Stingless Bee Honey, a Novel Source of Trehalulose: a Biologically Active Disaccharide with Health Benefits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24). -
Influence of Different Hydrocolloids on Dough Thermo-Mechanical Properties and in Vitro Starch Digestibility of Gluten-Free Steamed Bread Based on Potato Flour
Accepted Manuscript Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour Xingli Liu, Taihua Mu, Hongnan Sun, Miao Zhang, Jingwang Chen, Marie Laure Fauconnier PII: S0308-8146(17)31191-3 DOI: http://dx.doi.org/10.1016/j.foodchem.2017.07.047 Reference: FOCH 21431 To appear in: Food Chemistry Received Date: 29 March 2017 Revised Date: 4 July 2017 Accepted Date: 10 July 2017 Please cite this article as: Liu, X., Mu, T., Sun, H., Zhang, M., Chen, J., Fauconnier, M.L., Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour, Food Chemistry (2017), doi: http://dx.doi.org/10.1016/j.foodchem.2017.07.047 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour Xingli Liu1,2, Taihua Mu1*, Hongnan Sun1, Miao Zhang1, Jingwang Chen1,2, Marie Laure Fauconnier2 1. Key Laboratory of Agro-Products Processing, Ministry of Agriculture; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan west road, Haidian, Beijing 100193, P.R. -
Structural Features
1 Structural features As defined by the International Union of Pure and Applied Chemistry gly- cans are structures of multiple monosaccharides linked through glycosidic bonds. The terms sugar and saccharide are synonyms, depending on your preference for Arabic (“sukkar”) or Greek (“sakkēaron”). Saccharide is the root for monosaccha- rides (a single carbohydrate unit), oligosaccharides (3 to 20 units) and polysac- charides (large polymers of more than 20 units). Carbohydrates follow the basic formula (CH2O)N>2. Glycolaldehyde (CH2O)2 would be the simplest member of the family if molecules of two C-atoms were not excluded from the biochemical repertoire. Glycolaldehyde has been found in space in cosmic dust surrounding star-forming regions of the Milky Way galaxy. Glycolaldehyde is a precursor of several organic molecules. For example, reaction of glycolaldehyde with propenal, another interstellar molecule, yields ribose, a carbohydrate that is also the backbone of nucleic acids. Figure 1 – The Rho Ophiuchi star-forming region is shown in infrared light as captured by NASA’s Wide-field Infrared Explorer. Glycolaldehyde was identified in the gas surrounding the star-forming region IRAS 16293-2422, which is is the red object in the centre of the marked square. This star-forming region is 26’000 light-years away from Earth. Glycolaldehyde can react with propenal to form ribose. Image source: www.eso.org/public/images/eso1234a/ Beginning the count at three carbon atoms, glyceraldehyde and dihydroxy- acetone share the common chemical formula (CH2O)3 and represent the smallest carbohydrates. As their names imply, glyceraldehyde has an aldehyde group (at C1) and dihydoxyacetone a carbonyl group (at C2). -
Sugars Amount Per Serving Calories 300 Calories from Fat 45
Serving Size 1 package (272g) Servings Per Container 1 Sugars Amount Per Serving Calories 300 Calories from Fat 45 % Daily Value* What They Are Total Fat 5g 8% Sugars are the smallest and simplest type of carbohydrate. They are easily Saturated Fat 1.5g 8% digested and absorbed by the body. Trans Fat 0g Cholesterol 30mg 10% There are two types of sugars, and most foods contain some of each kind. Sodium 430mg 18% Total Carbohydrate 55g 18% Single sugars (monosaccharides) Sugars that contain two molecules of Dietary Fiber 6g 24% are small enough to be absorbed sugar linked together (disaccharides) are Sugars 23g directly into the bloodstream. broken down in your body into single sugars. Protein 14g They include: They include: Vitamin A 80% Fructose Sucrose (table sugar ) = glucose + fructose Vitamin C 35% Calcium 6% Galactose Lactose (milk sugar) = glucose + galactose Iron 15% Glucose Maltose (malt sugar) = glucose + glucose * Percent Daily Values are based on a 2,000 calorie diet. Your Daily Values may be higher or lower depending on your calorie needs: Calories: 2,000 2,500 Total Fat Less than 65g 80g Where They Are Found Saturated Fat Less than 20g 25g Cholesterol Less than 300mg 300mg Sugars are found naturally in many nutritious foods and beverages and are also Sodium Less than 2,400mg 2,400mg Total Carbohydrate 300g 375g added to foods and beverages for taste, texture, and preservation. Dietary Fiber 25g 30g Naturally occurring sugars are found in a variety of foods, including: • Dairy products • Fruit (fresh, frozen, dried, and canned in 100% fruit juice) Sugars are a major source of daily calories for many people and can • 100% fruit and vegetable juice increase the risk of developing • Vegetables cavities. -
Trehalose and Trehalose-Based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials
Molecules 2008, 13, 1773-1816; DOI: 10.3390/molecules13081773 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Review Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials Naozumi Teramoto 1, *, Navzer D. Sachinvala 2, † and Mitsuhiro Shibata 1 1 Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail: [email protected] 2 Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail: [email protected] † Dedicated to Professor George Christensen, Department of Psychology, Winona State University, Winona, MN, USA. * Author to whom correspondence should be addressed; E-mail: [email protected]. Received: 13 July 2008 / Accepted: 11 August 2008 / Published: 21 August 2008 Abstract: Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1J1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-D-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. -
Metabolic Shift from Glycogen to Trehalose Promotes Lifespan and Healthspan in Caenorhabditis Elegans
Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans Yonghak Seoa, Samuel Kingsleya, Griffin Walkera, Michelle A. Mondouxb, and Heidi A. Tissenbauma,c,1 aDepartment of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01605; bDepartment of Biology, College of the Holy Cross, Worcester, MA 01610; and cProgram in Molecular Medicine, UMMS, Worcester, MA 01605 Edited by Gary Ruvkun, Massachusetts General Hospital, Boston, MA, and approved February 13, 2018 (received for review August 10, 2017) As Western diets continue to include an ever-increasing amount of dition of trehalose to the standard E. coli diet promotes longevity sugar, there has been a rise in obesity and type 2 diabetes. To avoid (27) in contrast to the toxicity caused by the addition of glucose metabolic diseases, the body must maintain proper metabolism, even (5–8). Furthermore, mutants have been identified that are long on a high-sugar diet. In both humans and Caenorhabditis elegans, lived and store increased trehalose (27). Therefore, an association excess sugar (glucose) is stored as glycogen. Here, we find that ani- between longevity and trehalose has been established. Mammals do mals increased stored glycogen as they aged, whereas even young not store sugar as trehalose but do possess the enzyme trehalase to adult animals had increased stored glycogen on a high-sugar diet. breakdown ingested trehalose (28). Further, oral supplementation Decreasing the amount of glycogen storage by modulating the C. of trehalose has been shown to improve glucose tolerance in in- elegans glycogen synthase, gsy-1, a key enzyme in glycogen synthe- dividuals at high risk for developing type 2 diabetes (29) and can sis, can extend lifespan, prolong healthspan, and limit the detrimental improve recovery from traumatic brain injury in mice (30). -
Caramelization Processes in Sugar Glasses and Sugar Polycrystals
New Physics: Sae Mulli (The Korean Physical Society), DOI: 10.3938/NPSM.62.761 Volume 62, Number 7, 2012¸ 7Z4, pp. 761∼767 Caramelization Processes in Sugar Glasses and Sugar Polycrystals Jeong-Ah Seo · Hyun-Joung Kwon · Dong-Myeong Shin · Hyung Kook Kim · Yoon-Hwae Hwang∗ Department of Nanomaterials Engineering & BK21 Nano Fusion Technology Division, Pusan National University, Miryang 627-706 (Received 3 April 2012 : revised 3 June 2012 : accepted 2 July 2012) We studied the chemical dehydration processes due to the caramelization in sugar glasses and sugar polycrystals. The dehydration processes of three monosaccharide sugars (fructose, galactose, and glucose) and three disaccharide sugars (sucrose, maltose, and trehalose) were compared by using a thermogravimetic-differential thermal analyzer to measure the mass reduction. The amounts of mass reductions in sugar glasses were larger than those in sugar polycrystals. However, the amount of mass reduction in trehalose glasses was smaller than that in trehalose polycrystals. This unique dehydration property of trehalose glasses may be related to the high glass transition temperature, which might be related to a superior bioprotection ability of trehalose. PACS numbers: 87.14.Df, 81.70.Pg, 64.70.P Keywords: Dehydration, Caramelization, Sugar glass, Trehalose, Disaccharide I. INTRODUCTION higher than that of other disaccharides [6,7]. Therefore, the viscosity of trehalose is higher than that of other There are many strategies in nature for the long-term sugars at a given temperature. Several researchers have survival and storage of organisms, and a bio-protection pointed out that the high glass-transition temperature of effect is one of the most interesting among those long- trehalose may contribute to the preservation of biologi- term survival and storage mechanisms. -
Molecular Mechanisms of Trehalose in Modulating Glucose Homeostasis in Diabetes
Molecular Mechanisms of Trehalose in Modulating Glucose Homeostasis in Diabetes Running Title: Trehalose and Glucose Homeostasis Yaribeygi, Habib; Yaribeygi, Alijan; Sathyapalan, Thozhukat; Sahebkar, Amirhossein Abstract Diabetes mellitus is the most prevalent metabolic disorder contributing to significant morbidity and mortality in humans. Many preventative and therapeutic agents have been developed for normalizing glycemic profile in patients with diabetes. In addition to various pharmacologic strategies, many non-pharmacological agents have also been suggested to improve glycemic control in patients with diabetes. Trehalose is a naturally occurring disaccharide which is not synthesized in human but is widely used in food industries. Some studies have provided evidence indicating that it can potentially modulate glucose metabolism and help to stabilize glucose homeostasis in patients with diabetes. Studies have shown that trehalose can significantly modulate insulin sensitivity via at least 7 molecular pathways leading to better control of hyperglycemia. In the current study, we concluded about possible anti-hyperglycemic effects of trehalose suggesting trehalose as a potentially potent non- pharmacological agent for the management of diabetes. Keywords: Diabetes Mellitus, Trehalose, Oxidative Stress, Glucose, Homeostasis. This accepted manuscript of a work published in Diabetes and Metabolic Syndrome: Clinical research and reviews is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License. -
Microplate Sugar-Fermentation Assay Distinguishes Streptococcus Equi from Other Streptococci of Lancefield’S Group C
—NOTE— Microplate Sugar-Fermentation Assay Distinguishes Streptococcus equi from Other Streptococci of Lancefield’s Group C Yasushi KUWAMOTO, Toru ANZAI* and Ryuichi WADA Epizootic Research Station, Equine Research Institute, Japan Racing Association, 1400–4 Shiba Kokubunji- machi, Shimotuga-gun, Tochigi 329-0412, Japan Lancefield’s group C streptococci often contaminate test samples taken from open lesions of J. Equine Sci. the equine disease strangles, and it is difficult to distinguish the causal agent, Streptococcus Vol. 12, No. 2 equi (S. equi), from these other streptococci on the isolation plate. Here we have developed pp. 47–49, 2001 a microplate sugar-fermentation assay that distinguishes S. equi from other streptococci of Lancefield’s group C. Within 18 hr of incubation, the assay distinguished between 19 strains of S. equi, 171 strains of Streptococcus zooepidemicus and 19 strains of Streptococcus equisimilis, which were isolated from clinical horse samples and identified by API 20 STREP and Western immunoblotting. Moreover, this microplate assay can simultaneously test up to 24 samples, and is therefore valuable for the diagnosis of strangles. Key words: Strangles, Streptococcus equi, sugar-fermentation assay Strangles is a highly contagious equine disease that trehalose. Lancefield’s group C streptococci that fail to causes pyrexia, nasal discharge and secretion of pus ferment any of these sugars are usually identified as S. from the lymph nodes [4]. Recently, the number of equi, those that ferment lactose and sorbitol are outbreaks of strangles increased in Hidaka district, identified as S. zooepidemicus, and those ferment which is the main racehorse-breeding area of Japan, trehalose are identified as S. -
Saccharide Composition Containing Trehalulose, Its Preparation and Uses
^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 794 259 A2 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI C12P 19/18, A23L 1/22, 10.09.1997 Bulletin 1997/37 A61 K y/QQ, A61 K 31/715 (21) Application number: 97301395.6 (22) Date of filing: 03.03.1997 (84) Designated Contracting States: • Chaen, Hiroto DE FR GB Okayama-Shi Okayama (JP) • Fukuda, Shigeharu (30) Priority: 04.03.1996 JP 70913/96 Okayama (J P) 29.03.1996 JP 99566/96 • Miyake, Toshio Okayama (JP) (71) Applicant: KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU KENKYUJO (74) Representative: Daniels, Jeffrey Nicholas et al Okayama-shi Okayama (JP) Page White & Farrer 54 Doughty Street (72) Inventors: London WC1N 2LS (GB) • Nishimoto, Tomoyuki Okayama (JP) (54) Saccharide composition containing trehalulose, its preparation and uses (57) A saccharide composition containing trehalu- lulose-containing mixture. Since the enzyme converts lose, which is obtainable by allowing a maltose/treha- sucrose into trehalulose in a relatively high yield and the lose converting enzyme to act on a sucrose solution to conversion rate is controllable, a saccharide composi- produce trehalulose, and collecting the resulting treha- tion rich in trehalulose is readily obtained on an industrial scale. CM < O) io CM ^> O) Is- o a. LU Printed by Jouve, 75001 PARIS (FR) EP 0 794 259 A2 Description The present invention relates to a saccharide composition containing trehalulose, its preparation and uses, more particularly, it relates to a saccharide composition containing trehalulose obtained by allowing a maltose/trehalose 5 converting enzyme to act on a sucrose solution to produce trehalulose, a process for producing a saccharide compo- sition comprising a step of allowing a maltose/trehalose converting enzyme to act on a sucrose solution to produce trehalulose, and a composition containing the saccharide composition. -
A Preliminary Study of Chemical Profiles of Honey, Cerumen
foods Article A Preliminary Study of Chemical Profiles of Honey, Cerumen, and Propolis of the African Stingless Bee Meliponula ferruginea Milena Popova 1 , Dessislava Gerginova 1 , Boryana Trusheva 1 , Svetlana Simova 1, Alfred Ngenge Tamfu 2 , Ozgur Ceylan 3, Kerry Clark 4 and Vassya Bankova 1,* 1 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] (M.P.); [email protected] (D.G.); [email protected] (B.T.); [email protected] (S.S.) 2 Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454 Ngaoundere, Cameroon; [email protected] 3 Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147 Ula Mugla, Turkey; [email protected] 4 Volunteer Advisor in Beekeeping and Bee Products with Canadian Executive Services Organization, P.O. Box 2090, Dawson Creek, BC V1G 4K8, Canada; [email protected] * Correspondence: [email protected]; Tel.: +359-2-9606-149 Abstract: Recently, the honey and propolis of stingless bees have been attracting growing atten- tion because of their health-promoting properties. However, studies on these products of African Meliponini are still very scarce. In this preliminary study, we analyzed the chemical composition of honey, two cerumen, and two resin deposits (propolis) samples of Meliponula ferruginea from Tanzania. The honey of M. ferruginea was profiled by NMR and indicated different long-term stability Citation: Popova, M.; Gerginova, D.; from Apis mellifera European (Bulgarian) honey. It differed significantly in sugar and organic acids Trusheva, B.; Simova, S.; Tamfu, A.N.; content and had a very high amount of the disaccharide trehalulose, known for its bioactivities. -
Rapid HPLC Method for Determination of Isomaltulose in The
foods Article ArticleRapid HPLC Method for Determination of RapidIsomaltulose HPLC Methodin the Presence for Determination of Glucose, of Sucrose, Isomaltuloseand Maltodextrins in the in Presence Dietary of Supplements Glucose, Sucrose, and Maltodextrins in Dietary Supplements Tomáš Crha and Jiří Pazourek * Tomáš Crha and Jiˇrí Pazourek * Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-612 00 Brno, DepartmentCzech Republic; of Chemical [email protected] Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-612* Correspondence: 00 Brno, Czech pazourekj@ph Republic; [email protected]; Tel.: +420-54156-2940 * Correspondence: [email protected]; Tel.: +420-54156-2940 Received: 19 July 2020; Accepted: 15 August 2020; Published: 24 August 2020 Received: 19 July 2020; Accepted: 15 August 2020; Published: 24 August 2020 Abstract: This paper presents a rapid HPLC method for the separation of isomaltulose (also known Abstract:as Palatinose)This paper from presents other acommon rapid HPLC edible method carb forohydrates the separation such ofas isomaltulose sucrose, glucose, (also known and asmaltodextrins, Palatinose) from which other are common commonly edible present carbohydrates in food and such dietary as sucrose, supplements. glucose, and This maltodextrins, method was whichapplied are to commonly determine present isomaltulose in food and in dietaryselected supplements. food supplements This method for special was applied diets toand determine athletic isomaltuloseperformance. inDue selected to the selectivity food supplements of the separation for special system, diets this and method athletic can performance. also be used for Due rapid to theprofiling selectivity analysis of the of separationmono-, di-, system, and oligosaccharides this method can in alsofood be.