Island Biology 2019, Third International Conference on Island Ecology, Evolution and Conservation Olivier Flores, Claudine Ah-Peng, Nicholas Wilding

Total Page:16

File Type:pdf, Size:1020Kb

Island Biology 2019, Third International Conference on Island Ecology, Evolution and Conservation Olivier Flores, Claudine Ah-Peng, Nicholas Wilding Island Biology 2019, Third International Conference on Island Ecology, Evolution and Conservation Olivier Flores, Claudine Ah-Peng, Nicholas Wilding To cite this version: Olivier Flores, Claudine Ah-Peng, Nicholas Wilding. Island Biology 2019, Third International Con- ference on Island Ecology, Evolution and Conservation: Book of Abstracts. Island Biology 2019, Jul 2019, Saint Denis, France. 2020. hal-02633975v3 HAL Id: hal-02633975 https://hal.univ-reunion.fr/hal-02633975v3 Submitted on 17 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BOOK OF ABSTRACTS Université de la Réunion Campus du Moufia 2 Island Biology Third International Conference on Island Ecology, Evolution and Conservation 8-13 July 2019 University of La R´eunion Saint Denis, France Book of Abstracts Editors: Olivier Flores Claudine Ah-Peng Nicholas Wilding Description of contents This document contains the collection of abstracts describing the research works presented at the third international conference on island ecology, evolution and conservation, Island Biology 2019, held in Saint Denis (La R´eunion,8-13 July 2019). In the following order, the different parts of this document concern Plenary sessions, Symposia, Regular sessions, and Poster presentations organized in thematic sections. The last part of the document consists of an author index with the names of all authors and links to the corresponding abstracts. Each abstract is referenced by a unique number 6-digits number indicated at the bottom of each page on the right. This reference number points to the online version of the abstract on the conference website using URL https://sciencesconf.org:ib2019/xxxxxx, where xxxxxx is the reference of the abstract. 4 Table of contents Plenary Sessions 19 Introduction to natural history of the Mascarene islands, Dominique Strasberg . 20 The history, current status, and future of the protected areas of Madagascar, Steven M. Goodman............................................ 21 The island biogeography of alien species, Tim Blackburn.................. 22 What can we learn about invasion ecology from ant invasions of islands ?, Lori Lach . 23 Orchids, moths, and birds on Madagascar, Mauritius, and Reunion: island systems with well-constrained timeframes for species interactions and trait change, Susanne Renner . 24 Ecology of rain forests on a large tropical island: lessons from New Guinea, Vojtech Novotny............................................. 25 Symposia 26 A tale of two islands: Reunion and Kauai, similar conservation challenges and solutions (Symp.) 27 Integrating predator control efforts to achieve landscape level protections for native birds & their habitats on Kauai Island, Sheri Mann........................ 28 Improving effectiveness of alien plant clearing on Reunion Island through partnership, Elise Amy [et al.]........................................... 29 Race against time: research and conservation efforts to save Kauai's endangered song birds, Lisa Crampton...................................... 30 LIFE BIODIV'OM { An ambitious program (2018 { 2023) for the conservation of a critically endangered forest bird, the Reunion Cuckooshrike, D Fouillot [et al.] . 31 Human caused mortality crisis for the endangered seabirds of Kaua'i: quantifying the impact of power line collisions and light attraction, Marc Travers [et al.]......... 32 Unexpected advances for endangered endemic petrels conservation on Reunion Island, Patrick Pinet [et al.]........................................... 33 Dispersal ecology meets island evolution (Symp.) 33 You move, I change: model-based approaches reveal striking differences between the evolution of plants and animals in the Canary Islands, Isabel Sanmartin [et al.] . 35 Dispersal, niche and topoclimatic variation: speciation consequences for island inverte- brates, Brent C. Emerson [et al.] ............................... 36 Defining geographical island isolation for terrestrial mammalian dispersal, Zachary Carter [et al.]................................................ 37 Tridactyle (Orchidaceae): a story of speciation and colonisation in S~aoTom´eand Pr´ıncipe., Tania D'Haij`ere[et al.] ........................................ 38 1 Evolutionary trends in island plants: is everything lost on islands? (Symp.) 38 The loss of size diversity in island plants, Kevin Burns................... 40 Loss of defenses on island plants: from theory to evidence, Carlos Garcia-Verdugo [et al.] 41 Are genetic diversity patterns cogent with a generalized loss of dispersal in island plants? Insights from Macaronesia, Juli Caujap´e-Castells[et al.].................. 42 Loss of pollination syndromes after island colonization, Thierry Pailler.......... 43 What do wind-dispersed species tell us about loss of dispersal potential on islands?, Mario Mairal.............................................. 44 Functional island biogeography - concepts and prospects (Symp.) 44 Functional island biogeography: the next frontier in island biology, Holger Kreft . 46 A global review of insular woodiness and its potential functional significance, Alexander Zizka [et al.]........................................... 47 Drivers of woody alien invasions across spatial scales in the Hawaiian Islands, Dylan Craven [et al.].......................................... 48 Predicting the functional trait composition of insular communities: an application to tropical reef fishes, Claire Jacquet [et al.] .......................... 49 Extinction-Driven Changes in Insular Frugivore Communities: Worldwide and in Mau- ritius, Julia Heinen [et al.]................................... 50 Future steps to fight against invasive species on islands (Symp.) 50 The new IUCN Guidelines for invasive species planning and management on islands, Alan Tye [et al.]............................................ 52 Island Biodiversity in the Anthropocene, James Russell [et al.] .............. 53 Predicting and preventing the arrival of invasive non-native species on islands glob- ally, Helen Roy [et al.]..................................... 54 The "French Connection": lessons learned from the management of invasive plants in French Overseas Tropical Island Territories, Jean-Yves Meyer [et al.]........... 55 Invasive species management in the French Southern and Antarctic Lands (TAAF) : past efforts and future challenges, David Ringler [et al.]..................... 56 Past, present and future of invasive alien species on the Macaronesian islands, Marta Lopez-Darias [et al.] ...................................... 57 Island Biogeography, macroecology, evolution and conservation of marine organ- isms (Symp.) 57 Marine island biogeography: an overview of patterns and mechanisms involved in en- demism and community assembly, Sergio Floeter...................... 59 Evolution and biogeography of marine organisms on seamounts and oceanic islands, Hud- son Pinheiro [et al.]....................................... 60 Reef fish endemism and functional diversity in oceanic islands, Juan Pablo Quimbayo . 61 The rise of politics-based marine conservation in oceanic islands, Luiz Rocha . 62 Marine lakes: A view of what is possible in marine islands, Michael Dawson . 63 Fish as indicators of biodiversity change in coral reefs of the Indian Ocean, Melita Samoilys [et al.]......................................... 64 2 Temporal patterns of reef fish communities in South Atlantic oceanic islands, Carlos Eduardo Ferreira........................................ 65 Island reclogy (Symp.) 65 Island life before Man, Alexandra Van Der Geer [et al.] .................. 67 Pleistocene-Holocene environmental changes on Madagascar and associated extinctions, Steven Goodman............................................ 68 Quaternary extinction of large rainforest herbivores on Indonesia's largest island, Suma- tra, Julien Louys [et al.].................................... 69 Early colonisation of the Philippine islands, Thomas Ingicco [et al.]............ 70 Island reptiles: the rich diversity of continental and oceanic islands (Symp.) 70 Biogeography of Gulf of Guinea Oceanic Island Reptiles, Luis Cer´ıaco .......... 72 Biodiversity growth on the volcanic ocean islands and the roles of in situ cladogenesis and immigration: case with the reptiles, Jason Ali [et al.] ................. 73 Ecological and evolutionary determinism in Greater Antillean reptiles, Graham Reynolds [et al.]................................................ 74 The evolution of an island phenotype: results from an experimental introduction, An- thony Herrel [et al.] ...................................... 75 Lizard discoveries and rediscoveries in the New Caledonian region, Aaron Bauer [et al.] . 76 Island rewilding with giant tortoises: state of the art and future directions (Symp.) 76 Wild and rewilded: Giant Aldabra tortoises in the Western Indian Ocean, Dennis M. Hansen ............................................. 78 Pleistocene Rewilding of the Bahama Islands, David Campbell .............. 79 The world's largest rewilded tortoise herd and its island ecosystem:
Recommended publications
  • The Island Rule Explains Consistent Patterns of Body Size 2 Evolution Across Terrestrial Vertebrates 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The island rule explains consistent patterns of body size 2 evolution across terrestrial vertebrates 3 4 Ana Benítez-López1,2*, Luca Santini1,3, Juan Gallego-Zamorano1, Borja Milá4, Patrick 5 Walkden5, Mark A.J. Huijbregts1,†, Joseph A. Tobias5,† 6 7 1Department of Environmental Science, Institute for Wetland and Water Research, Radboud 8 University, P.O. Box 9010, NL-6500 GL, Nijmegen, the Netherlands. 9 2Integrative Ecology Group, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain 10 3National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Via 11 Salaria km 29.300, 00015, Monterotondo (Rome), Italy 12 4Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 13 Madrid 28006, Spain 14 5Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, 15 Berkshire SL5 7PY, United Kingdom 16 *Correspondence to: [email protected]; [email protected] 17 †These two authors contributed equally 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Lemur News 7 (2002).Pdf
    Lemur News Vol. 7, 2002 Page 1 Conservation International’s President EDITORIAL Awarded Brazil’s Highest Honor In recognition of his years of conservation work in Brazil, CI President Russell Mittermeier was awarded the National Are you in favor of conservation? Do you know how conser- Order of the Southern Cross by the Brazilian government. vation is viewed by the academic world? I raise these ques- Dr. Mittermeier received the award on August 29, 2001 at tions because they are central to current issues facing pri- the Brazilian Ambassador's residence in Washington, DC. matology in general and prosimians specifically. The National Order of the Southern Cross was created in The Duke University Primate Center is in danger of being 1922 to recognize the merits of individuals who have helped closed because it is associated with conservation. An inter- to strengthen Brazil's relations with the international com- nal university review in 2001 stated that the Center was too munity. The award is the highest given to a foreign national focused on conservation and not enough on research. The re- for service in Brazil. viewers were all researchers from the "hard" sciences, but For the past three decades, Mittermeier has been a leader in they perceived conservation to be a negative. The Duke ad- promoting biodiversity conservation in Brazil and has con- ministration had similar views and wanted more emphasis ducted numerous studies on primates and other fauna in the on research and less on conservation. The new Director has country. During his time with the World Wildlife Fund three years to make that happen.
    [Show full text]
  • Promecothecini Chapuis 1875 Promecothecites Chapuis 1875:300
    Tribe Promecothecini Chapuis 1875 Promecothecites Chapuis 1875:300. Handlirsch 1925:666 (classification); Gressitt 1950:81 (China species). Promecothecini Chapuis. Würmli 1975a:45 (genera); Bouchard et al. 2011:78, 518 (nomenclature); Liao et al. 2015:162 (host plants). Promecothecini Weise 1911a:78. Weise 1911b:81 (redescription); Zacher 1913:103 (key); Handlirsch 1925:666 (classification); Uhmann 1931i:848 (museum list), 1940g:121 (claws), 1951a:31 (museum list), 1958e:222 (catalog), 1959d:8 (scutellum), 1964a:458 (catalog), 1964(1965):241 (faunal list), 1966d:275 (note); Bryant 1936:256 (faunal list); Liu 1936:249 (China species); Wu 1937:912 (faunal list); Gressitt 1939c:133 (distribution), 1957b:279 (South Pacific species), 1970:71 (Fiji species); Gressitt & Kimoto 1963a:905 (China species); Seeno & Wilcox 1982:164 (catalog); Jolivet 1988b:13 (host plants), 1989b:310 (host plants); Jolivet & Hawkeswood 1995:154 (host plants); Cox 1996a:172 (pupae); Mohamedsaid 2004:169 (Malaysian species); Staines 2004a:317 (host plants); Chaboo 2007:183 (phylogeny). Type genus:Promecotheca Blanchard. Promecispa Weise 1909 Promecispa Weise 1909:112. Type species:Promecispa voeltzkowi Weise 1909 by monotypy. Weise 1910d:442, 501 (faunal list), 1911a:53 (catalog), 1911b:80 (redescription); Uhmann 1931i:848 (museum list), 1958e:223 (catalog); Würmli 1975a:46 (genera); Seeno & Wilcox 1982:164 (catalog). Promecispa voeltzkowi Weise 1909 Promecispa voeltzkowi Weise 1909:112 (type:Madagascar, Kinkuni, ZMHB). Weise 1910d:442, 501 (faunal list), 1911a:53 (catalog), 1911b:80 (catalog); Uhmann 1931i:848 (type), 1958e:223 (catalog). Distribution. Madagascar. Food plant. Unknown. Promecotheca Blanchard 1853 Promecotheca Dejean 1837:387 Nomen Nudum. Guérin-Méneville 1840b:334 (note). Promecotheca Blanchard 1853:312. Type species:Hispa cyanipes Erichson 1834, designated by Baly 1858.
    [Show full text]
  • Plethodontohyla Laevis (Boettger, 1913) and Transfer of Rhombophryne Alluaudi (Mocquard, 1901) to the Genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae)
    Zoosyst. Evol. 94(1) 2018, 109–135 | DOI 10.3897/zse.94.14698 museum für naturkunde Resurrection and re-description of Plethodontohyla laevis (Boettger, 1913) and transfer of Rhombophryne alluaudi (Mocquard, 1901) to the genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae) Adriana Bellati1,*, Mark D. Scherz2,*, Steven Megson3, Sam Hyde Roberts4, Franco Andreone5, Gonçalo M. Rosa6,7,8, Jean Noël9, Jasmin E. Randrianirina10, Mauro Fasola1, Frank Glaw2, Angelica Crottini11 1 Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy 2 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 3 School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK 4 SEED Madagascar, Studio 7, 1A Beethoven Street, London, W10 4LG, UK 5 Museo Regionale di Scienze Naturali, Sezione di Zoologia, Via G. Giolitti, 36, I-10123, Torino, Italy 6 Department of Biology, University of Nevada, Reno, Reno NV 89557, USA 7 Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK 8 Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal 9 Madagascar Fauna and Flora Group, BP 442, Morafeno, Toamasina 501, Madagascar 10 Parc Botanique et Zoologique de Tsimbazaza, BP 4096, Antananarivo 101, Madagascar 11 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Nº 7, 4485-661 Vairão, Portugal http://zoobank.org/AFA6C1FE-1627-408B-9684-F6240716C62B Corresponding author: Angelica Crottini ([email protected]) Abstract Received 26 June 2017 The systematics of the cophyline microhylid frog genera Plethodontohyla and Rhom- Accepted 19 January 2018 bophryne have long been intertwined, and their relationships have only recently started Published 2 February 2018 to become clear.
    [Show full text]
  • Strengthening Protection of Marojejy National Park
    SPECIAL POINTS DECEMBER 2016 OF INTEREST: Vol. 5, No. 2 ñ Workshop for Forest GuiDes ñ Brief but Meaningful Conservaton news from the Sambava-Andapa-Vohemar-Antalaha region of NE Madagascar ñ WorlD Lemur Festival Strengthening Protecton of Marojejy Natonal Park INSIDE THIS by Charlie Welch ISSUE: Earlier this year DLC- Strengthening Protec- 1 tion of Marojejy Na- SAVA was fortunate to tional Park receive a grant from Workshop for Forest 3 Save Our Species (SOS) Guides to increase the Brief but Meaningful 4 protecton of Marojejy Natonal Park, in World Lemur Festival 8 collaboraton with “Climate Change and 9 Madagascar Natonal Lemurs” Workshop Parks (MNP). The grant Environmental Educa- 12 supports clearly tion Teacher Training establishing and marking DLC-SAVA “Lamba” 13 the boundary with Now Available! metallic signs to prevent First CURSA Gradua- 14 both intentonal and unintentonal intrusion into the park. Although DLC-SAVA had already tion includes Sylvio sponsored delineaton of certain priority sectons of the park boundary, extensive areas in Exploring Human and 15 remote parts of Marojejy remained unmarked. There was no way for local people to know Environmental Health exactly where the boundary was supposed to be. Agricultural land ofen extends right up to in the SAVA Region the boundary around much of the park, and if Duke Engineers in 18 the limit is not clear, burning and cultvaton SAVA can actually extend into the park. A clear Closing Comments 20 boundary also discourages other illegal actvites in the park, such as wood collecton and huntng. Teams of local people, organized by MNP, installed the signs, which were made in Andapa.
    [Show full text]
  • Rewilding Watersheds: Using Nature's Algorithms to Fix Our Broken Rivers
    Marine and Freshwater Research © CSIRO 2021 https://doi.org/10.1071/MF20335_AC Supplementary material Rewilding watersheds: using nature’s algorithms to fix our broken rivers Natalie K. RideoutA,G,1, Bernhard WegscheiderB,1, Matilda KattilakoskiA, Katie M. McGeeC,D, Wendy A. MonkE, and Donald J. BairdF ACanadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. BCanadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 2 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. CEnvironment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, ON, L7R 4A6, Canada. DCentre for Biodiversity Genomics and Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada. EEnvironment and Climate Change Canada @ Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 2 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. FEnvironment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. GCorresponding author. Email: [email protected] 1These authors contributed equally to the work. Page 1 of 49 Table S1. References linking ecosystem functions with rewilding goals, providing supporting evidence for Fig. 1 Restore natural flow Mitigate climate Restore riparian Re-introduce Improve water quality Reduce habitat and sediment regime warming vegetation extirpated species fragmentation 1 Metabolism Aristi et al. 2014 Song et al. 2008 Wassenaar et al. 2010 Huang et al. 2018 Jankowski and Schindler 2019 2 Decomposition Delong 2010 Perry et al. 2011 Delong 2010 Wenisch et al.
    [Show full text]
  • Strelitzia Nicolai (Strelitziaceae): a New Species, Genus and Family Weed Record for New South Wales
    Volume 20: 1–3 ELOPEA Publication date: 30 January 2017 T dx.doi.org/10.7751/telopea11022 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Strelitzia nicolai (Strelitziaceae): a new species, genus and family weed record for New South Wales Marco F Duretto1,4, Seanna McCune1, Reece Luxton2 and Dennis Milne3 1National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia. 2Clarence Valley Council, Locked Bag 23, Grafton, NSW 2460, Australia. 3Yuraygir Landcare, Minnie Water, NSW 2462, Australia. 4Author for correspondence: [email protected] Abstract Strelitzia nicolai Regel & Körn. (Strelitziaceae), a native of South Africa, is newly recorded as a sparingly naturalised weed for New South Wales and represents new family, generic and species records for the state. Descriptions, notes and identification key are provided for the family, genus and species. Introduction Strelitzia nicolai Regel & Körn. (Giant White Bird of Paradise or Natal Wild Banana; Strelitziaceae), a native of South Africa, is a common horticultural subject in eastern Australia. Recently a small colony of plants was discovered at Minnie Water (c. 60 km NNE of Coffs Harbour, North Coast, New South Wales). The colony is of note as some plants were 8 m tall (suggesting they had been there for some time) and that they were setting viable seed. Seedlings were found within this population and Milne and Luxton have observed that the species is being found in increasing numbers on council land and in National Parks of the area.
    [Show full text]
  • Renewable Energy in Small Islands
    Renewable Energy on Small Islands Second edition august 2000 Sponsored by: Renewable Energy on Small Islands Second Edition Author: Thomas Lynge Jensen, Forum for Energy and Development (FED) Layout: GrafiCO/Ole Jensen, +45 35 36 29 43 Cover photos: Upper left: A 55 kW wind turbine of the Danish island of Aeroe. Photo provided by Aeroe Energy and Environmental Office. Middle left: Solar water heaters on the Danish island of Aeroe. Photo provided by Aeroe Energy and Environmental Office. Upper right: Photovoltaic installation on Marie Galante Island, Guadeloupe, French West Indies. Photo provided by ADEME Guadeloupe. Middle right: Waiah hydropower plant on Hawaii-island. Photo provided by Energy, Resource & Technology Division, State of Hawaii, USA Lower right: Four 60 kW VERGNET wind turbines on Marie Galante Island, Guadeloupe, French West Indies. Photo provided by ADEME Guadeloupe. Printing: Vesterkopi Printing cover; Green Graphic No. printed: 200 ISBN: 87-90502-03-5 Copyright (c) 2000 by Forum for Energy and Development (FED) Feel free to use the information in the report, but please state the source. Renewable Energy on Small Islands – Second Edition August 2000 Table of Contents Table of Contents Foreword and Acknowledgements by the Author i Introduction iii Executive Summary v 1. The North Atlantic Ocean Azores (Portugal) 1 Canary Island (Spain) 5 Cape Verde 9 Faeroe Islands (Denmark) 11 Madeira (Portugal) 13 Pellworm (Germany) 17 St. Pierre and Miquelon (France) 19 2. The South Atlantic Ocean Ascension Island (UK) 21 St. Helena Island (UK) 23 3. The Baltic Sea Aeroe (Denmark) 25 Gotland (Sweden) 31 Samsoe (Denmark) 35 4.
    [Show full text]
  • Rethinking Easter Island's Ecological Catastrophe
    ARTICLE IN PRESS + MODEL Journal of Archaeological Science xx (2006) 1e18 http://www.elsevier.com/locate/jas Rethinking Easter Island’s ecological catastrophe Terry L. Hunt Department of Anthropology, University of Hawai’i-Manoa, 2424 Maile Way Honolulu, HI 96822, USA Received 25 June 2006; received in revised form 1 October 2006; accepted 2 October 2006 Abstract Rapa Nui (Easter Island) has become a paragon for prehistoric human induced ecological catastrophe and cultural collapse. A popular nar- rative recounts an obsession for monumental statuary that led to the island’s ecological devastation and the collapse of the ancient civilization. Scholars offer this story as a parable of today’s global environmental problems. In this paper, I review new and emerging Rapa Nui evidence, compare ecological and recently acquired palaeo-environmental data from the Hawaiian and other Pacific Islands, and offer some perspectives for the island’s prehistoric ecological transformation and its consequences. The evidence points to a complex historical ecology for the island; one best explained by a synergy of impacts, particularly the devastating effects of introduced rats (Rattus exulans). This perspective questions the simplistic notion of reckless over-exploitation by prehistoric Polynesians and points to the need for additional research. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Easter Island; Rapa Nui; Deforestation; Ecocide; Collapse; Rats; Rattus exulans; Invasive species ‘‘It ain’t what you don’t know that gets you into trouble. It’s archaeological records also reveals a more complex historical what you know for sure that just ain’t so.’’ Mark Twain ecology for the island; one best explained by a synergy of impacts, rather than simply the reckless over-exploitation by Easter Island (Rapa Nui) has become the paragon for pre- prehistoric Polynesians.
    [Show full text]
  • Assessing Transportation Patterns in the Azores Archipelago
    infrastructures Article Assessing Transportation Patterns in the Azores Archipelago Rui Alexandre Castanho 1,2,3,4,5,* , José Manuel Naranjo Gómez 3,4,6 , Ana Vulevic 3,7, Arian Behradfar 8 and Gualter Couto 1 1 School of Business and Economics and CEEAplA, University of Azores, 9500 Ponta Delgada, Portugal; [email protected] 2 Faculty of Applied Sciences, WSB University, 41-300 Dabrowa Górnicza, Poland 3 VALORIZA-Research Centre for Endogenous Resource Valorization, 7300 Portalegre, Portugal; [email protected] (J.M.N.G.); [email protected] (A.V.) 4 CITUR-Madeira-Centre for Tourism Research, Development and Innovation, 9000-082 Madeira, Portugal 5 CNPQ Research Group Aquageo Ambiente Legal, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil 6 Agricultural School, University of Extremadura, 06007 Badajoz, Spain 7 Department of Urban Planning and Architecture, Institute of Transportation—CIP, 11000 Belgrade, Serbia 8 Department of Geomatics and Spatial Information Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +351-912-494-673 Abstract: It is well-known that the ultra-peripheral territories as Islands present several limitations such as the lack of resources, restricted land, mass tourism, and barriers to movement, and connec- tivity between urban centers. These obstacles make ultra-peripheral regions suitable case studies considering their territorial governance and consequently, sustainable development and growth. Thus, transportation and infrastructure sustainability in these regions are not an exception. Con- sidering all the obstacles present in these regions, the accessibility and connectivity patterns that the local population has in these territories should be assessed and monitored.
    [Show full text]
  • 60-Day Notice
    XAVIER BECERRA State ofCalifornia Attorney General DEPARTMENT OF JUSTICE 1300 I STREET, SUITE 125 P.O. BOX 944255 SACRAMENTO, CA 94244-2550 Telephone: (916) 210-7827 Facsimile: (916) 322-5609 E-Mail: [email protected] February 20, 2020 Via Certified Mail (Priority), Return Receipt Requested David Bernhardt Secretary ofthe Interior Department of the Interior 1849 C St., NW Washington, D.C. 20240 Wilbur Ross Secretary of Commerce Department of Commerce 1401 Constitution Ave., NW Washington, D.C. 20230 Brenda Burman Commissioner Bureau of Reclamation 1849 C St., NW Washington, D. C. 20240 RE: Potential Reclamation Action Following Final Enviromnental Impact Statement Regarding Reinitiation of Consultation on the Coordinated Long-Tenn Operation ofthe Central Valley Project and State Water Project Dear Secretary Bernhardt, Secretary Ross, and Commissioner Burman: This letter provides written notice that the California Natural Resources Agency, the California Environmental Protection Agency, and the California Attorney General intend to initiate litigation against the Bureau of Reclamation (Reclamation) for violating the Endangered Species Act in its proposed operation of the Central Valley Project. See 16 U.S.C. § l 540(g)(l )(A), (2)(A). This decision is not made lightly. We appreciate the fruitful discussions concerning our many shared interests in the Bay-Delta in which we have been engaged and which we continue to hope will yield a final agreement concerning this complex matter. Rest assured, the State of California remains committed to this productive process. Nevertheless, on February 19, 2020, Reclamation issued a Record of Decision adopting the fatally flawed biological opinions issued by the U.S.
    [Show full text]
  • Magma Flow Directions in Azores Basaltic Dykes from AMS Data: Preliminary Results from Corvo Island
    Magma flow directions in Azores basaltic dykes from AMS data: preliminary results from Corvo island Direcciones de flujo ígneo en diques basálticos de Azores a partir de datos de ASM: resultados preliminares en la isla de Corvo Ó. Pueyo Anchuela (1), A. Gil (1), M. Lago (1), Z. França (2) y C. Galé (1) (1) Departamento de Ciencias de la Tierra. Universidad de Zaragoza. C/Pedro Cerbuna, nº12. CP. 50.009 Zaragoza. [email protected] (2) Departamento de Geociencias, Universidades dos Açores, R. Mare de Deus, 9501-801. Ponta Delgada, Portugal. RESUMEN Se presenta el estudio preliminar de flujo ígneo en diques basálticos de la isla de Corvo, (Azores), usando la técnica de la Anisotropía de la Susceptibilidad Magnética (ASM). Las muestras proceden de un total de 5 diques con una orientación variable N-S a NE-SO. Uno de los diques se localiza en la zona central de la caldera volcánica y el resto en la sector meridional de la isla. Todos los diques muestran una fábrica magnética normal determinada por la orientación preferente de cristales de magnetita y caracterizada por una foliación magnética paralela a las paredes. Para el dique localizado en la caldera volcánica, la lineación magnética, en posición vertical, contrasta con la lineación horizontal obtenida en el resto de las estaciones. Estos resultados son compatibles con un modelo de emplazamiento caracterizado por un flujo vertical del magma en la zona central del complejo volcánico que gradualmente se horizontaliza en las zonas distales del complejo. Key words: AMS technique, basaltic dykes, magma flow direction, Corvo Island, Azores.
    [Show full text]