor Decision Model and Assumptions . 110 5.4.2 Optimal Charging Price . 111 5.4.3 Optimal Charging Station Locations . 114 5.4.4 Social welfare optimization . 116 5.5 Discussions . 119 5.5.1 Effects of subsidy . 119 5.5.2 Socially optimal solution vs. private market solution . 121 5.5.3 Other policies . 124 5.5.4 Applications . 126 A Appendices for Chapter 3 128 A.1 Proof of Theorem 1 . 128 A.1.1 Indexability of dummy arms . 128 A.1.2 Indexability of regular arms . 128 vii A.2 Proof of Theorem 2 . 133 A.2.1 When T = 2 ........................... 134 A.2.2 When T > 2 ........................... 135 A.3 Proof of Lemma 1 . 137 A.3.1 Proof of Lemma 2 . 141 A.3.2 Proof of Lemma 3 . 142 A.4 Proof of Theorem 3 . 145 A.5 Proof of Theorem 4 . 145 B Appendices for Chapter 4 147 B.1 Proof of Theorem 8 . 147 B.2 Proof of Theorem 9 . 149 B.3 Proof of Theorem 10 . 151 Bibliography 154 viii LIST OF TABLES 2.1 EV charging classification . 16 ix LIST OF FIGURES 1.1 First Electric horseless Carriage, by Sibrandus Stratingh. It was simply a wooden platform carrying a battery and a motor. Now it is on display at the Museum Boerhaave in Netherlands. .1 1.2 Queen Alexandra’s electric car for driving around the grounds of Sandringham House. .3 1.3 Tesla model S: powered by a battery pack with capacity 85 kWh, driving range 265 miles, 0 to 60 mph in 2.5 seconds. .5 1.4 Nissan leaf: the most popular EV model by 2016. Powered by a Li-ion battery pack with capacity 24 kWh, driving range 107 miles.6 2.1 Level 1 charger . 17 2.2 Level 2 charger . 19 2.3 DC charger . 20 2.4 Discharge curve . 20 2.5 EV attributes. 23 2.6 Architecture of home energy management system . 24 2.7 Architecture of home energy management system . 29 2.8 Architecture for network switched charging and iEMS. 31 2.9 Load curve of New York ISO, November 8th, 2016 . 33 2.10 Solar power output in a typical day.can not find usable plot or data 34 2.11 Charging station participating demand response. 35 3.1 Architecture of a charging station . 38 3.2 An illustration for the charger’s state. ri is the arrival time of an EV at charger i, di the deadline for completion, ji[t] the amount of charging to be completed by di, Ti[t] the lead time to deadline. 41 3.3 An illustration for the charging cost evolution. Given the current state ck, the next state will be ck0 with probability Pk;k0 ........ 43 3.4 An illustration for the charger state evolution given the charger is activated. T¯ is the maximum lead time and ¯j the maximum charging demand. 44 3.5 Performance comparison: constant charging cost c[t] = 0:5, Q(0; 0) = 0:3, T¯ = 12, ¯j = 9, β = 0:999, F( j) = 0:2 j2, N = 10...... 62 3.6 Performance comparison: constant charging cost c[t] = 0:5, Q(0; 0) = 0:3, T¯ = 12, ¯j = 9, β = 0:999, F( j) = 0:2 j2, M=N = 0:5...
Recommended publications
  • The Different Types of AC Power Connectors in North America
    The Different Types of AC Power Connectors in North America White Paper 20 Revision 2 by James Spitaels Contents > Executive summary Click on a section to jump to it Introduction 2 A confusing array of AC power plugs and receptacles exist to deliver power to various electronic loads. This Connectors for multiple 2 white paper describes the different types of connect- applications ors used to power computer equipment in North America. An illustration guide is provided at the end of An international standard 2 the paper to help identify the various connectors by North American standard AC 4 appearance and size. connectors Safety issues 5 Conclusion 7 Resources 8 Appendix 9 white papers are now part of the Schneider Electric white paper library produced by Schneider Electric’s Data Center Science Center [email protected] The Different Types of AC Power Connectors in North America Introduction The connection of electronic equipment to the AC power supply is usually accomplished using detachable connectors. The alternative of "hard-wiring" equipment to the building wiring makes service and movement of equipment more costly and less convenient. Therefore, many types of connectors exist. As a result, much confusion is generated as to what the various connection types are, when they are used, and what they should look like. This white paper describes the different types of connectors used for powering computer equipment in North America, including internationally recognized connectors. A guide for identifying the connectors is provided as a reference (see Appendix) to help identify particu- lar connectors by name, appearance, and size.
    [Show full text]
  • IEEE/MTT-S IMS2021 Event 285 Andrew Young International Blvd
    ELECTRICAL SERVICE ORDER FORM Georgia World Congress Center IEEE/MTT-S IMS2021 Event 285 Andrew Young International Blvd. Dates: June 8-10, 2021 Atlanta, GA 30313 Orders may be submitted via email at [email protected] or online at www.gwcca.org Advance rates are available when orders are submitted via online 21 calendars prior to first day of show opening Booth No._________ Company Name _________________________________________ Primary Contact __________________________ Signature to Authorize Charge ___________________________________ Primary Phone No. ( )_________________ Fax No. ( )________________ Email: ____________________________ Address_________________________ City______________________ State_______________ Zip Code _________ ELECTRICAL SPECIAL SERVICES Advance Onsite Overhead add 120 Volt 1 Phase Rate when Standard Rate Qty Rate (Labor 50% Total Cost Item Name Description Qty Total Cost (single outlet) ordering Rate (per unit) included) (as needed) online 1000 watt can 5 AMPS $140.00 $169.40 $228.69 Par 64 $450 light installed in Single 25ft single 10 AMPS $210.60 $254.82 $290.00 $23 Extension Cord receptacle Single 50 ft single 15 AMPS $212.75 $257.42 $331.00 $37 Extension Cord receptacle 4 Outlet 20 AMPS $247.25 $301.17 $382.00 Quad Extension receptacle box $24 Advance 20- 60 amps Onsite 208 Volt 1 Phase Rate when Standard Overhead Receptacle Qty Rate (Labor Total Cost Multi-outlet $15 (single outlet) ordering Rate add 50% adapter included) online to rate Distribution 20 AMPS $276.00 $331.00 $438.00 100A-200A Panel $288 Panel
    [Show full text]
  • Motor Vehicle Make Abbreviation List Updated As of June 21, 2012 MAKE Manufacturer AC a C AMF a M F ABAR Abarth COBR AC Cobra SKMD Academy Mobile Homes (Mfd
    Motor Vehicle Make Abbreviation List Updated as of June 21, 2012 MAKE Manufacturer AC A C AMF A M F ABAR Abarth COBR AC Cobra SKMD Academy Mobile Homes (Mfd. by Skyline Motorized Div.) ACAD Acadian ACUR Acura ADET Adette AMIN ADVANCE MIXER ADVS ADVANCED VEHICLE SYSTEMS ADVE ADVENTURE WHEELS MOTOR HOME AERA Aerocar AETA Aeta DAFD AF ARIE Airel AIRO AIR-O MOTOR HOME AIRS AIRSTREAM, INC AJS AJS AJW AJW ALAS ALASKAN CAMPER ALEX Alexander-Reynolds Corp. ALFL ALFA LEISURE, INC ALFA Alfa Romero ALSE ALL SEASONS MOTOR HOME ALLS All State ALLA Allard ALLE ALLEGRO MOTOR HOME ALCI Allen Coachworks, Inc. ALNZ ALLIANZ SWEEPERS ALED Allied ALLL Allied Leisure, Inc. ALTK ALLIED TANK ALLF Allison's Fiberglass mfg., Inc. ALMA Alma ALOH ALOHA-TRAILER CO ALOU Alouette ALPH Alpha ALPI Alpine ALSP Alsport/ Steen ALTA Alta ALVI Alvis AMGN AM GENERAL CORP AMGN AM General Corp. AMBA Ambassador AMEN Amen AMCC AMERICAN CLIPPER CORP AMCR AMERICAN CRUISER MOTOR HOME Motor Vehicle Make Abbreviation List Updated as of June 21, 2012 AEAG American Eagle AMEL AMERICAN ECONOMOBILE HILIF AMEV AMERICAN ELECTRIC VEHICLE LAFR AMERICAN LA FRANCE AMI American Microcar, Inc. AMER American Motors AMER AMERICAN MOTORS GENERAL BUS AMER AMERICAN MOTORS JEEP AMPT AMERICAN TRANSPORTATION AMRR AMERITRANS BY TMC GROUP, INC AMME Ammex AMPH Amphicar AMPT Amphicat AMTC AMTRAN CORP FANF ANC MOTOR HOME TRUCK ANGL Angel API API APOL APOLLO HOMES APRI APRILIA NEWM AR CORP. ARCA Arctic Cat ARGO Argonaut State Limousine ARGS ARGOSY TRAVEL TRAILER AGYL Argyle ARIT Arista ARIS ARISTOCRAT MOTOR HOME ARMR ARMOR MOBILE SYSTEMS, INC ARMS Armstrong Siddeley ARNO Arnolt-Bristol ARRO ARROW ARTI Artie ASA ASA ARSC Ascort ASHL Ashley ASPS Aspes ASVE Assembled Vehicle ASTO Aston Martin ASUN Asuna CAT CATERPILLAR TRACTOR CO ATK ATK America, Inc.
    [Show full text]
  • Buyer's Guide to Dell Power Distribution Units
    Buyer’s Guide to Dell Power Distribution Units With data center devices smaller than ever, often served by dual- or triple-power supplies, a single rack of equipment might produce 80 or more power cords to manage. You want to minimize the number of expensive power drops to each rack, yet power consumption keeps rising—from 600 to 1000 watts per U and growing. Furthermore, power demands can easily double or triple during peak periods and fluctuate with every move, addition, or change. Adding a 1U or 2U server used to mean drawing 300 to 500 more watts from the branch circuit; now, a new blade server can consume ten times as much current. Traditional power strips simply do not deliver enough power, flexibility, or control for today’s realities. You need an effective way to manage the tangle of power cords, deliver the required power without taking up valuable rack space, and have visibility into current draw at any time. Dell™ power distribution units (PDUs) were designed with your needs in mind. These rugged, space-saving devices distribute from 3.6kW to 22kW of power (single-phase or three-phase) to up to 42 sockets/receptacles in a single unit, with or without onboard metering and remote communications. Dell PDUs offer the following key advantages: Right out of the box, Dell PDUs work seamlessly with your Dell servers, storage, and desktop equipment. All models that support network communications integrate with the Dell Management Console powered by Altiris™ from Symantec™ to enable a consolidated infrastructure overview. Vertical models feature true toolless rack mounting.
    [Show full text]
  • Electric and Hybrid Cars SECOND EDITION This Page Intentionally Left Blank Electric and Hybrid Cars a History
    Electric and Hybrid Cars SECOND EDITION This page intentionally left blank Electric and Hybrid Cars A History Second Edition CURTIS D. ANDERSON and JUDY ANDERSON McFarland & Company, Inc., Publishers Jefferson, North Carolina, and London LIBRARY OF CONGRESS CATALOGUING-IN-PUBLICATION DATA Anderson, Curtis D. (Curtis Darrel), 1947– Electric and hybrid cars : a history / Curtis D. Anderson and Judy Anderson.—2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-0-7864-3301-8 softcover : 50# alkaline paper 1. Electric automobiles. 2. Hybrid electric cars. I. Anderson, Judy, 1946– II. Title. TL220.A53 2010 629.22'93—dc22 2010004216 British Library cataloguing data are available ©2010 Curtis D. Anderson. All rights reserved No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage and retrieval system, without permission in writing from the publisher. On the cover: (clockwise from top left) Cutaway of hybrid vehicle (©20¡0 Scott Maxwell/LuMaxArt); ¡892 William Morrison Electric Wagon; 20¡0 Honda Insight; diagram of controller circuits of a recharging motor, ¡900 Manufactured in the United States of America McFarland & Company, Inc., Publishers Box 611, Je›erson, North Carolina 28640 www.mcfarlandpub.com To my family, in gratitude for making car trips such a happy time. (J.A.A.) This page intentionally left blank TABLE OF CONTENTS Acronyms and Initialisms ix Preface 1 Introduction: The Birth of the Automobile Industry 3 1. The Evolution of the Electric Vehicle 21 2. Politics 60 3. Environment 106 4. Technology 138 5.
    [Show full text]
  • Electric Vehicle Charging Stations
    September 21, 2017; 1145 EDT INFRASTRUCTURE SYSTEM OVERVIEW: ELECTRIC VEHICLE CHARGING STATIONS Prepared By: Strategic Infrastructure Analysis Division OVERVIEW Electric vehicle (EV) usage continues to increase in the United States, along with its supporting infrastructure. As EVs increase in market share, issues like charging speed and battery capacity will drive future development of EV charging technology. As EV demand increases, manufacturers will continue to develop, build, and deploy additional Internet-connected charging stations and new connected technologies to satisfy demand. These Internet connected technologies include enhanced EV supply equipment (EVSE)-to-EV digital communications (advanced control of the charging process), as well as increasingly networked automobiles and charging systems (expanded communications and control for EVs). This research provides a baseline understanding of EV charging technology, as well as what new technology is on the horizon. Analysts should consider the cyber and physical aspects of this technology as it becomes more prevalent. SCOPE NOTE: This product provides an overview of EV charging stations and associated equipment, which are important components supporting EVs. It summarizes EV historical background, current standards and regulatory environment, current charging methods, technology and equipment, and future and emerging EV technology. This product does not describe threats, vulnerabilities, or consequences of any aspect of the infrastructure system. This product provides analysts, policy makers, and homeland security professionals a baseline understanding of how EV charging systems work. The U.S. Department of Homeland Security (DHS)/Office of Cyber and Infrastructure Analysis (OCIA) coordinated this product with the DHS/National Protection and Programs Directorate (NPPD)/Office of Infrastructure Protection/Sector Outreach and Programs Division, DHS/NPPD/Office of Cybersecurity & Communications/Industrial Control Systems Cyber Emergency Response Team, DHS/Transportation Security Administration, and U.S.
    [Show full text]
  • Vehicle Make, Vehicle Model
    V8, V9 VEHICLE MAKE, VEHICLE MODEL Format: VEHICLE MAKE – 2 numeric VEHICLE MODEL – 3 numeric Element Values: MAKE: Blanks 01-03, 06-10, 12-14, 18-25, 29-65, 69-77, 80-89, 90-94, 98-99 MODEL: Blanks 001-999 Remarks: SEE REMARKS UNDER VEHICLE IDENTIFICATION NUMBER – V12 2009 181 ALPHABETICAL LISTING OF MAKES FARS MAKE MAKE/ NCIC FARS MAKE MAKE/ NCIC MAKE MODEL CODE* MAKE MODEL CODE* CODE TABLE CODE TABLE PAGE # PAGE # 54 Acura 187 (ACUR) 71 Ducati 253 (DUCA) 31 Alfa Romeo 187 (ALFA) 10 Eagle 205 (EGIL) 03 AM General 188 (AMGN) 91 Eagle Coach 267 01 American Motors 189 (AMER) 29-398 Excaliber 250 (EXCL) 69-031 Aston Martin 250 (ASTO) 69-035 Ferrari 251 (FERR) 32 Audi 190 (AUDI) 36 Fiat 205 (FIAT) 33 Austin/Austin 191 (AUST) 12 Ford 206 (FORD) Healey 82 Freightliner 259 (FRHT) 29-001 Avanti 250 (AVTI) 83 FWD 260 (FWD) 98-802 Auto-Union-DKW 269 (AUTU) 69-398 Gazelle 252 (GZL) 69-042 Bentley 251 (BENT) 92 Gillig 268 69-052 Bertone 251 (BERO) 23 GMC 210 (GMC) 90 Bluebird 267 (BLUI) 25 Grumman 212 (GRUM) 34 BMW 191 (BMW) 72 Harley- 253 (HD) 69-032 Bricklin 250 (BRIC) Davidson 80 Brockway 257 (BROC) 69-036 Hillman 251 (HILL) 70 BSA 253 (BSA) 98-806 Hino 270 (HINO) 18 Buick 193 (BUIC) 37 Honda 213 (HOND) 19 Cadillac 194 (CADI) 29-398 Hudson 250 (HUDS) 98-903 Carpenter 270 55 Hyundai 215 (HYUN) 29-002 Checker 250 (CHEC) 08 Imperial 216 (CHRY) 20 Chevrolet 195 (CHEV) 58 Infiniti 216 (INFI) 06 Chrysler 199 (CHRY) 84 International 261 (INTL) 69-033 Citroen 250 (CITR) Harvester 98-904 Collins Bus 270 38 Isuzu 217 (ISU ) 64 Daewoo 201 (DAEW) 88 Iveco/Magirus
    [Show full text]
  • 01 Front–054
    Energy Myths and Realities Energy Myths and Realities: Bringing Science to the Energy Policy Debate Vaclav Smil The AEI Press Publisher for the American Enterprise Institute WASHINGTON, D.C. Distributed by arrangement with the Rowman & Littlefield Publishing Group, 4501 Forbes Boulevard, Suite 200, Lanham, Maryland 20706. To order call toll free 1-800-462-6420 or 1-717-794-3800. For all other inquiries please contact AEI Press, 1150 Seventeenth Street, N.W. Washington, D.C. 20036 or call 1-800-862-5801. Library of Congress Cataloging-in-Publication Data Smil, Vaclav. Energy myths and realities : bringing science to the energy policy debate / Vaclav Smil. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8447-4328-8 ISBN-10: 0-8447-4328-3 1. Renewable energy sources. 2. Energy policy. I. Title. TJ808.S639 2010 333.79'4—dc22 2010009437 14 13 12 11 10 1 2 3 4 5 6 7 © 2010 by the American Enterprise Institute for Public Policy Research, Wash- ington, D.C. All rights reserved. No part of this publication may be used or repro- duced in any manner whatsoever without permission in writing from the American Enterprise Institute except in the case of brief quotations embodied in news articles, critical articles, or reviews. The views expressed in the publications of the American Enterprise Institute are those of the authors and do not neces- sarily reflect the views of the staff, advisory panels, officers, or trustees of AEI. Printed in the United States of America Homines libenter quod volunt credunt Men believe what they want to —Publius Terentius v Contents LIST OF FIGURES xi KEY TO UNITS OF MEASURE xiii INTRODUCTION 1 Lost Opportunities 2 Persistent Myths 6 Challenging the Myths 11 PART I: LESSONS FROM THE PAST 15 1.
    [Show full text]
  • H:\My Documents\Article.Wpd
    Vehicle Data Codes as of 1/26/2010 Press CTRL + F to prompt the search field. VEHICLE DATA CODES TABLE OF CONTENTS 1--LICENSE PLATE TYPE (LIT) FIELD CODES 1.1 LIT FIELD CODES FOR REGULAR PASSENGER AUTOMOBILE PLATES 1.2 LIT FIELD CODES FOR AIRCRAFT 1.3 LIT FIELD CODES FOR ALL-TERRAIN VEHICLES AND SNOWMOBILES 1.4 SPECIAL LICENSE PLATES 1.5 LIT FIELD CODES FOR SPECIAL LICENSE PLATES 2--VEHICLE MAKE (VMA) AND BRAND NAME (BRA) FIELD CODES 2.1 VMA AND BRA FIELD CODES 2.2 VMA, BRA, AND VMO FIELD CODES FOR AUTOMOBILES, LIGHT-DUTY VANS, LIGHT- DUTY TRUCKS, AND PARTS 2.3 VMA AND BRA FIELD CODES FOR CONSTRUCTION EQUIPMENT AND CONSTRUCTION EQUIPMENT PARTS 2.4 VMA AND BRA FIELD CODES FOR FARM AND GARDEN EQUIPMENT AND FARM EQUIPMENT PARTS 2.5 VMA AND BRA FIELD CODES FOR MOTORCYCLES AND MOTORCYCLE PARTS 2.6 VMA AND BRA FIELD CODES FOR SNOWMOBILES AND SNOWMOBILE PARTS 2.7 VMA AND BRA FIELD CODES FOR TRAILERS AND TRAILER PARTS 2.8 VMA AND BRA FIELD CODES FOR TRUCKS AND TRUCK PARTS 2.9 VMA AND BRA FIELD CODES ALPHABETICALLY BY CODE 3--VEHICLE MODEL (VMO) FIELD CODES 3.1 VMO FIELD CODES FOR AUTOMOBILES, LIGHT-DUTY VANS, AND LIGHT-DUTY TRUCKS 3.2 VMO FIELD CODES FOR ASSEMBLED VEHICLES 3.3 VMO FIELD CODES FOR AIRCRAFT 3.4 VMO FIELD CODES FOR ALL-TERRAIN VEHICLES 3.5 VMO FIELD CODES FOR CONSTRUCTION EQUIPMENT 3.6 VMO FIELD CODES FOR DUNE BUGGIES 3.7 VMO FIELD CODES FOR FARM AND GARDEN EQUIPMENT 3.8 VMO FIELD CODES FOR GO-CARTS 3.9 VMO FIELD CODES FOR GOLF CARTS 3.10 VMO FIELD CODES FOR MOTORIZED RIDE-ON TOYS 3.11 VMO FIELD CODES FOR MOTORIZED WHEELCHAIRS 3.12
    [Show full text]
  • Electric Vehicle Procurement Best Practices Guide
    Preface Funded by the U.S. Department of Energy (U.S. DOE) Clean Cities Program, the Aggregated Alternative Technology Alliance, known as “Fleets for the Future” (F4F), seeks to achieve nationwide economies of scale for alternative fuel vehicles (AFVs) through aggregated procurement initiatives. F4F plans to accomplish these economies of scale through a coordinated strategy designed to increase knowledge, lower the transaction costs of procurement, achieve better pricing, and address potential challenges arising from large-scale procurement initiatives, thereby increasing the deployment of alternative fuel vehicles in public and private sector fleets. The F4F team is comprised of national and regional partners with extended networks and relationships that can increase and aggregate the demand for alternative fuels and advanced vehicles. The project includes a regional procurement initiative spearheaded by each of the team’s five participating regional councils, as well as a national procurement effort. F4F will enable fleets to obtain vehicles that will both reduce emissions and operate at a low total cost of ownership. AFVs that use electricity, propane autogas, and natural gas all have desirable benefits, including less reliance on foreign petroleum, reduced fuel costs, reduced maintenance costs, and contributions to local air quality improvement. In order to achieve these savings, fleet managers must justify the higher upfront cost of investing in AFVs. By harnessing the power of cooperative procurement to reduce transaction costs and to obtain bulk pricing, F4F aims to reduce the upfront cost premium and make an even stronger case for investing in AFVs. F4F does not detail purchase and use of ethanol, renewable diesel, or biodiesel, which are beneficial for many of the same reasons mentioned above.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Evaluating the Impacts Of
    UNIVERSITY OF CALIFORNIA, IRVINE Evaluating the Impacts of Centralized and Decentralized Electric Vehicle Smart Charging Algorithms on the Electric Grid THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Mechanical and Aerospace Engineering by Aaron Jai-Wei Cheng Thesis Committee: Professor G. Scott Samuelsen, Chair Professor Gregory N. Washington Professor Vincent G. McDonell 2018 © 2018 Aaron J. Cheng DEDICATION To my family for their unconditional support and motivation. ii TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... vi LIST OF TABLES ....................................................................................................................... viii NOMENCLATURE ....................................................................................................................... x ACKNOWLEDGMENTS ............................................................................................................ xii ABSTRACT OF THE THESIS ................................................................................................... xiii 1. INTRODUCTION .............................................................................................................. 1 1.1 Overview .......................................................................................................................... 1 1.2 Goals................................................................................................................................
    [Show full text]
  • Build Your Own Electric Vehicle / Leitman / 373-2 / Front Matter Blind Folio PB
    7 3/8 x 9 1/4 T echnical / Build Your Own Electric Vehicle / Leitman / 373-2 / Front Matter Blind Folio PB Build Your Own Electric Vehicle 7 3/8 x 9 1/4 T echnical / Build Your Own Electric Vehicle / Leitman / 373-2 / Front Matter Blind Folio PB About the Authors Seth Leitman (Briarcliff Manor, NY) is currently President and Managing Member of the ETS Energy Store, LLC, which sells organic, natural, and sustainable products for business and home use (from energy efficient bulbs to electric vehicle conversion referrals). Previously, he worked for the New York State Power Authority and the New York State Energy Research and Development Authority, where he helped develop, market, and manage electric and hybrid vehicle programs serving New York State and the New York metropolitan area. Seth is the consulting editor for a series of upcoming titles called the “Green Guru Guides,” which focus on implementing environmentally friendly technologies and making them work for you. Bob Brant was the author of the first book, and some might say ahead of his time in his passion to convert to electric. The first edition of this book was published in 1993. While there have obviously been updates and technological advances since that time, many of the concepts in that first book are still in use today. Bob grew up in New York City, got a BSEE, and worked on NASA projects such as Apollo, Lunar Excursion Module, and the Earth Resources Technology Satellite. He then went on to get an MSEE and MBA, and worked for a company that worked on the Lunar Rover.
    [Show full text]