Rewilding Watersheds: Using Nature's Algorithms to Fix Our Broken Rivers

Total Page:16

File Type:pdf, Size:1020Kb

Rewilding Watersheds: Using Nature's Algorithms to Fix Our Broken Rivers Marine and Freshwater Research © CSIRO 2021 https://doi.org/10.1071/MF20335_AC Supplementary material Rewilding watersheds: using nature’s algorithms to fix our broken rivers Natalie K. RideoutA,G,1, Bernhard WegscheiderB,1, Matilda KattilakoskiA, Katie M. McGeeC,D, Wendy A. MonkE, and Donald J. BairdF ACanadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. BCanadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 2 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. CEnvironment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, ON, L7R 4A6, Canada. DCentre for Biodiversity Genomics and Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada. EEnvironment and Climate Change Canada @ Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 2 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. FEnvironment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada. GCorresponding author. Email: [email protected] 1These authors contributed equally to the work. Page 1 of 49 Table S1. References linking ecosystem functions with rewilding goals, providing supporting evidence for Fig. 1 Restore natural flow Mitigate climate Restore riparian Re-introduce Improve water quality Reduce habitat and sediment regime warming vegetation extirpated species fragmentation 1 Metabolism Aristi et al. 2014 Song et al. 2008 Wassenaar et al. 2010 Huang et al. 2018 Jankowski and Schindler 2019 2 Decomposition Delong 2010 Perry et al. 2011 Delong 2010 Wenisch et al. 2017 Ferreira et al. 2006 Langhans and Langhans and Borders et al. 2006 Kittle et al. 1995 Tockner 2006 Tockner 2006 Duarte et al. 2008 Shumilova et al. 2019 Lin et al. 2019 3 Primary productivity Amoros and Bornette McGowan et al. 2011 McInerney and Rees Rodriguez-Lozano et Parker et al. 2012 Jones et al. 2020 2002 2017 al. 2015 Wassenaar et al. 2010 Jones et al. 2020 Ou et al. 2019 4 Secondary productivity Iwata et al. 2003 Nelson et al. 2017 Stone and Wallace Kemp et al. 2011 Richmond et al. 2016 Pringle et al. 2000 Heinrich et al. 2014 1998 Rodriguez-Lozano et deBruyn et al. 2003 Fausch et al. 2010 Pringle et al. 2000 Merten et al. 2014 al. 2015 Palmer and Ruhi 2019 Progar and Moldenke 2009 Banks et al. 2007 5 Food web complexity Amoros and Bornette Modiba et al. 2017 Ray et al. 2004 Windsor et al. 2019 Pringle et al. 2000 2002 Thompson et al. 2018 deBruyn et al. 2003 He et al. 2019 Heinrich et al. 2014 Orzetti et al. 2010 Palmer and Ruhi 2019 6 Functional redundancy Amoros and Bornette Bruno et al. 2016 Modiba et al. 2017 Chalcraft and Laini et al. 2019 Liu and Wang 2018 2002 Resetarits 2003 Wu et al. 2019 Oliveira et al. 2018 Belmar et al. 2019 7 Habitat provisioning Pelletier et al. 2020 Fullerton et al. 2018 Wohl 2017 Law et al. 2017 Blettler et al. 2019 Barbarossa et al. 2020 Csiki and Rhoads Thompson et al. 2018 Wilby et al. 2018 Paredes-Arquiola et East et al. 2015 2013 Thakur et al. 2020 al. 2014 Bellmore et al. 2019 Manfrin et al. 2020 Horn et al. 2004. AMBER Consortium Marsili-Libelli et al. 2020 2013 8 Nutrient cycling Amoros and Bornette Palmer and Ruhi 2019 Osborne and Kovacic Garman and Macko Mekonnen and 2002 Wrona et al. 2006 1993 1998 Hoekstra 2015 Ambio Wenger et al. 2019 Boyer et al. 2002. Puttock et al. 2017 9 Flood attenuation Galat et al. 1998 Moor et al. 2015 Gilvear et al. 2013 Puttock et al. 2017 Hering et al. 2001 Prudhomme et al. Wegener et al. 2017 2003 Roy et al. 2001 10 Water purification Bai et al. 2020 Wu and Ding 2019 Li et al. 2019 Kong et al. 2020 Zheng et al. 2019 Page 2 of 49 Restore natural flow Mitigate climate Restore riparian Re-introduce Improve water quality Reduce habitat and sediment regime warming vegetation extirpated species fragmentation 11 Flood/ flow pulse Weisener et al. 2017 Palmer and Ruhi 2019 Grossart and Rojas- Jimenez 2016 Zhang et al. 12 Groundwater recharge Wang et al. 2010 Libera et al. 2019 Smith et al. 2020 Buttle 2011 Lehr et al. 2015 Page 3 of 49 References AMBER Consortium (2020). The AMBER Barrier Atlas. A Pan-European database of artificial instream barriers. Version 1.0. Available at https://amber.international/european-barrier-atlas [Verified 29 June 2020]. Amoros, C., and Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47, 761–776 doi:10.1046/j.1365-2427.2002.00905.x. Aristi, I., Arroita, M., Larrañaga, A., Ponsatí, L., Sabater, S., von Schiller, D., Elosegi, A., and Acuña, V. (2014). Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshwater Biology 59, 1816–1829 doi:10.1111/fwb.12385. Bai, X., Zhu, X., Jiang, H., Wang, Z., He, C., Sheng, L., and Zhuang, J. (2020). Purification effect of sequential constructed wetland for the polluted water in urban river. Water 12, 1054 doi:10.3390/w12041054. Banks, J. L., Li, J., and Herlihy, A. T. (2007). Influence of clearcut logging, flow duration, and season on emergent aquatic insects in headwater streams of the Central Oregon Coast Range. Journal of the North American Benthological Society 26(4), 620–632 doi:10.1899/06-104.1. Barbarossa, V., Schmitt, R. J. P., Huijbregts, M. A. J., Zarfl, C., King, H., and Achipper, A. M. (2020). Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America 117(7), 3648–3655 doi:10.1073/pnas.1912776117. Bellmore, J. R., Press, G. R., Duda, J. J., O’Connor, J. E., East, A. E., Foley, M. M., Wilcox, A. C., Major, J. J., Shafroth, P. B., Morley, S. A., Magirl, C. S., Anderson, C. W., Evans, J. E., Togersen, C. E., and Craig, L. S. (2019). Conceptualizing ecological responses to dam removal: If you remove it, what’s to come? Bioscience 69(1), 26–39 doi:10.1093/biosci/biy152. Belmar, O., Bruno, D., Guareschi, S., Mellado‐Díaz, A., Millán, A., and Velasco, J. (2019). Functional responses of aquatic macroinvertebrates to flow regulation are shaped by natural flow intermittence in Mediterranean streams. Freshwater Biology 64, 1064–1077 doi:10.1111/fwb.13289. Blettler, M. C. M., Oberholster, P. J., Madlala, T., Eberle, E. G., Amsler, M. L., De Klerk, A. R., Truter, J. C., Marchese, M. R., Latosinski, F. G., and Szupiany, R. (2019). Habitat characteristics, hydrology and anthropogenic pollution as important factors for distribution of biota in the middle Paraná River, Argentina. Ecohydrology & Hydrobiology 19(2), 296–306 doi:10.1016/j.ecohyd.2018.08.002. Borders, B. D., Pushnik, J. C., and Wood, D. M. (2006). Comparison of Leaf Litter Decomposition Rates in Restored and Mature Riparian Forests on the Sacramento River, California. Restoration Ecology 14, 308–315 doi:10.1111/j.1526-100X.2006.00133.x. Boyer, E. W., Goodale, C. L., Jaworski, N. A., and Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57, 137–169 doi:10.1023/A:1015709302073. Page 4 of 49 S2 Potential data sources to support development of indicators of rewilding potential (see Table 1 and text for further details) The data sources listed here can support indicator development for selected ecosystem functions, but the concept could be extended to other functions included in the rewilding framework presented in the text. Canada’s Hydrometric Station Network Data available Real time and historic discharge and water level data with daily time steps Extent Canada URL https://wateroffice.ec.gc.ca/mainmenu/station_and_network_data_index_e.html Reference Water Survey of Canada. National Water Data Archive: HYDAT. Available for download from: http://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/ European AMBER Barrier Atlas Data available Spatial database of recorded barriers in rivers in Europe Extent Europe URL https://amber.international/european-barrier-atlas/ Reference AMBER Consortium (2020). The AMBER Barrier Atlas. A Pan-European database of artificial instream barriers. Version 1.0. Available at https://amber.international/european-barrier-atlas [Verified 29 June 2020]. USGS WaterQualityWatch Data available Water quality parameters (water temperature, conductivity, pH, dissolved oxygen, turbidity, nitrate, discharge, chlorophyll-a, and other surrogates) Page 5 of 49 Extent United States of America URL https://waterwatch.usgs.gov/wqwatch/ Reference US Geological Survey (2020). National Water Information System. (USGS Water Data for the Nation). Available at https://waterdata.usgs.gov/nwis/ Canadian Aquatic Biomonitoring Network (CABIN) Data available Macroinvertebrate taxonomic richness and abundance, site assessment in comparison to regional Reference Condition, habitat characteristics Extent Canada URL https://cabin-rcba.ec.gc.ca/cabin/login?culture = en-CA Reference Environment and Climate Change Canada 2020, Canadian Aquatic Biomonitoring Network. URL https://www.canada.ca/en/environment-climate-change/services/canadian- aquatic-biomonitoring-network.html. Other useful data sources: HydroSHEDS Data available Georeferenced datasets for river networks, watershed boundaries, drainage directions and flow accumulations, land use and landscape information, climate Extent Global URL https://www.hydrosheds.org Page 6 of 49 Reference Lehner, B., Verdin, K., and Jarvis, A. (2008). New global hydrography derived from spaceborne elevation data. Eos 89(10), 93–94. doi:10.1029/2008EO100001 EOLakeWatch Data available Long-term, satellite-derived, remote sensing data of inland algal blooms Extent Regional within Canada (Lake Erie, Lake Winnipeg, Lake of the Woods) URL https://www.canada.ca/en/environment-climate-change/services/water-overview/satellite-earth- observations-lake-monitoring/remote-sensing-algal-blooms.html References Environment and Climate Change Canada 2020.
Recommended publications
  • The Mediterranean Forests Are Extraordinarily Beautiful, a Fascinating an Extraordinary Patrimony of Wealth Whose Conservation Can Be Highly Controversy
    THE editerraneanFORESTS mA NEW CONSERVATION STRATEGY 1 3 2 4 5 6 the unveiled a meeting point the mediterranean: amazing plant an unknown millennia forests on the global 200 the terrestrial current a brand new the state of WWF a new approach wealth of the of nature a sea of forests diversity animal world of human the wane in the sub-ecoregions mediterranean tool: the gap mediterranean in action for forest mediterranean and civilisations interaction with mediterranean in the forest cover analysis forests protection forests forests mediterranean 23 46 81012141617 18 19 22 24 7 1 Argania spinosa fruits, Essaouira, Morocco. Credit: WWF/P. Regato 2 Reed-parasol maker, Tunisia. Credit: WWF-Canon/M. Gunther 3 Black-shouldered Kite. Credit: Francisco Márquez 4 Endemic mountain Aquilegia, Corsica. Credit: WWF/P. Regato 5 Sacred ibis. Credit: Alessandro Re 6 Joiner, Kure Mountains, Turkey. Credit: WWF/P. Regato 7 Barbary ape, Morocco. Credit: A. & J. Visage/Panda Photo It is like no other region on Earth. Exotic, diverse, roamed by mythical WWF Mediterranean Programme Office launched its campaign in 1999 creatures, deeply shaped by thousands of years of human intervention, the to protect 10 outstanding forest sites among the 300 identified through cradle of civilisations. a comprehensive study all over the region. When we talk about the Mediterranean region, you could be forgiven for The campaign has produced encouraging results in countries such as Spain, thinking of azure seas and golden beaches, sun and sand, a holidaymaker’s Turkey, Croatia and Lebanon. NATURE AND CULTURE, of forest environments in the region. But in recent times, the balance AN INTIMATE RELATIONSHIP Long periods of considerable forest between nature and humankind has paradise.
    [Show full text]
  • Favourableness and Connectivity of a Western Iberian Landscape for the Reintroduction of the Iconic Iberian Ibex Capra Pyrenaica
    Favourableness and connectivity of a Western Iberian landscape for the reintroduction of the iconic Iberian ibex Capra pyrenaica R ITA T. TORRES,JOÃO C ARVALHO,EMMANUEL S ERRANO,WOUTER H ELMER P ELAYO A CEVEDO and C ARLOS F ONSECA Abstract Traditional land use practices declined through- Keywords Capra pyrenaica, environmental favourableness, out many of Europe’s rural landscapes during the th cen- graph theory, habitat connectivity, Iberian ibex, reintroduc- tury. Rewilding (i.e. restoring ecosystem functioning with tion, ungulate minimal human intervention) is being pursued in many areas, and restocking or reintroduction of key species is often part of the rewilding strategy. Such programmes re- Introduction quire ecological information about the target areas but this is not always available. Using the example of the an has shaped landscapes for centuries (Vos & Iberian ibex Capra pyrenaica within the Rewilding Europe Meekes, ). In the last decades socio-economic M framework we address the following questions: ( ) Are and lifestyle changes have driven a rural exodus and the there areas in Western Iberia that are environmentally fa- abandonment of land throughout many of Europe’s rural vourable for reintroduction of the species? ( ) If so, are landscapes (MacDonald et al., ; Höchtl et al., ). these areas well connected with each other? ( ) Which of In some cases sociocultural and economic problems have these areas favour the establishment and expansion of a vi- created new opportunities for conservation (Theil et al., ). able population
    [Show full text]
  • Sustainable Trophy Hunting of Iberian Ibex Por Una Caza Sostenible Del Trofeo De Macho Montés
    Forum Galemys, 30: 1-4, 2018 ISSN 1137-8700 e-ISSN 2254-8408 DOI: 10.7325/Galemys.2018.F1 Sustainable trophy hunting of Iberian ibex Por una caza sostenible del trofeo de macho montés João Carvalho1,2*, Paulino Fandos3, Marco Festa-Bianchet4, Ulf Büntgen5,6,7, Carlos Fonseca1 & Emmanuel Serrano2* 1. Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal. 2. Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. 3. Agencia de Medio Ambiente y Agua, Isla de la Cartuja, 41092 Sevilla, Spain. 4. Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada. 5. Department of Geography, University of Cambridge, Cambridge, United Kingdom. 6. Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland. 7. Global Change Research Centre and Masaryk University, 613 00 Brno, Czech Republic. *Corresponding authors: [email protected] (JC), [email protected] (ES) Keywords: Capra pyrenaica, horns, mountain ungulates, size-selective harvesting. Selective hunting practices, such as trophy apparently led to an evolutionary decline in horn hunting, remove individuals with specific size (Pigeon et al. 2017). In contrast, we know very phenotypes (Kuparinen & Festa-Bianchet 2017). little about the possible effects of selective harvesting For mountain ungulates, trophy hunting involves on the iconic Iberian ibex (Capra pyrenaica, Fig. 1), the selective harvest of males with large horns. which is experiencing increased pressure not only Trophy hunters usually pay a substantial fee, which from trophy hunting (Pérez et al. 2011), but also in some cases is proportional to the ‘trophy score’ from changes in both climate and land-use practices of the animal they harvest.
    [Show full text]
  • Capra Pyrenaica
    Colom-Cadena et al. Acta Veterinaria Scandinavica 2014, 56:83 http://www.actavetscand.com/content/56/1/83 RESEARCH Open Access Management of a caseous lymphadenitis outbreak in a new Iberian ibex (Capra pyrenaica) stock reservoir Andreu Colom-Cadena1, Roser Velarde1, Jes?s Salinas 2, Carmen Borge3, Ignacio Garc?a-Bocanegra 3, Emmanuel Serrano1,4, Diana Gass? 1, Ester Bach1, Encarna Casas-D?az 1, Jorge R L?pez-Olvera 1, Santiago Lav?n 1, Lu?s Le?n-Vizca?no 2 and Gregorio Mentaberre1* Abstract Background: In 2010, an Iberian ibex (Capra pyrenaica hispanica) stock reservoir was established for conservation purposes in north-eastern Spain. Eighteen ibexes were captured in the wild and housed in a 17 hectare enclosure. Once in captivity, a caseous lymphadenitis (CLA) outbreak occurred and ibex handlings were carried out at six-month intervals between 2010 and 2013 to perform health examinations and sampling. Treatment with a bacterin-based autovaccine and penicillin G benzatine was added during the third and subsequent handlings, when infection by Corynebacterium pseudotuberculosis was confirmed. Changes in lesion score, serum anti-C. pseudotuberculosis antibodies and haematological parameters were analyzed to assess captivity effects, disease emergence and treatment efficacy. Serum acute phase proteins (APP) Haptoglobin (Hp), Amyloid A (SAA) and Acid Soluble Glycoprotein (ASG) concentrations were also determined to evaluate their usefulnessasindicatorsofclinical status. Once in captivity, 12 out of 14 ibexes (85.7%) seroconverted, preceding the emergence of clinical signs; moreover, TP, WBC, eosinophil and platelet cell counts increased while monocyte and basophil cell counts decreased. After treatment, casualties and fistulas disappeared and both packed cell volume (PCV) and haemoglobin concentration significantly increased.
    [Show full text]
  • Prospects for Rewilding with Camelids
    Journal of Arid Environments 130 (2016) 54e61 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Prospects for rewilding with camelids Meredith Root-Bernstein a, b, *, Jens-Christian Svenning a a Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark b Institute for Ecology and Biodiversity, Santiago, Chile article info abstract Article history: The wild camelids wild Bactrian camel (Camelus ferus), guanaco (Lama guanicoe), and vicuna~ (Vicugna Received 12 August 2015 vicugna) as well as their domestic relatives llama (Lama glama), alpaca (Vicugna pacos), dromedary Received in revised form (Camelus dromedarius) and domestic Bactrian camel (Camelus bactrianus) may be good candidates for 20 November 2015 rewilding, either as proxy species for extinct camelids or other herbivores, or as reintroductions to their Accepted 23 March 2016 former ranges. Camels were among the first species recommended for Pleistocene rewilding. Camelids have been abundant and widely distributed since the mid-Cenozoic and were among the first species recommended for Pleistocene rewilding. They show a range of adaptations to dry and marginal habitats, keywords: Camelids and have been found in deserts, grasslands and savannas throughout paleohistory. Camelids have also Camel developed close relationships with pastoralist and farming cultures wherever they occur. We review the Guanaco evolutionary and paleoecological history of extinct and extant camelids, and then discuss their potential Llama ecological roles within rewilding projects for deserts, grasslands and savannas. The functional ecosystem Rewilding ecology of camelids has not been well researched, and we highlight functions that camelids are likely to Vicuna~ have, but which require further study.
    [Show full text]
  • Donlan CJ. 2007. Restoring America's Big Wild Animals
    Donlan CJ. 2007. Restoring America's big wild animals. Scientific American June 2007:72-7. Keywords: 1NAm/cheetah/cougar/jaguar/lion/megafauna/Miracinonyx trumani/Panthera leo/Panthera onca/Pleistocene/Puma concolor/saber-toothed cat Abstract: Pleistocene rewilding-a proposal to bring back animals that disappeared from North America 13,000 years ago-offers an optimistic agenda for 21st-century conservation. In the fall of 2004 a dozen conservation biologists gathered on a ranch in New Mexico to ponder a bold plan. The scientists, trained in a variety of disciplines, ranged from the grand old men of the fi eld to those of us earlier in our careers. The idea we were mulling over was the reintroduction of large vertebrates-megafauna-to North America. Most of these animals, such as mammoths and cheetahs, died out roughly 13,000 years ago, when humans from Eurasia began migrating to the continent. The theory-propounded 40 years ago by Paul Martin of the University of Arizona- is that overhunting by the new arrivals reduced the numbers of large vertebrates so severely that the populations could not recover. Called Pleistocene overkill, the concept was highly controversial at the time, but the general thesis that humans played a significant role is now widely accepted. Martin was present at the meeting in New Mexico, and his ideas on the loss of these animals, the ecological consequences, and what we should do about it formed the foundation of the proposal that emerged, which we dubbed Pleistocene rewilding. Restoring America’s n the fall of 2004 a dozen conservation biologists gath- Although the cheetahs, lions and mammoths that once ered on a ranch in New Mexico to ponder a bold plan.
    [Show full text]
  • Frequency of Zoonotic Enteric Pathogens and Antimicrobial
    Frequency of zoonotic enteric pathogens and antimicrobial resistance in wild boar (Sus scrofa) Iberian ibex (Capra pyrenaica) and sympatric free-ranging livestock in a natural environment (NE Spain) NORA NAVARRO GONZÁLEZ 2013 Frequency of zoonotic enteric pathogens and antimicrobial resistance in wild boar (Sus scrofa), Iberian ibex (Capra pyrenaica) and sympatric free‐ranging livestock in a natural environment (NE Spain). Nora Navarro González Directores: Santiago Lavín González Lucas Domínguez Rodríguez Emmanuel Serrano Ferron Tesis Doctoral Departament de Medicina i Cirurgia Animals Facultat de Veterinària Universitat Autònoma de Barcelona 2013 “Como un mar me presenté ante ti; en parte agua y en parte sal. Lo que no se puede desunir es lo que nos habrá de separar...” Nacho Vegas, 2011 “La gran broma final” Agradecimientos Como casi siempre, me encuentro a última hora haciendo cosas que no dejan de ser importantes. Estaba previsto llevar esta tesis hace dos días a imprimir y hoy aún estoy retocando detalles. Es domingo por la tarde y mañana imprimimos la primera prueba, así que es probable que me deje a muchas personas en el tintero. A estas personas, mis disculpas por anticipado y mis agradecimientos. Sabéis que os estoy agradecida y que aprecio vuestra ayuda aunque no mencione vuestro nombre aquí explícitamente... una tiene muy mala cabeza en momentos de tensión. Ya me conocéis. Para los que sí tengo en mente, en primer lugar, mis agradecimientos a mis directores: Santiago, Lucas y Emmanuel, porque sin ellos no hubiera sido posible esta tesis, ni mi formación como investigadora, ni nada de lo que ha pasado estos cuatro años.
    [Show full text]
  • Effects of Large Herbivore Grazing on Relics of the Presumed Mammoth
    www.nature.com/scientificreports OPEN Efects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE‑Siberia Jennifer Reinecke1,2*, Kseniia Ashastina3,4, Frank Kienast3, Elena Troeva5 & Karsten Wesche1,2,6 The Siberian mammoth steppe ecosystem changed dramatically with the disappearance of large grazers in the Holocene. The concept of Pleistocene rewilding is based on the idea that large herbivore grazing signifcantly alters plant communities and can be employed to recreate lost ecosystems. On the other hand, modern rangeland ecology emphasizes the often overriding importance of harsh climates. We visited two rewilding projects and three rangeland regions, sampling a total of 210 vegetation relevés in steppe and surrounding vegetation (grasslands, shrublands and forests) along an extensive climatic gradient across Yakutia, Russia. We analyzed species composition, plant traits, diversity indices and vegetation productivity, using partial canonical correspondence and redundancy analysis. Macroclimate was most important for vegetation composition, and microclimate for the occurrence of extrazonal steppes. Macroclimate and soil conditions mainly determined productivity of vegetation. Bison grazing was responsible for small‑scale changes in vegetation through trampling, wallowing and debarking, thus creating more open and disturbed plant communities, soil compaction and xerophytization. However, the magnitude of efects depended on density and type of grazers as well as on interactions with climate and site conditions. Efects of bison grazing were strongest in the continental climate of Central Yakutia, and steppes were generally less afected than meadows. We conclude that contemporary grazing overall has rather limited efects on vegetation in northeastern Siberia. Current rewilding practices are still far from recreating a mammoth steppe, although large herbivores like bison can create more open and drier vegetation and increase nutrient availability in particular in the more continental Central Yakutian Plain.
    [Show full text]
  • South Africa, Where He Planned to Sell the Tusks for US$300 Per Pound
    Profit Over Conservation Claims: Analysis of auctions and exhibitors at Dallas Safari Club virtual convention February 2021 Introduction Dallas Safari Club is a Texas-based trophy hunting industry organization established in 1982. Its membership size was 6,000 in 2016 and according to DSC’s 2019 audited financial statement, it drew in $502,748 in membership fees for the fiscal year ending March 31, 2019. DSC started as a Dallas chapter of its parent organization, Safari Club International. DSC holds an annual convention with tens of thousands of attendees from around the world. In recent years, the number of attendees at the convention surpassed that of the annual U.S.-based Safari Club International, making the DSC convention the biggest industry hunting event held in the U.S. The annual DSC convention is the group’s largest source of income. In 2019 the convention brought in close to $8 million out of the organization’s $9.1 million in revenue. While the DSC’s stated mission is to “ensure the conservation of wildlife through public engagement, education and advocacy for well-regulated hunting and sustainable use,” in reality they lobby to weaken or challenge wildlife conservation measures. They even employed a Washington, DC, lobbying firm according to its 2017 tax filing. Researchers from the Humane Society of the United States and Humane Society International analyzed the offerings of exhibitors and auctions available to individuals who are attending DSC’s annual convention, which is a virtual event in 2020. This report documents those findings. Dallas Safari Club Dallas Safari Club has sought to weaken conservation of wildlife by opposing a proposal to upgrade the conservation status of the African leopard from “Threatened” to “Endangered” under “It’s all about bid-to-kill the U.S.
    [Show full text]
  • What Do We Know After 50 Years Of
    A Systematic Review of Within-Population Variation in the Size of Home Range Across Ungulates: What Do We Know After 50 Years of Telemetry Studies? Juliette Seigle-Ferrand, Kamal Atmeh, Jean-Michel Gaillard, Victor Ronget, Nicolas Morellet, Mathieu Garel, Anne Loison, Glenn Yannic To cite this version: Juliette Seigle-Ferrand, Kamal Atmeh, Jean-Michel Gaillard, Victor Ronget, Nicolas Morellet, et al.. A Systematic Review of Within-Population Variation in the Size of Home Range Across Ungulates: What Do We Know After 50 Years of Telemetry Studies?. Frontiers in Ecology and Evolution, Frontiers Media S.A, 2021, 8, 20 p. 10.3389/fevo.2020.555429. hal-03320850 HAL Id: hal-03320850 https://hal.inrae.fr/hal-03320850 Submitted on 16 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License SYSTEMATIC REVIEW published: 28 January 2021 doi: 10.3389/fevo.2020.555429 A Systematic Review of Within-Population Variation in the Size of Home Range Across Ungulates: What Do We Know After 50
    [Show full text]
  • Environmental Protection / Species Preservation
    The projest has been funded with the support of European Commission within ERASMUS+ program Rewilding as a way of preserving ecosystem Material for students This work is licensed under a Creative Commons Attribution 4.0 International License(CC BY 4.0). This material has been founded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Publication free of charge. Project office: Ks. Janusza 64, 01‐452, Warsaw, Polandhttp://[email protected] The projest has been funded with the support of European Commission within ERASMUS+ program Introduction Resolution The best way to preserve an ecosystem is by rewilding. Definitions Trophic cascades Predators feed on their prey. By doing so, predators can influence the abundance and behavior of prey. In other words, prey abundance can be reduced if there are predators nearby, or prey can hide or move further. When the influence of a predator on its prey is so large that it reduces the trophic level at anotherlevel of the food chain affecting the density and/or behavior of prey, ecologists call this interaction a trophic cascade. For a long time, the prevailing ecological theory was the one stating that climate and local resources control species distribution and primary production in ecosystems ‐ the level of organic ingredients in an ecosystem produced by plants and other photosynthetic organisms. Since the world is rich in vegetation, the effect of unstoppable consumption of plants was considered an exception and was seen as a relatively insignificant factor.
    [Show full text]
  • Comparison of Xylazine-Ketamine and Medetomidine-Ketamine Anaesthesia in the Iberian Ibex () Encarna Casas-Díaz, Ignasi Marco, Jorge R
    Comparison of xylazine-ketamine and medetomidine-ketamine anaesthesia in the Iberian ibex () Encarna Casas-Díaz, Ignasi Marco, Jorge R. López-Olvera, Gregorio Mentaberre, Santiago Lavín To cite this version: Encarna Casas-Díaz, Ignasi Marco, Jorge R. López-Olvera, Gregorio Mentaberre, Santiago Lavín. Comparison of xylazine-ketamine and medetomidine-ketamine anaesthesia in the Iberian ibex (). Eu- ropean Journal of Wildlife Research, Springer Verlag, 2011, 57 (4), pp.887-893. 10.1007/s10344-011- 0500-7. hal-00667595 HAL Id: hal-00667595 https://hal.archives-ouvertes.fr/hal-00667595 Submitted on 8 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur J Wildl Res (2011) 57:887–893 DOI 10.1007/s10344-011-0500-7 ORIGINAL PAPER Comparison of xylazine–ketamine and medetomidine–ketamine anaesthesia in the Iberian ibex (Capra pyrenaica) Encarna Casas-Díaz & Ignasi Marco & Jorge R. López-Olvera & Gregorio Mentaberre & Santiago Lavín Received: 6 October 2010 /Revised: 13 January 2011 /Accepted: 17 January 2011 /Published online: 8 February 2011 # Springer-Verlag 2011 Abstract A comparison was made between two anaes- major differences in the different drug combinations used, but thetic combinations in 35 free-ranging adult Iberian clinical findings of this study, as well as hypoxemia, ibexes (Capra pyrenaica), from May to December 2005.
    [Show full text]