A Preliminary Study of Chemical Profiles of Honey, Cerumen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of the Apidae (Hymenoptera)
Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes, -
Pulse Generation in the Quorum Machinery of Pseudomonas Aeruginosa
This is a repository copy of Pulse generation in the quorum machinery of Pseudomonas aeruginosa. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/116745/ Version: Published Version Article: Alfiniyah, Cicik Alfiniyah, Bees, Martin Alan and Wood, Andrew James orcid.org/0000- 0002-6119-852X (2017) Pulse generation in the quorum machinery of Pseudomonas aeruginosa. Bulletin of Mathematical Biology. pp. 1360-1389. ISSN 1522-9602 https://doi.org/10.1007/s11538-017-0288-z Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Bull Math Biol (2017) 79:1360–1389 DOI 10.1007/s11538-017-0288-z ORIGINAL ARTICLE Pulse Generation in the Quorum Machinery of Pseudomonas aeruginosa Cicik Alfiniyah1,2 · Martin A. Bees1 · A. Jamie Wood1,3 Received: 28 September 2016 / Accepted: 3 May 2017 / Published online: 19 May 2017 © The Author(s) 2017. This article is an open access publication Abstract Pseudomonas aeruginosa is a Gram-negative bacterium that is responsible for a wide range of infections in humans. -
Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P. -
Subtilase Sprp Exerts Pleiotropic Effects in Pseudomonas Aeruginosa
ORIGINAL RESEARCH Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa Alexander Pelzer1, Tino Polen2, Horst Funken1, Frank Rosenau3, Susanne Wilhelm1, Michael Bott2 & Karl-Erich Jaeger1 1Institute of Molecular Enzyme Technology, Research Centre Juelich, Heinrich-Heine-University Duesseldorf, D-52426 Juelich, Germany 2Institut of Bio- und Geosciences IBG-1: Biotechnology, Research Centre Juelich, D-52426 Juelich, Germany 3Institute of Pharmaceutical Biotechnology, Ulm-University, Albert-Einstein-Allee 11, D-89069 Ulm, Germany Keywords Abstract Biofilm, microarray, motility, orf PA1242, protease, Pseudomonas aeruginosa, The open reading frame PA1242 in the genome of Pseudomonas aeruginosa Pyoverdine. PAO1 encodes a putative protease belonging to the peptidase S8 family of sub- tilases. The respective enzyme termed SprP consists of an N-terminal signal Correspondence peptide and a so-called S8 domain linked by a domain of unknown function Karl-Erich Jaeger, Institute of Molecular (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas Enzyme Technology, Heinrich-Heine- proteins as homologous domains can be identified almost exclusively in pro- University Duesseldorf, Research Centre Juelich, D-52426 Juelich, Germany. teins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli Δ Tel: (+49)-2461-61-3716; Fax: (+49)-2461-61- and proteolytic activity was demonstrated. A P. aeruginosa sprP mutant was 2490; E-mail: [email protected] constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Funding Information Apparently, SprP is involved in regulation of a variety of different cellular pro- 2021 As a member of the CLIB -Graduate cesses in P. -
(Hymenoptera, Apidae, Meliponini) in Cameroon
International Journal of Research in Agricultural Sciences Volume 5, Issue 6, ISSN (Online): 2348 – 3997 Nest Architecture and Colony Characteristics of Meliponula bocandei (Hymenoptera, Apidae, Meliponini) in Cameroon NJOYA Moses Tita Mogho1*, SEINO Richard Akwanjoh2, Dieter Wittmann3 and Tah Kenneth2 1*. Bee Research Unit, Faculty of Science, The University of Bamenda – Cameroon. 2. Department of Biological Sciences, Faculty of Science, The University of Bamenda – Cameroon. 3. Institute of Landscape and Animal Ecology, University of Bonn – Germany. 4. Apiculture and Nature Conservation Organization (ANCO). Date of publication (dd/mm/yyyy): 29/11/2018 Abstract – There are several hundred species of stingless mainly in forested areas. The forest species, such as bees existing worldwide, which differ significantly in colour, Meliponula beccarii (Gribodo) and Meliponula bocandei body and colony size. In Africa stingless are distributed (Spinola) nest on the ground or in trees (Kajobe, 2007a; throughout the tropical and subtropical parts where they Njoya, 2009). Other species, such as Meliponula nebulata occur sympatrically with the honeybees. Stingless bees have (Smith), nest in the cavities of trees or in termite mounds evolved adaptive nest constructions strategies which have resulted in sophisticated nest architecture in many species (Brosset et al., 1967; Darchen, 1969; Kajobe, 2007a; Njoya, while others lack certain structural components. Meliponula 2009). Central African countries have the highest reported bocandei is one species of stingless bees with limited or no diversity of Meliponini, with 17 species; 16 of these 17 information on its nest biology. This study therefore is aimed species have been reported in Gabon (Fabre Anguilet, at contributing to knowledge on the nest architecture and 2015). -
Social Behaviour in Microorganisms 13
13 Social behaviour in microorganisms Kevin R. Foster OVERVIEW Sociobiology has come a long way. We now have Many species do all of this in surface-attached a solid base of evolutionary theory supported communities, known as biofilms, in which the by a myriad of empirical tests. It is perhaps less diversity of species and interactions reaches appreciated, however, that first discussions of bewildering heights. Grouping can even involve social behaviour and evolution in Darwin’s day differentiation and development, as in the spec- drew upon single-celled organisms. Since then, tacular multicellular escape responses of slime microbes have received short shrift, and their moulds and myxobacteria. Like any society, how- full spectrum of sociality has only recently come ever, microbes face conflict, and most groups to light. Almost everything that a microorgan- will involve instances of both cooperation and ism does has social consequences; simply divid- competition among their members. And, as in ing can consume another’s resources. Microbes any society, microbial conflicts are mediated by also secrete a wide range of products that affect three key processes: constraints on rebellion, others, including digestive enzymes, toxins, mol- coercion that enforces compliance, and kinship ecules for communication and DNA that allows whereby cells direct altruistic aid towards clone- genes to mix both within and among species. mates. 13.1 Introduction indeed sociology, microbes have featured in descrip- tions of social life. Prominent among these are the We must be prepared to learn some day, from the students writings of Herbert Spencer, the social philosopher of microscopical pond-life, facts of unconscious mutual sup- who coined the term survival of the fi ttest in the wake port, even from the life of micro-organisms. -
Pollinator Biodiversity in Uganda and in Sub- Sahara Africa: Landscape and Habitat Management Strategies for Its Conservation
International Journal of Biodiversity and Conservation Vol. 3(11), pp. 551-609, 19 October, 2011 Available online at http://www.academicjournals.org/IJBC ISSN 2141-243X ©2011 Academic Journals Full Length Research Paper Pollinator biodiversity in Uganda and in Sub- Sahara Africa: Landscape and habitat management strategies for its conservation M. B. Théodore MUNYULI1, 2 1Department of Biology, National Center for Research in Natural Sciences, CRSN-Lwiro, D.S. Bukavu, South-Kivu Province, Democratic Republic of Congo. 2Department of Environmental and Natural Resource Economics, Faculty of Natural Resources and Environmental Sciences, Namasagali Campus, Busitema University., P .0. Box. 236, Tororo, eastern Uganda. E-mail: [email protected], [email protected], [email protected] Tel: +256-757356901, +256-772579267, +243997499842. Accepted 9 July, 2011 Previous pollinator faunistic surveys conducted in 26 different sites indicated that farmlands of central Uganda supported more than 650 bee species, 330 butterfly species and 57 fly species. Most crop species grown in Uganda are pollinator-dependents. There is also a high dependency of rural communities on pollination services for their livelihoods and incomes. The annual economic value attributable to pollinating services delivered to crop production sector was estimated to be worth of US$0.49 billion for a total economic value of crop production of US$1.16 billion in Uganda. Despite the great contribution of pollinators to crop yields, there is still lack of knowledge of their -
Ecological and Evolutionary Implications of Shape During Population Expansion
ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS OF SHAPE DURING POPULATION EXPANSION Submitted by Christopher Lee Coles to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences January 2015 This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ................................... ~ 1 ~ In loving memory of Laura Joan Coles ~ 2 ~ Abstract The spatial spread of populations is one of the most visible and fundamental processes in population and community ecology. Due to the potential negative impacts of spatial spread of invasive populations, there has been intensive research into understanding the drivers of ecological spread, predicting spatial dynamics, and finding management strategies that best constrain or control population expansion. However, understanding the spread of populations has proved to be a formidable task and our ability to accurately predict the spread of these populations has to date been limited. Microbial populations, during their spread across agar plate environments, can exhibit a wide array of spatial patterns, ranging from relatively circular patterns to highly irregular, fractal-like patterns. Work analysing these patterns of spread has mainly focused on the underlying mechanistic processes responsible for these patterns, with relatively little investigation into the ecological and evolutionary drivers of these patterns. With the increased recognition of the links between microbial and macrobial species, it is possible that many of the ecological/evolutionary mechanisms responsible for these patterns of spread at a microbial level extrapolate to the spatial spread of populations in general. -
Towards Sustainable Crop Pollination Services Measures at Field, Farm and Landscape Scales
EXTENSION OF KNOWLEDGE BASE ADAPTIVE MANAGEMENT CAPACITY BUILDING MAINSTREAMING TOWARDS SUSTAINABLE CROP POLLINATION SERVICES MEASURES AT FIELD, FARM AND LANDSCAPE SCALES POLLINATION SERVICES FOR SUSTAINABLE AGRICULTURE POLLINATION SERVICES FOR SUSTAINABLE AGRICULTURE TOWARDS SUSTAINABLE CROP POLLINATION SERVICES MEASURES AT FIELD, FARM AND LANDSCAPE SCALES B. Gemmill-Herren, N. Azzu, A. Bicksler, and A. Guidotti [eds.] FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2020 Required citation: FAO. 2020. Towards sustainable crop pollination services – Measures at field, farm and landscape scales. Rome. https://doi.org/10.4060/ca8965en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132578-0 © FAO, 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. -
Saccharide Composition Containing Trehalulose, Its Preparation and Uses
^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 794 259 A2 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI C12P 19/18, A23L 1/22, 10.09.1997 Bulletin 1997/37 A61 K y/QQ, A61 K 31/715 (21) Application number: 97301395.6 (22) Date of filing: 03.03.1997 (84) Designated Contracting States: • Chaen, Hiroto DE FR GB Okayama-Shi Okayama (JP) • Fukuda, Shigeharu (30) Priority: 04.03.1996 JP 70913/96 Okayama (J P) 29.03.1996 JP 99566/96 • Miyake, Toshio Okayama (JP) (71) Applicant: KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU KENKYUJO (74) Representative: Daniels, Jeffrey Nicholas et al Okayama-shi Okayama (JP) Page White & Farrer 54 Doughty Street (72) Inventors: London WC1N 2LS (GB) • Nishimoto, Tomoyuki Okayama (JP) (54) Saccharide composition containing trehalulose, its preparation and uses (57) A saccharide composition containing trehalu- lulose-containing mixture. Since the enzyme converts lose, which is obtainable by allowing a maltose/treha- sucrose into trehalulose in a relatively high yield and the lose converting enzyme to act on a sucrose solution to conversion rate is controllable, a saccharide composi- produce trehalulose, and collecting the resulting treha- tion rich in trehalulose is readily obtained on an industrial scale. CM < O) io CM ^> O) Is- o a. LU Printed by Jouve, 75001 PARIS (FR) EP 0 794 259 A2 Description The present invention relates to a saccharide composition containing trehalulose, its preparation and uses, more particularly, it relates to a saccharide composition containing trehalulose obtained by allowing a maltose/trehalose 5 converting enzyme to act on a sucrose solution to produce trehalulose, a process for producing a saccharide compo- sition comprising a step of allowing a maltose/trehalose converting enzyme to act on a sucrose solution to produce trehalulose, and a composition containing the saccharide composition. -
Cell Density and Mobility Protect Swarming Bacteria Against Antibiotics
Cell density and mobility protect swarming bacteria against antibiotics Mitchell T. Butler, Qingfeng Wang, and Rasika M. Harshey1 Section of Molecular Genetics and Microbiology, and Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712 Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved December 9, 2009 (received for review September 23, 2009) Swarming bacteria move in multicellular groups and exhibit Bacillus and Serratia—and show that cell density and mobility are adaptive resistance to multiple antibiotics. Analysis of this phe- common protective features for survival against antimicrobials. nomenon has revealed the protective power of high cell densities to withstand exposure to otherwise lethal antibiotic concentra- Results and Discussion tions. We find that high densities promote bacterial survival, even Antibiotic Resistance Is a Property of High Cell Density and Is Favored in a nonswarming state, but that the ability to move, as well as the by Mobility. In soft agar (0.3%), cells swim individually inside the speed of movement, confers an added advantage, making swarm- agar and are referred to as swimmers. In medium agar (0.6%), ing an effective strategy for prevailing against antimicrobials. We cells move as a group on the surface and are referred to as find no evidence of induced resistance pathways or quorum- swarmers. The original E-test strip assay showing differential sensing mechanisms controlling this group resistance, which occurs antibiotic resistance of swimmer and swarmer cells of Salmonella at a cost to cells directly exposed to the antibiotic. This work has (13, 14) is shown in Fig. 1A. -
Learning the Space-Time Phase Diagram of Bacterial Swarm Expansion
Learning the space-time phase diagram of bacterial swarm expansion Hannah Jeckela,b,c, Eric Jellia,b, Raimo Hartmanna, Praveen K. Singha, Rachel Mokc,d, Jan Frederik Totze, Lucia Vidakovica, Bruno Eckhardtb,Jorn¨ Dunkelc,1, and Knut Dreschera,b,1 aMax Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; bFachbereich Physik and LOEWE Zentrum fur¨ Synthetische Mikrobiologie SYNMIKRO, Philipps-Universitat¨ Marburg, 35032 Marburg, Germany; cDepartment of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139; dDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and eInstitute for Theoretical Physics, Technische Universitat¨ Berlin, 10623 Berlin, Germany Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved December 11, 2018 (received for review July 7, 2018) Coordinated dynamics of individual components in active matter Results and Discussion are an essential aspect of life on all scales. Establishing a com- To track the swarming behavior of B. subtilis over five orders of prehensive, causal connection between intracellular, intercellular, magnitude in space at the single-cell level, we developed an adap- and macroscopic behaviors has remained a major challenge due tive microscope that acquires high-speed movies at times and to limitations in data acquisition and analysis techniques suit- locations determined by a live feedback between image feature able for multiscale dynamics. Here, we combine a high-through- recognition and an automated movement of the scanning area put adaptive microscopy approach with machine learning, to (Fig. 1A). This technique allows us to image a radially expanding identify key biological and physical mechanisms that determine swarm at single-cell resolution in space and time (Fig.