FINAL REPORT the Use of Coprostanol As An

Total Page:16

File Type:pdf, Size:1020Kb

FINAL REPORT the Use of Coprostanol As An FINAL REPORT The Use of Coprostanol as an Indicator of the Sanitary Quality of New Jersey Waters Year 3 Contract Number: SR 00-049 Jae Kwak and Joseph D. Rosen Department of Food Science Rutgers University May 28, 2002 Submitted to Tom Atherholt Division of Science, Research and Technology New Jersey Department of Environmental Protection 1 TABLE OF CONTENTS Executive Summary 3 Introduction/Problem Statement 3 Project Design and Methods 4 Overall Plan 4 Separation of Analyte(s) from Water 5 Derivatization 5 Mass Spectra of TMS-coprostanol and TMS-cholesterol 5 Mass Chromatography 5 Electron Ionization or Chemical Ionization 6 Linearity, Surrogate 6 Internal Standard 7 Analytical Procedures (Extraction; GC/MS) 7-8 Microbial Analysis in Water Samples 8 Coprostanol Analysis in Food 9 Microbial Analysis in Food 10 Estrogenic activity of sterols and water sample 11 Quality Assurance 11 GC/MS 11 Data Quality Requirements: 13 Standard curves for coprostanol and cholesterol-2,2,4,4,6-d5 13 Quality Control Checks, Documentation 14 Data Validation, Performance and System Audits 14 Results and Discussion 15 Recovery Results Using a DB-17 Chromatography Column 15 Sensitivity Determination Using a DB-17 Chromatography Column 15 Analytical Results for Well Water Samples 15 Analysis Results for Sewage Samples 16 Sensitivity of Chemical vs. Microbial Method 16 Coprostanol in Food 16 Estrogenic activity of sterols and water sample 17 Effect of water treatment on concentration of steroids 17 Conclusions 17 References 17 Presentations and Publications 18 Appendix 18 Figure Legends 19 Table 1 20-28 Table 2 29-30 Tables 3 &4 31 Figures 32-41 2 EXECUTIVE SUMMARY This report covers the period between July 1, 1998 and May 28, 2002. An analytical method for the determination of coprostanol in water has been developed. In brief, the method consists of passing four liters of water (spiked with internal standard cholesterol-d5) through a 50 mm diameter C-18 disk, eluting the disk with solvents, evaporating, derivatizing with bis-trimethylsilyltrifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane, evaporating to 250 mL and then injecting 2 mL onto a DB17 column connected to a Finigan Ion Trap Mass Spectrometer operated in the EI mode with quantitative analysis made by mass chromatography. Sensitivity of the method was between 2 and 10 parts per trillion for 4L and 1L samples, respectively. Using this method, a total of 141 samples (126 well water samples, 8 sewage water samples and 7 field blanks) were analyzed. Only two of well water samples contained coprostanol (0.013 mg/L and 0.0035 mg/L). No coprostanol was found in the other well water samples. Forty-one of the well water samples contained other sterols (4 definitively- identified sterols: cholesterol, campesterol, stigmasterol, sitosterol, 5 tentatively identified sterols: 24-ethylcoprostanol, brassicasterol, 22-dehydrocholesterol, fucosterol, isofucosterol, and two unidentified sterols. These sterols, as well as coprostanol, epicoprostanol, and campestanol were found in sewage samples at much higher levels. Coprostanol concentrations in sewage water ranged between 4 mg/L and 2,136 mg/L. Cholesterol, campesterol, stigmasterol, and sitosterol were positive for beta receptor activation, an indicator of endocrine disruptor activity. Sensitivity of the chemical method was compared to the standard coliform assay by analyzing a water sample collected from the Raritan River. Total coliforms and fecal coliforms in the river water were determined to be 15 CFU/mL and 9.3 CFU/mL, respectively. The microbial method was much more sensitive than the chemical method when the same volume was analyzed. Coliforms were detected from only 0.1 mL of the river water sample, while at least 50 mL was required to definitely detect coprostanol by the chemical method. An attempt was also made to use the analytical method for the determination of coprostanol in food as an indicator of fecal contamination before ionizing radiation was applied. We were able to detect coprostanol in both chicken and in ground beef. However, we were also able to detect coprostanol in beefsteak, suggesting that the cow is capable of metabolizing cholesterol to coprostanol, thus making the assay unusable for our desired purpose. INTRODUCTION/PROBLEM STATEMENT The sanitary quality of drinking water and waters used for bathing and water sport activities is monitored using bacterial indicator organism tests such as those for total coliforms, fecal coliforms or enterococcus bacteria. These tests may not always be valid indicators of the possible presence of fecal pathogens since viruses, Giardia and 3 Cryptosporidium are more resistant to chemical disinfection and a variety of environmental stresses than the stated indicator bacteria. Therefore, in chlorinated waters, as well as other situations, pathogenic viruses and protozoa may be present in the absence of indicator bacteria. Also, the tests for indicator bacteria take 24 hours for initial results and 48 to 72 hours for confirmatory results. To better protect the public from unsafe waters, faster, more reliable test methods are needed. The purpose of this project was to examine the usefulness of coprostanol as a reliable, chemical indicator of fecal pollution. Coprostanol is a product of the microbial transformation of cholesterol in the intestines of higher animals. Current analytical methods for coprostanol are complex, but the potential exists for the development of a simpler, quicker assay. This project had three objectives. One, to streamline current analytical procedure used to detect and quantify levels of coprostanol. Two, to measure levels of coprostanol and bacterial indicator organisms in a variety of fecal pollution sources and three, to measure levels of coprostanol and indicator bacteria in several environmental waters such as ground waters used for drinking and fresh and marine waters used for bathing, shellfish harvest, and water sport activities. PROJECT DESIGN AND METHODS Overall Plan The analysis consists of two major operations: 1. Separate the analyte(s), present in nanogram amounts from the water, which is present in kilogram amounts. 2. Use gas chromatograpy-mass spectrometry for separation from other components of the matrix as well as sensitive and selective detection. Separation of Analyte(s) from Water Until recently, solvent-solvent extraction was used to extract remove organic materials from water. The organic materials, being less polar than water, would preferentially associate with the solvent. The solvent and the analyte(s) would then be separated from the water because they are immiscible. While effective, this method requires large amounts of organic solvents (that have to be disposed of), the attention of the analyst and is time-consuming. Solid Phase Extraction (SPE) is a technique in which water is passed through material which will bind the analytes of interest while allowing the water to pass through. Of the several SPE adsorbents we evaluated, we found that octadecylsilane was best. In order to meet the sensitivity requirements, large volumes of water would have to be analyzed. Thus, instead of the usual SPE minicolumn, we decided to use the J.T. Baker SpeediskTM, which has the capacity to absorb analytes from large quantities of water using a flow rate of 200 mL per minute at 25” Hg. 4 Derivatization Sterols such as coprostanol or cholesterol do not elute from a gas chromatography column very well because of their relative polarity (Figure 1A), whereas the chromatography is much improved if they are first converted to materials of lesser polarity (Figure 1B). Such a conversion is shown in Figure 2: the polar hydroxyl group of coprostanol is reacted with a derivatizing agent such as trimethyl chlorosilane or bis- trimethylsilyltrifluoroacetamide (BSTFA) to form trimethylsilyl coprostanol (TMS- coprostanol). The major advantage of derivatization is a more symmetrical peak shape, which translates into better separation from other sterols and matrix impurities as well as improved quantification. The major disadvantage of derivatization is the introduction of an additional step which leads to a slower overall analysis time and an additional source of lower precision. In order to decide between the two possibilities, sensitivity comparisons were made between derivatized and underivatized sterol standards. The sensitivity for underivatized coprostanol and underivatized cholesterol were much less than TMS-coprostanol TMS- cholesterol in both the EI and CI modes. Mass Spectra of TMS-coprostanol and TMS-cholesterol The EI mass spectrum of TMS-coprostanol is shown in Figure 3. The molecular weight of this material is 460 amu but is too unstable to be recorded. The peak at 370 m/z is due to loss of HOSi(CH3)3; the peak at 355 m/z is due to loss of an additional methyl group; the peak at 257 m/z is due to loss of the C8H17 side chain; the peak at 215 m/z is due to cleavage of the five membered ring (loss of propylene). The EI mass spectrum of TMS- cholesterol is shown in Figure 4. In contrast to the coprostanol derivative, TMS- cholesterol does exhibit a molecular ion at m/z 458. The peak at 443 m/z is from loss of a methyl group; m/z 368 is due to loss of HOSi(CH3)3 from 458 and 353 is loss of another methyl group from m/z 368. The ion at m/z 329 is presumed to arise from loss of octane side chain from the 443 ion. The peaks at m/z 255 and 213 are analogous to the TMS- coprostanol peaks at m/z 257 and 215. The CI mass spectrum of TMS-coprostanol is shown in Figure 5. Chemical ionization is much gentler than electron ionization and this results in less fragmentation. In addition, protonated molecular ions are more commonly seen in CI than in EI. In the case of TMS-coprostanol, however, the expected protonated molecular ion at m/z 461 is not seen; instead there is a small ion at m/z 459.
Recommended publications
  • Organic Matter Composition Related to Methane Ebullitive Flux of an Urban Coastal Lagoon, Southeastern Brazil
    Quim. Nova, Vol. 42, No. 6, 619-627, 2019 http://dx.doi.org/10.21577/0100-4042.20170373 ORGANIC MATTER COMPOSITION RELATED TO METHANE EBULLITIVE FLUX OF AN URBAN COASTAL LAGOON, SOUTHEASTERN BRAZIL Alessandra da Fonseca Vianaa,*, , Marco Aurélio dos Santosa, Marcelo Corrêa Bernardesb and Marcelo Amorima aInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, 21941-450 Rio de Janeiro – RJ, Brasil b Departamento de Geoquímica, Universidade Federal Fluminense, 24020-141 Niterói – RJ, Brasil Artigo Recebido em 25/04/2019; aceito em 04/06/2019; publicado na web em 26/06/2019 In 2016, Brazil emitted 18.25 Tg of methane. Some of these emissions occur through continental aquatic ecosystems, locations of fate and accumulation of organic and inorganic matter. Thus, the aim of this study is to evaluate the origin of organic matter in Rodrigo de Freitas Lagoon, an eutrophic, coastal and chocked lagoon in Rio de Janeiro, Brazil, through the determination of n-alkanes and sterols compounds in the upper two centimeters of sediment and compare these data with methane ebullitive flux. The concentrations of n-alkanes varied between 2.43 and 25.82 µg g-1. C29 was predominant compound in most sites, but also with important petrogenic source evidenced by the occurrence of Unresolved Complex Misture. The total concentration of sterols ranged from 2.76 to 56.01 µg g-1. β-sitostanol was the most abundant compound and coprostanol was the most relevant at the sites under -2 -1 -2 -1 influence of domestic effluents. 4CH ebullitive flux averaged 199 mg m d in the dry period and 9.3 mg m d during the wet season.
    [Show full text]
  • Study on the Derivatization Process Using NO-Bis-(Trimethylsilyl)
    World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering Vol:4, No:1, 2010 Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide, N-(tert-butyldimethylsilyl)-N-methyltrifluoroace tamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry Jingming Wu, Ruikang Hu, Junqi Yue, Zhaoguang Yang, and Lifeng Zhang Abstract—Fecal sterol has been proposed as a chemical indicator I. INTRODUCTION of human fecal pollution even when fecal coliform populations have O protect public health, it is important to monitor drinking diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure Twater and recreational water bodies to ensure the for simultaneous determination of four fecal sterols including pathogens are not present. Recently, various chemical coprostanol, epicholestanol, cholesterol and cholestanol using gas compounds have been used for identifying human sewage chromatography-mass spectrometry (GC-MS), via optimization study contamination in water bodies [1-3]. Coprostanol, formed on silylation procedures using N-O-bis during catabolism of cholesterol by indigenous bacteria present (trimethylsilyl)-trifluoroacetamide (BSTFA), and in the gut of humans or animals, is the primary fecal sterol N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and detected in the domestic wastewater or sediment samples [1-3]. tert-butyldimethylsilyl (TBS) derivatives, respectively. Two It has been proposed as a chemical indicator of human fecal derivatization processes of injection-port derivatization and water bath pollution even when fecal coliform populations have derivatization (60 oC, 1h) were inspected and compared.
    [Show full text]
  • Conversion of Cholesterol to Coprostanol and Cholestanol in the Estuary Sediment
    Conversion of Cholesterol to Coprostanol and Cholestanol in the Estuary Sediment 著者 "TESHIMA Shin-ichi, KANAZAWA Akio" journal or 鹿児島大学水産学部紀要=Memoirs of Faculty of publication title Fisheries Kagoshima University volume 27 number 1 page range 41-47 別言語のタイトル 海底堆積物におけるコレステロールからコプロスタ ノールおよびコレスタノールへの変換 URL http://hdl.handle.net/10232/13110 Mem. Fac. Fish., Kagoshima Univ. Vol. 27, No. 1, pp. 41-47 (1978) Conversion of Cholesterol to Coprostanol and Cholestanol in the Estuary Sediment Shin-ichi Teshima* and Akio Kanazawa* Abstract This paper deals with the conversion of cholesterol-4-14C to radioactive coprosta nol, cholestanol, and cholestenone in the estuary sediment from Kagoshima Bay, Kagoshima, Japan. The incubation of cholesterol-4-14C with the sediment and sea water gave radio active coprostanol, cholestanol, and cholestenone. The identification of these radio active compounds was performed by thin-layer chromatography and preparative gas- liquid chromatography followed by radioactive measurements. However, the incu bation of cholesterol-4-14C with sterilized sediment and with sea water (or sterilized sea water) produced extremely small amounts of the above mentioned conversion products. These results indicated that the conversion of cholesterol to coprostanol, cholestanol, and cholestenone is effected by the action of microorganisms in the sediment. Several workers have attempted to use coprostanol (5^-cholestane-3y?-ol) as an indicator of fecal pollution in water1"7*. Since the feces of human and mam mals are regarded as the only source of coprostanol in natural environments, the occurrence of coprostanol has been conceived to be indicative of water pol lution in the cause of human life. As to the marine environments, the authors have pointed out the presence of coprostanol in both sea water and the sediments in Ariake Sea, indicating that the concentration of coprostanol was markedly high in the sediments as com pared with that of sea water7).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,725,399 B2 Petrie Et Al
    USO09725399B2 (12) United States Patent (10) Patent No.: US 9,725,399 B2 Petrie et al. (45) Date of Patent: Aug. 8, 2017 (54) LPID COMPRISING LONG CHAN (51) Int. Cl. POLYUNSATURATED FATTY ACDS C07C 69/587 (2006.01) CIIB I/O (2006.01) (71) Applicants: Commonwealth Scientific and (Continued) Industrial Research Organisation, (52) U.S. Cl. Acton, Australian Capital Territory CPC .............. C07C 69/587 (2013.01); A23D 9/00 (AU): Nuseed Pty Ltd, Laverton North, (2013.01); A61K 36/31 (2013.01): CIIB I/10 Victoria (AU); Grains Research and (2013.01); A61 K 2.236/00 (2013.01) Development Corporation, Barton, (58) Field of Classification Search Australian Capital Territory (AU) CPC .......................... C12N 15/8247; CO7C 69/587 See application file for complete search history. (72) Inventors: James Robertson Petrie, Goulburn (AU); Surinder Pal Singh, Downer (56) References Cited (AU); Pushkar Shrestha, Lawson U.S. PATENT DOCUMENTS (AU); Jason Timothy McAllister, Portarlington (AU); Robert Charles De 4,399.216 A 8, 1983 Axel et al. Feyter, Monash (AU); Malcolm David 5,004,863. A 4, 1991 Umbeck Devine, Vernon (CA) (Continued) (73) Assignees: COMMONWEALTH SCIENTIFIC FOREIGN PATENT DOCUMENTS AND INDUSTRIAL RESEARCH AU 667939 1, 1994 ORGANISATION, Campbell (AU): AU 200059710 B2 12/2000 NUSEED PTY LTD, Laverton North (Continued) (AU); GRAINS RESEARCH AND DEVELOPMENT CORPORATION, Barton (AU) OTHER PUBLICATIONS Ruiz-Lopez, N. et al., “Metabolic engineering of the omega-3 long (*) Notice: Subject to any disclaimer, the term of this chain polyunsaturated fatty acid biosynthetic pathway into trans patent is extended or adjusted under 35 genic plants' Journal of Experimental botany, 2012, vol.
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • Isolation and Characterization of Two Sterols from the Green Alga, Selenastrum Capricornutum
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1-1-1976 Isolation and characterization of two sterols from the green alga, Selenastrum capricornutum Raymond Mark Owings Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Let us know how access to this document benefits ou.y Recommended Citation Owings, Raymond Mark, "Isolation and characterization of two sterols from the green alga, Selenastrum capricornutum" (1976). Dissertations and Theses. Paper 861. https://doi.org/10.15760/etd.861 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. ISOLATIO[\ At\D CHAHACTERIZATIOi\ OF 1\'JO STEROLS FRON Tr-lE GREEi\ ALGA. SELENASTRL::I CAPRICORl\UTt.:~l by RA YNOND HARK O~\ Ii\GS A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ef\VIRONHEl\TAL SCIEI\CE-CHEtv1[STRY Portland State University 1976 Ai': ABSTRA.CT OF THE THESIS OF Raymond tvlark O\vings for the Doctor of Philosophy in Environmental Science-Chemistry presented August 4, 1975. Title: Isolation and Characterization of Two Sterols From the Green Alga, Selanastrum capricornutum. APPROVED BY NEivlBERS OF THE THESIS COHNITTEE: Karl Dittmer, Chairman Norman C. Rose Edward N. Perdue Dennis \V. Barnum Richard R. Petersen 2 The green alga, Selenastrum capricornutum, was cul­ tured in artificial nutrient medium utilizing five-gallon carboys, each of which contained 16 1.
    [Show full text]
  • In Vitro Stiumlation of Ergosterol from Coelastrella Terrestris by Using Squalene and Studying Antioxidant Effect
    Sys Rev Pharm 2020;11(11):1795-1803 A multifaceted review journal in the field of pharmacy In Vitro Stiumlation of Ergosterol from Coelastrella Terrestris by Using Squalene and Studying Antioxidant Effect Altaf AL-Rawi, Fikrat M. Hassan* and Bushra M.J.Alwash Department of Biology, College of Science for Women, University of Baghdad, Baghdad – Iraq *Corresponding author: [email protected] ABSTRACT Ergosterol is one of the most important chemicals produced by algae, specifically Keywords: Algae, Chlorophyceae, Coelastrella, Squalene, Secondary products, by microalgae, and the Squalene is the commonly known as a precursor for Antioxidant. biosynthesis of ergosterol. Coelastrella terrestris was isolated from sediment sample collected from the banks of Tigris River and the modified Chu 10 culture Correspondence: medium was used for algal growth and determining the optimum growth Fikrat M. Hassan condition (25) °C and 268 µE. mˉ². secˉ¹). In an attempt to further maximize Department of Biology, College of Science for Women, University of Baghdad, ergosterol production by C. terrestris. The optimal temperature and light growth Baghdad10070 – Iraq. conditions 30 ºC and 300 µE. mˉ².secˉ¹ were tested under of different Squalene Email: [email protected] concentrations treatments (0.1, 0.25, 0.5 and 1٪). This combined treatment of optimal culture conditions and Squalene was caused an extremely a highest ergosterol production recorded (533.3 ± 15.92 ppm) at 1% squalene in phase 2, while the lowest production (54.3 ± 2.48ppm) was at 0.10% Squalene in phase3. The present study has further investigated the potential antioxidant activity of C. terrestis crude extract and ergosteoleby the ability to scavenging free radical 2.2 diphenyl-1-picrylhydrzyl (DPPH).
    [Show full text]
  • Evaluation of Certain Food Additives
    952 Food Additives WHO Technical Report Series WHO Technical Sixty-ninth report of the FOOD ADDITIVES Joint FAO/WHO Expert Committee on Food and Agriculture Organization of the United Nations S I N A P T A F I EVALUATION OF CERTAIN EVALUATION OF CERTAIN FOOD ADDITIVES WHO Technical Report Series 952 ISBN 978 92 4 120952 6 2,3-trimethylbutyramide (No. 1595) and N, , phytosterols, phytostanols and their esters, , calcium lignosulfonate (40–65), ethyl lauroyl arginate, paprika Pichia pastoris A. niger -unsaturated aldehydes, acids and related alcohols, acetals and esters; β , α expressed in niger Aspergillus L-monomenthyl glutarate (No. 1414). recommendations for intakes and Annexed to the report are tables summarizing the Committee’s toxicological evaluations of the food additives considered. aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper
    [Show full text]
  • Chemical Composition of Cystoseira Crinita Bory from the Eastern Mediterranean Zornitsa Kamenarskaa, Funda N
    Chemical Composition of Cystoseira crinita Bory from the Eastern Mediterranean Zornitsa Kamenarskaa, Funda N. Yalc¸ınb, Tayfun Ersözb,I˙hsan C¸ alis¸b, Kamen Stefanova and Simeon Popova,* a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria. Fax: ++3592/700225. E-mail: [email protected] b Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR 06100 Ankara, Turkey *Author for correspondence and reprint requests Z. Naturforsch. 57c, 584Ð590 (2002); received January 29/March 13, 2002 Cystoseira crinita, Lipids, Secondary Metabolites The chemical composition of the brown alga Cystoseira crinita Bory from the Eastern Mediterranean was investigated. Fourteen sterols have been identified, five of them for the first time in algae. The structure of one new sterol was established. The origin of seven sterols with short side chains was discussed. In the volatile fraction 19 compounds and in the polar fraction 15 compounds were identified. The main lipid classes were isolated and their fatty acid composition was established. Introduction pounds of the same sample of C. crinita was also There are more than 265 genera of brown algae performed. In the complex mixture was shown the (Chromophycota, Phaeophyceae), grouped in 15 presence of some monoterpenes, from which only orders (South and Whittick, 1987), widely spread dihydroactinidiolide was identified (Milkova et al., all over the world. Although there are many inves- 1997). The volatiles of C. barbata, collected at the tigations on their chemical composition, the infor- same time and location, contained mainly chlori- mation, concerning their taxonomy is still incom- nated ethanes, while the volatiles of C.
    [Show full text]
  • Metabolomic Investigations Into Human Apocrine Sweat Secretions
    METABOLOMIC INVESTIGATIONS INTO HUMAN APOCRINE SWEAT SECRETIONS Graham Mullard, BSc (Hons), MSc Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy September 2011 Abstract Human axillary odour is formed by the action of Corynebacteria or Stephyloccui bacteria on odourless axilla sections. Several groups have identified axillary odorants, including 3-methyl-2-hexanoic acid (3M2H) and 3-hydroxy-3-methyl-hexenoic acid (HMHA), and how they are pre-formed and bound to amino acid conjugates. However, there is currently a lack of LC-MS methodologies and no reported NMR methods, that are required to further identify the non-volatile constituents, which would provide further information to allow understanding of the underlying physiological biochemistry of malodour. This work has incorporated a three-pronged approach. Firstly, a global strategy, through the use of NMR and LC-MS, provided a complementary unbiased overview of the metabolite composition. Metabolites were identified based on acquired standards, accurate mass and through the use of in-house or online databases. Furthermore, spectra of biological samples are inherently complex, thus, requiring a multivariate data analysis (MVDA) approach to extract the latent chemical information in the data. Secondly, semi-targeted LC-MS/MS methodologies has been used to identify metabolites with a common structural core (i.e. odour precursors) and provide structural information for the reliable identification of known and unknown metabolites. Finally, a targeted LC-MSIMS method provided an increase in specificity and sensitivity to accurately quantify known metabolites of interest (odour precursors). Initially, all methodologies were developed through the use of either an artificial sweat matrix (global strategy) or through the use of synthetic standards (semi-targeted or targeted strategy).
    [Show full text]
  • Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry)
    Molecules 2015, 20, 17221-17243; doi:10.3390/molecules200917221 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry) Laura Klavina 1,*, Gunta Springe 2, Vizma Nikolajeva 3, Illia Martsinkevich 4, Ilva Nakurte 4, Diana Dzabijeva 4 and Iveta Steinberga 1 1 Department of Environmental Science, University of Latvia, 19 Raina Blvd., Riga LV-1586, Latvia; E-Mail: [email protected] 2 Institute of Biology, University of Latvia, 3 Miera Street, Salaspils LV-2169, Latvia; E-Mail: [email protected] 3 Department of Microbiology and Biotechnology, University of Latvia, 4 Kronvalda Blvd., Riga LV-1010, Latvia; E-Mail: [email protected] 4 Faculty of Chemistry, University of Latvia, 19 Raina Blvd., Riga LV-1586, Latvia; E-Mails: [email protected] (I.M.); [email protected] (I.N.); [email protected] (D.D.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +371-283-480-67. Academic Editor: Derek J. McPhee Received: 29 July 2015 / Accepted: 10 September 2015 / Published: 18 September 2015 Abstract: Mosses have been neglected as a study subject for a long time. Recent research shows that mosses contain remarkable and unique substances with high biological activity. The aim of this study, accordingly, was to analyze the composition of mosses and to screen their antimicrobial and anticancer activity. The total concentration of polyphenols and carbohydrates, the amount of dry residue and the radical scavenging activity were determined for a preliminary evaluation of the chemical composition of moss extracts.
    [Show full text]
  • Riterpene Profiles of the Callus Culture of Solanum Mammosum
    Makara Journal of Science, 23/2 (2019), 72-78 doi: 10.7454/mss.v23i2.11044 Sterol and Triterpene Profiles of the Callus Culture of Solanum mammosum Silvy Juliana, Suciati*, and Gunawan Indrayanto Plant Biotechnology Research Group, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60286, Indonesia *E-mail: [email protected] Received January 15, 2019 | Accepted April 1, 2019 Abstract This study aimed to compare the sterol and triterpene profiles of two types of Solanum mammosum callus cultures, i.e., compact globular structure (CGS) and normal fine (F) calluses. The CGS callus resulted from the differentiation of the F callus culture after many years of subculturing. The growth rate, microscopic characteristics, and morphologies of the two callus types were determined and compared. Sterols and triterpenes were identified through thin-layer chromatog- raphy, gas chromatography–flame ionization detection, and gas chromatography–mass spectrometry analyses. The growth rate of the CGS callus was lower than that of the F callus. Microscopic identification revealed that thick, lignin- containing cell walls formed in the CGS callus but not in the F callus. The chromatographic analysis suggested that the CGS and F callus cultures had different sterol and triterpenoid profiles. The sterols and triterpenes produced by the CGC culture were more diverse than those produced by the F callus culture. Keywords: Solanum mammosum, callus, tissue culture, sterol, triterpene Introduction glaucophyllum) [8]. The callus cultures of S. mammosum and S. wrightii produce cholesterol, campesterol, Sterols can be found in all eukaryotic organisms as stigmasterol, and β-sitosterol but not solasodine [7,9].
    [Show full text]