Trehalose & Eye Care

Total Page:16

File Type:pdf, Size:1020Kb

Trehalose & Eye Care Trehalose & Eye Care Trehalose & Eye Care A Molecule Poised to Revolutionize Ocular Surface Care By Marguerite McDonald, MD, FACS cular surface disease and dry eye disease are prevalent and What is Trehalose? pervasive diseases impacting the eye health of patients. The Dry Eye Workshop II (DEWS II) and current research offer new Oinsights on the characteristics of pathophysiology of Dry Eye Disease (DED), as well as best practices for treatment and management. Therapeutic strategies that support the ocular surface, counteract hy- Trehalose—a bisacetal, non- perosmolarity and restore the tear fi lm can aid in rehabilitating the eye’s reducing homodisaccharide in structures. This knowledge offers an opportunity to introduce new ways to which two glucose units are linked together in a α-1,1-glycosidic stabilize the tear fi lm and improve patient comfort through rehydration, re- linkage (α-d-glucopyranosyl- duction of surface infl ammation, and protection against future dessication. α-d-glucopyranoside; mycose, An expanding pool of clinical data is supporting the benefi ts and sus- mushroom sugar)1—is found tained effi cacy of therapies that include bioprotectants such as trehalose abundantly in nature and in the biological world. The “extraordi- to protect cells against hyperosmolarity and promote exit of the vicious nary” properties of trehalose are cycle of DED physiopathology.1 responsible for this molecule’s As such, lubricant eye drops enhanced with trehalose can provide bioprotective role.1 1. Jain NK, Roy I. Effect of trehalose on protein patients with a new, successful way to rehabilitate the tear film in structure. Protein Sci. 2009 Jan;18(1):24-36. Ocular Surface Disease (OSD) and DED. OSD & DED Prevalence From a pathophysiological stand- significant quality-of-life impacts. A & Impact point, DED amplifi es hyperosmolarity number of studies have reported mea- The 2017 Gallup Study of Dry Eye in an unforgiving cycle either directly surable negative effects of DED on dai- (conducted by Multi-sponsor Surveys, or by inducing a cascade of inflam- ly-living tasks such as reading, carrying Inc.) revealed that 56% of adults re- matory events, contributing to a loss out professional tasks and driving. port experiencing dry eyes frequently of epithelial and goblet cells that de- (14%) or occasionally (42%).2 Projected creases surface wettability and pro- Insights on Addressing to the U.S. population, this translates motes early tear fi lm breakup.3 the Problem to a staggering 140 million dry eye In addition to the physical toll this The Tear Film & Ocular Surface sufferers.2 disease takes on patients, it also has Society (TFOS) published the Dry Eye Sponsored by 18 | REVIEW OF OPHTHALMOLOGY | MAY 2018 000_rp0518_theraMD_v4.indd 18 4/13/18 2:35 PM ADVERTORIAL Trehalose – Enhancing junctiva, which may have suffered the Clinical Support as an Excipient sequelae of dry eye. for Trehalose New research shows that recent Studies have shown that trehalose offers Excipient—an inactive substance attempts to counteract tear hyper- the following ocular surface benefi ts: that serves as the vehicle or medium osmolarity in DED have included • Protection of human corneal epithelial for a drug or other active substance. It bioprotectant features and small or- cells from desiccation-induced death confers a therapeutic enhancement on ganic molecules used in many cell in culture.7 One trehalose-containing the active component in the form of, for types throughout the natural world to solution was found to be “effective example, additional absorption, solubility restore cell volume and stabilize pro- and safe” for treatment of moderate to or strength. tein function.1 These molecules may severe dry eye syndrome. directly protect cells against hyperos- • Increased tear fi lm thickness after Essentially, an excipient serves to molarity and promote exit from the vi- instillation of one trehalose-containing enhance the effectiveness of an active cious circle of DED physiopathology.1 drop up to 240 minutes compared with drops without trehalose.8 ingredient. There is an expanding pool of clinical • Better patient satisfaction and a data on the efficacy of DED thera- therapeutic advancement in treat- pies that include trehalose, whose ment of moderate to severe DED when Workshop II report, which includes unique properties have shown ex- comparing an eyedrop containing a more comprehensive DED defini- ceptional osmotic and bioprotectant hyaluronic acid-trehalose with an HA- tion that keenly accounts for the piv- abilities enabling them to act as a wa- only eyedrop.9 otal role that tear fi lm hyperosmolarity ter replacement and prevent against • Increased tear production at day 14 of plays, often resulting in ocular surface desiccation stress.1,4,5 treatment in a dry eye mouse model.10 inflammation. As well, DEWS II, an • Decreased eye surface apoptosis at evidence-based report involving 150 How Trehalose Works day 14 of treatment in a dry eye mouse worldwide experts, further illuminates Trehalose maintains cell protein model.10 the pathophysiology of dry eye and integrity during drying and rehydra- • Improved appearance of ocular surface its central mechanism of evaporative tion, and it has been shown to protect epithelial disorders through suppression water loss leading to hyperosmolar against oxidative strain and stabilize of apoptosis and serum-like response tissue damage.3 protein function.6 upon topical application, as well as 10 When it comes to DED treatment, The mechanism by which this mem- maintained corneal health. longstanding research advocates the ber of the polyhydroxyl compound • Suppressed infl ammatory and proteo- use of lubricating eye drops as a pal- molecules works is by increasing com- lytic MMP-9 and HSP70 expression and keratinization, and restored ocular liative technique for symptom relief pactness and stability in organisms, surface integrity in mice with dry eye to rehabilitate some of the eye struc- thereby aiding in the overcoming of damaged by a desiccative model.11 tures, such as the cornea and con- stress conditions such as heat, cold Reawakening Dormant Desert Life Anastatica hierochuntica or white mustard fl ower, commonly called Rose of Jericho, is found in arid areas in the Middle East and the Sahara Desert.1 After the rainy season, the plant dries up, drops its leaves and curls its branches into a tight ball to hibernate. Once re-wetted in a subsequent rainy season, the ball uncurls and awakens from its dormant state, causing the capsular fruits to open and disperse seeds. The plant’s extraordinary ability to achieve this reawakening activity is attributed to the presence of trehalose, a disaccharide sugar involved in several mecha- nisms of cryptobiosis.2 1. Friedman J, Stein J. The Infl uence of Seed-Dispersal Mechanisms on the Dispersion of Anastatica Hierochuntica (Cruciferae) in the Negev Desert, Israel. Journal of Ecology 1980;68(1):43-50. 2. Wickens GE. Ecophysiology of Economic Plants in Arid and Semi-Arid Lands HYDRATED 1st ed. Berlin, Germany: Springer-Verlag Heidelberg; 1998. DEHYDRATED MAY 2018 | REVIEW OF OPHTHALMOLOGY | 19 000_rp0518_theraMD_v4.indd 19 4/13/18 2:29 PM Trehalose & Eye Care Trehalose Use Trehalose helps retain moisture in the tear fi lm when the in Dry Eye Disease patient is in a desiccating environment, thereby assisting in increas- Trehalose has been shown to: ing tear fi lm thickness. It decreases future irritation by protecting 1. Rehydrate Tear Film corneal epithelial cells from apoptosis after desiccation. It also sup- • Retain moisture when drying out • Help increase tear fi lm thickness8 ports homeostasis of the tear fi lm by restoring osmotic balance to 2. Protect Against Future Irritation the ocular surface.”— Marguerite McDonald, MD, FACS • Help improve corneal staining7 • Help protect corneal epithelial cells from apoptosis after desiccation3,5 3. Support Homeostasis of Tear Film lubricant eye drops enhanced with I think that trehalose will increase • Restore osmotic balance trehalose. the efficacy of artificial tears in the to ocular surface10 With dry eye, trehalose helps re- treatment of dry eye. This unique • Help maintain homeostasis tain moisture in the tear fi lm when the disaccharide offers the bioprotec- of corneal cells10 patient is in a desiccating environ- tant benefi ts that lead to comfort and ment, thereby assisting in increasing maintenance of a stable tear film, tear fi lm thickness. It decreases future which yields better and more stable irritation by protecting corneal epi- vision. and desiccation.6 As a result, trehalose thelial cells from apoptosis after des- has the unique ability to stabilize pro- iccation. It also supports homeostasis Dr. McDonald practices at Ophthal- teins and the lipid bilayer.6 of the tear fi lm by restoring osmotic mic Consultants of Long Island, a Dry Remarkably, trehalose can also act balance to the ocular surface. Eye Center of Excellence in Lynbrook, as a water substitute. Classified as a The increased bioprotectant fea- New York. kosmotrope or water-structure maker, tures and enhancement of tear fi lm this molecule is involved in various bio- thickness contribute to greater pa- 1. Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry 6 protective actions. tient comfort and less fl uctuating vi- eye disease: proceedings of the OCEAN group meeting. Ocul sion—the end goal of any ocular sur- Surf. 2013 Oct;11(4):246-58. Future of Treatment face therapy. 2. The 2017 Gallup Study of Dry Eye Sufferers (conducted by Multi-sponsor Surveys, Inc.). New trehalose-containing solutions Clinicians should absolutely consider 3. Nelson JD, Craig, JP, Esen A, et al. TFOS DEWS II Report. Ocul are becoming available to help eye using these drops as a fi rst-line treat- Surf 2017; 2017 July;15(3):269-650. care professionals offer patients an al- ment against OSD and DED. Artifi cial 4. Jones L, Downie LE, Korb D, et al.
Recommended publications
  • Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24).
    [Show full text]
  • Influence of Different Hydrocolloids on Dough Thermo-Mechanical Properties and in Vitro Starch Digestibility of Gluten-Free Steamed Bread Based on Potato Flour
    Accepted Manuscript Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour Xingli Liu, Taihua Mu, Hongnan Sun, Miao Zhang, Jingwang Chen, Marie Laure Fauconnier PII: S0308-8146(17)31191-3 DOI: http://dx.doi.org/10.1016/j.foodchem.2017.07.047 Reference: FOCH 21431 To appear in: Food Chemistry Received Date: 29 March 2017 Revised Date: 4 July 2017 Accepted Date: 10 July 2017 Please cite this article as: Liu, X., Mu, T., Sun, H., Zhang, M., Chen, J., Fauconnier, M.L., Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour, Food Chemistry (2017), doi: http://dx.doi.org/10.1016/j.foodchem.2017.07.047 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour Xingli Liu1,2, Taihua Mu1*, Hongnan Sun1, Miao Zhang1, Jingwang Chen1,2, Marie Laure Fauconnier2 1. Key Laboratory of Agro-Products Processing, Ministry of Agriculture; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan west road, Haidian, Beijing 100193, P.R.
    [Show full text]
  • Structural Features
    1 Structural features As defined by the International Union of Pure and Applied Chemistry gly- cans are structures of multiple monosaccharides linked through glycosidic bonds. The terms sugar and saccharide are synonyms, depending on your preference for Arabic (“sukkar”) or Greek (“sakkēaron”). Saccharide is the root for monosaccha- rides (a single carbohydrate unit), oligosaccharides (3 to 20 units) and polysac- charides (large polymers of more than 20 units). Carbohydrates follow the basic formula (CH2O)N>2. Glycolaldehyde (CH2O)2 would be the simplest member of the family if molecules of two C-atoms were not excluded from the biochemical repertoire. Glycolaldehyde has been found in space in cosmic dust surrounding star-forming regions of the Milky Way galaxy. Glycolaldehyde is a precursor of several organic molecules. For example, reaction of glycolaldehyde with propenal, another interstellar molecule, yields ribose, a carbohydrate that is also the backbone of nucleic acids. Figure 1 – The Rho Ophiuchi star-forming region is shown in infrared light as captured by NASA’s Wide-field Infrared Explorer. Glycolaldehyde was identified in the gas surrounding the star-forming region IRAS 16293-2422, which is is the red object in the centre of the marked square. This star-forming region is 26’000 light-years away from Earth. Glycolaldehyde can react with propenal to form ribose. Image source: www.eso.org/public/images/eso1234a/ Beginning the count at three carbon atoms, glyceraldehyde and dihydroxy- acetone share the common chemical formula (CH2O)3 and represent the smallest carbohydrates. As their names imply, glyceraldehyde has an aldehyde group (at C1) and dihydoxyacetone a carbonyl group (at C2).
    [Show full text]
  • Sugars Amount Per Serving Calories 300 Calories from Fat 45
    Serving Size 1 package (272g) Servings Per Container 1 Sugars Amount Per Serving Calories 300 Calories from Fat 45 % Daily Value* What They Are Total Fat 5g 8% Sugars are the smallest and simplest type of carbohydrate. They are easily Saturated Fat 1.5g 8% digested and absorbed by the body. Trans Fat 0g Cholesterol 30mg 10% There are two types of sugars, and most foods contain some of each kind. Sodium 430mg 18% Total Carbohydrate 55g 18% Single sugars (monosaccharides) Sugars that contain two molecules of Dietary Fiber 6g 24% are small enough to be absorbed sugar linked together (disaccharides) are Sugars 23g directly into the bloodstream. broken down in your body into single sugars. Protein 14g They include: They include: Vitamin A 80% Fructose Sucrose (table sugar ) = glucose + fructose Vitamin C 35% Calcium 6% Galactose Lactose (milk sugar) = glucose + galactose Iron 15% Glucose Maltose (malt sugar) = glucose + glucose * Percent Daily Values are based on a 2,000 calorie diet. Your Daily Values may be higher or lower depending on your calorie needs: Calories: 2,000 2,500 Total Fat Less than 65g 80g Where They Are Found Saturated Fat Less than 20g 25g Cholesterol Less than 300mg 300mg Sugars are found naturally in many nutritious foods and beverages and are also Sodium Less than 2,400mg 2,400mg Total Carbohydrate 300g 375g added to foods and beverages for taste, texture, and preservation. Dietary Fiber 25g 30g Naturally occurring sugars are found in a variety of foods, including: • Dairy products • Fruit (fresh, frozen, dried, and canned in 100% fruit juice) Sugars are a major source of daily calories for many people and can • 100% fruit and vegetable juice increase the risk of developing • Vegetables cavities.
    [Show full text]
  • Trehalose and Trehalose-Based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials
    Molecules 2008, 13, 1773-1816; DOI: 10.3390/molecules13081773 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Review Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials Naozumi Teramoto 1, *, Navzer D. Sachinvala 2, † and Mitsuhiro Shibata 1 1 Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail: [email protected] 2 Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail: [email protected] † Dedicated to Professor George Christensen, Department of Psychology, Winona State University, Winona, MN, USA. * Author to whom correspondence should be addressed; E-mail: [email protected]. Received: 13 July 2008 / Accepted: 11 August 2008 / Published: 21 August 2008 Abstract: Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1J1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-D-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives.
    [Show full text]
  • Metabolic Shift from Glycogen to Trehalose Promotes Lifespan and Healthspan in Caenorhabditis Elegans
    Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans Yonghak Seoa, Samuel Kingsleya, Griffin Walkera, Michelle A. Mondouxb, and Heidi A. Tissenbauma,c,1 aDepartment of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01605; bDepartment of Biology, College of the Holy Cross, Worcester, MA 01610; and cProgram in Molecular Medicine, UMMS, Worcester, MA 01605 Edited by Gary Ruvkun, Massachusetts General Hospital, Boston, MA, and approved February 13, 2018 (received for review August 10, 2017) As Western diets continue to include an ever-increasing amount of dition of trehalose to the standard E. coli diet promotes longevity sugar, there has been a rise in obesity and type 2 diabetes. To avoid (27) in contrast to the toxicity caused by the addition of glucose metabolic diseases, the body must maintain proper metabolism, even (5–8). Furthermore, mutants have been identified that are long on a high-sugar diet. In both humans and Caenorhabditis elegans, lived and store increased trehalose (27). Therefore, an association excess sugar (glucose) is stored as glycogen. Here, we find that ani- between longevity and trehalose has been established. Mammals do mals increased stored glycogen as they aged, whereas even young not store sugar as trehalose but do possess the enzyme trehalase to adult animals had increased stored glycogen on a high-sugar diet. breakdown ingested trehalose (28). Further, oral supplementation Decreasing the amount of glycogen storage by modulating the C. of trehalose has been shown to improve glucose tolerance in in- elegans glycogen synthase, gsy-1, a key enzyme in glycogen synthe- dividuals at high risk for developing type 2 diabetes (29) and can sis, can extend lifespan, prolong healthspan, and limit the detrimental improve recovery from traumatic brain injury in mice (30).
    [Show full text]
  • Caramelization Processes in Sugar Glasses and Sugar Polycrystals
    New Physics: Sae Mulli (The Korean Physical Society), DOI: 10.3938/NPSM.62.761 Volume 62, Number 7, 2012¸ 7Z4, pp. 761∼767 Caramelization Processes in Sugar Glasses and Sugar Polycrystals Jeong-Ah Seo · Hyun-Joung Kwon · Dong-Myeong Shin · Hyung Kook Kim · Yoon-Hwae Hwang∗ Department of Nanomaterials Engineering & BK21 Nano Fusion Technology Division, Pusan National University, Miryang 627-706 (Received 3 April 2012 : revised 3 June 2012 : accepted 2 July 2012) We studied the chemical dehydration processes due to the caramelization in sugar glasses and sugar polycrystals. The dehydration processes of three monosaccharide sugars (fructose, galactose, and glucose) and three disaccharide sugars (sucrose, maltose, and trehalose) were compared by using a thermogravimetic-differential thermal analyzer to measure the mass reduction. The amounts of mass reductions in sugar glasses were larger than those in sugar polycrystals. However, the amount of mass reduction in trehalose glasses was smaller than that in trehalose polycrystals. This unique dehydration property of trehalose glasses may be related to the high glass transition temperature, which might be related to a superior bioprotection ability of trehalose. PACS numbers: 87.14.Df, 81.70.Pg, 64.70.P Keywords: Dehydration, Caramelization, Sugar glass, Trehalose, Disaccharide I. INTRODUCTION higher than that of other disaccharides [6,7]. Therefore, the viscosity of trehalose is higher than that of other There are many strategies in nature for the long-term sugars at a given temperature. Several researchers have survival and storage of organisms, and a bio-protection pointed out that the high glass-transition temperature of effect is one of the most interesting among those long- trehalose may contribute to the preservation of biologi- term survival and storage mechanisms.
    [Show full text]
  • Molecular Mechanisms of Trehalose in Modulating Glucose Homeostasis in Diabetes
    Molecular Mechanisms of Trehalose in Modulating Glucose Homeostasis in Diabetes Running Title: Trehalose and Glucose Homeostasis Yaribeygi, Habib; Yaribeygi, Alijan; Sathyapalan, Thozhukat; Sahebkar, Amirhossein Abstract Diabetes mellitus is the most prevalent metabolic disorder contributing to significant morbidity and mortality in humans. Many preventative and therapeutic agents have been developed for normalizing glycemic profile in patients with diabetes. In addition to various pharmacologic strategies, many non-pharmacological agents have also been suggested to improve glycemic control in patients with diabetes. Trehalose is a naturally occurring disaccharide which is not synthesized in human but is widely used in food industries. Some studies have provided evidence indicating that it can potentially modulate glucose metabolism and help to stabilize glucose homeostasis in patients with diabetes. Studies have shown that trehalose can significantly modulate insulin sensitivity via at least 7 molecular pathways leading to better control of hyperglycemia. In the current study, we concluded about possible anti-hyperglycemic effects of trehalose suggesting trehalose as a potentially potent non- pharmacological agent for the management of diabetes. Keywords: Diabetes Mellitus, Trehalose, Oxidative Stress, Glucose, Homeostasis. This accepted manuscript of a work published in Diabetes and Metabolic Syndrome: Clinical research and reviews is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License.
    [Show full text]
  • Microplate Sugar-Fermentation Assay Distinguishes Streptococcus Equi from Other Streptococci of Lancefield’S Group C
    —NOTE— Microplate Sugar-Fermentation Assay Distinguishes Streptococcus equi from Other Streptococci of Lancefield’s Group C Yasushi KUWAMOTO, Toru ANZAI* and Ryuichi WADA Epizootic Research Station, Equine Research Institute, Japan Racing Association, 1400–4 Shiba Kokubunji- machi, Shimotuga-gun, Tochigi 329-0412, Japan Lancefield’s group C streptococci often contaminate test samples taken from open lesions of J. Equine Sci. the equine disease strangles, and it is difficult to distinguish the causal agent, Streptococcus Vol. 12, No. 2 equi (S. equi), from these other streptococci on the isolation plate. Here we have developed pp. 47–49, 2001 a microplate sugar-fermentation assay that distinguishes S. equi from other streptococci of Lancefield’s group C. Within 18 hr of incubation, the assay distinguished between 19 strains of S. equi, 171 strains of Streptococcus zooepidemicus and 19 strains of Streptococcus equisimilis, which were isolated from clinical horse samples and identified by API 20 STREP and Western immunoblotting. Moreover, this microplate assay can simultaneously test up to 24 samples, and is therefore valuable for the diagnosis of strangles. Key words: Strangles, Streptococcus equi, sugar-fermentation assay Strangles is a highly contagious equine disease that trehalose. Lancefield’s group C streptococci that fail to causes pyrexia, nasal discharge and secretion of pus ferment any of these sugars are usually identified as S. from the lymph nodes [4]. Recently, the number of equi, those that ferment lactose and sorbitol are outbreaks of strangles increased in Hidaka district, identified as S. zooepidemicus, and those ferment which is the main racehorse-breeding area of Japan, trehalose are identified as S.
    [Show full text]
  • Effect of Disaccharides on Survival During Storage of Freeze Dried Probiotics Song Miao, Susan Mills, Catherine Stanton, Gerald F
    Effect of disaccharides on survival during storage of freeze dried probiotics Song Miao, Susan Mills, Catherine Stanton, Gerald F. Fitzgerald, Yrjo Roos, R. Paul Ross To cite this version: Song Miao, Susan Mills, Catherine Stanton, Gerald F. Fitzgerald, Yrjo Roos, et al.. Effect of dis- accharides on survival during storage of freeze dried probiotics. Dairy Science & Technology, EDP sciences/Springer, 2008, 88 (1), pp.19-30. hal-00895773 HAL Id: hal-00895773 https://hal.archives-ouvertes.fr/hal-00895773 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. Technol. 88 (2008) 19–30 Available online at: c INRA, EDP Sciences, 2008 www.dairy-journal.org DOI: 10.1051/dst:2007003 Original article Effect of disaccharides on survival during storage of freeze dried probiotics Song Miao1,SusanMills1, Catherine Stanton1,2*, Gerald F. Fitzgerald2,3, Yrjo Roos4,R.PaulRoss1,2 1 Teagasc Moorepark Food Research Centre, Fermoy, County Cork, Ireland 2 Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland 3 Department of Microbiology, University College Cork, County Cork, Ireland 4 Department of Food and Nutritional Sciences, University College Cork, County Cork, Ireland Abstract – The aim of this study was to investigate the effects of protective media and different relative vapour pressures (RVPs) on the survival of probiotics during freeze drying and subse- quent storage, to determine the optimal conditions for the production of freeze dried probiotics at industrial scale, ensuring a high survival rate.
    [Show full text]
  • Trehalose-6-Phosphate, a New Regulator of Yeast Glycolysis That Inhibits Hexokinases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 329, number 1,2, 51-54 FEBS 12858 August 1993 0 1993 Federation of European Ei~h~ical Societies ~145793/93/$6.~ Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases Miguel A. Blizquez, Rosario Lagunas, Carlos Gancedo and Juana M. Gancedo Institute de Investigaciones Biom&dicas de1 CSIC, Madrid, Spain Received 2 July 1993 Tre~lo~6-phosphate (P) ~mpetitively inhibited the hexokinases from ~~cc~omyee~ cerevisiae. The strongest inhibition was observed upon hexokinase II, with a K, of 40 FM, while in the case of hexoklnase I the K, was 200 NM. Glucokinase was not inhibited by trehalose-6-P up to 5 mM. This inhibition appears to have physiological significance, since the intracellular levels of trehalose-6-P were about 0.2 mM. Hexokinases from other organisms were also inhibited, while glucokinases were unaffected. The hexokinase from the yeast, Yarrowia iipolytica, was particularly sensitive to the inhibition by trehalose-6-P: when assayed with 2 mM fructose an apparent K, of 5 PM was calculated. Two 5. cerevisiae mutants with abnormal levels of trehalose-6-P exhibited defects in glucose metabolism. It is concluded that trehalose-6-P plays an important role in the regulation of the first steps of yeast glycolysis, mainly through the inhibition of hexokinase II. Trehalose-6-phosphate; Hexokinase; Glycolysis; Yeast 1. PRODUCTION turned out to be allelic [9], and strains bearing them become depleted of ATP upon addition of glucose and Control of the glycolytic flux in Succhurowryces cere- accumulate fructose-l ,6-bisphosphate up to 20 mM visicze has been considered to occur mainly at the level [6,7,10], suggesting that the rate of the first glycolytic of phosphofructokinase and pyruvate kinase.
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]