Molecules 2008, 13, 1773-1816; DOI: 10.3390/molecules13081773 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Review Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials Naozumi Teramoto 1, *, Navzer D. Sachinvala 2, † and Mitsuhiro Shibata 1 1 Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
[email protected] 2 Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail:
[email protected] † Dedicated to Professor George Christensen, Department of Psychology, Winona State University, Winona, MN, USA. * Author to whom correspondence should be addressed; E-mail:
[email protected]. Received: 13 July 2008 / Accepted: 11 August 2008 / Published: 21 August 2008 Abstract: Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1J1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-D-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives.