Mojave Desert Vista

Total Page:16

File Type:pdf, Size:1020Kb

Mojave Desert Vista Chapter Two — Landscape Design Segments Landscape Design Segments TABLE of CONTENTS Section One: Highway Zones .............................................................................. 2.3 Section Two: Mojave Desert Vista ..................................................................2.15 Section Three: Silver Legends ...........................................................................2.22 Section Four : Great Basin Oasis ......................................................................2.34 Section Five: Pony Express Passage ...............................................................2.49 UNLANDSCAPE ARCHITECTURE & PLANNINGLV RESEARCH Introduction Chapter Two — Landscape Design Segments INTRODUCTION be further divided into highway zones. These cat- nity interface zone. Within this zone, traffic-calm- COMPREHENSIVE DESIGN CONCEPT egories establish program elements and goals that ing techniques are appropriate and pedestrian needs This chapter establishes the design direction for should always be considered when addressing proj- dominate. As communities develop and adjacent land The corridor design concept can be articulated highway landscape and aesthetics. The chapter is ects located along roads with similar characteristics uses change, the highway zone associated with the for both rural and urban segments. In rural organized into five sections. The first section de- (downtowns, transition areas, etc.). new land use and development can be updated. Fig- or predominately undeveloped areas, the scribes program elements that relate to the high- ures 9 thru 11 (on pages 2.4, 2.5, and 2.9) illustrate highway should blend with the natural way type under consideration and its surrounding For example, every low-speed road that travels the design objectives associated with the General landscape. The presence of the road is muted land uses. Sections two through five describe the through a downtown area is considered a commu- Highway Categories. by design interpretations of naturally occurring design objectives associated with each landscape patterns of geology, vegetation, and soils. The design segment and its theme. These design ob- Figure 7 - Corridor Organizing Elements. successful emulation of these patterns results jectives clarify how the program elements should GENERAL* in a landscape environment that avoids the distinct separation between road and land look. HIGHWAY TYPES HIGHWAY ZONES/ that often characterizes rural highways. DESIGN OBJECTIVES Figure 7 illustrates the two main categories used URBAN CONFLUENCE URBAN FREEWAYS In urban areas, the perception of community to organize highways as they relate to landscape High-speed, high-volume, controlled access and aesthetics. Information derived from both cat- roads. Includes elevated highways and URBAN BACKGROUND character is often shaped by a highway’s design some bypasses. egories is analyzed to design both the functional MANAGED LANDSCAPE CHARACTER and its features. This is especially evident when aspects and physical form of highway facilities. a highway also serves as a community’s “Main Street.” Creating a coherent visual environment COMMUNITY INTERFACE General Highway Categories consider factors such CITY STREETS that unifies a community is key to the success Slower-speed, high volume roads that pass as the road type, speed and volume of travel, type through a community with the potential for many COMMUNITY TRANSITION of the highway system. The highway should different adjacent land uses. consist of a range of landscape treatments that of access, and the densities of adjacent land use. MANAGED LANDSCAPE CHARACTER focus attention on important places, reveal • Goals associated with the general catego- ries represent planning and design ideas community character and information, and that should always be considered for roads RURAL HIGHWAYS PRESERVED LANDSCAPE CHARACTER blend the roadway with surrounding uses. with similar functions High-speed, lower volume road with very low- density residential, agricultural, or open space adjacent land uses. SCENIC DESIGNATION Context-Sensitive Categories consider place spe- cific features – environment, culture, and history. CONTEXT-SENSITIVE** • Goals describe how general design objec- THEME tives should look DESIGN OBJECTIVES LANDSCAPE DESIGN Section One: Highway Zones/ SEGMENT SPECIFIC FEATURES Design Objectives DESIGN INTERPRETATION The Master Plan organizes road systems into differ- * General: Includes design goals and objectives that should always be considered during the design of a project as it relates ent highway types: urban freeways, city streets, and to the types of surrounding land uses, development, and street patterns regardless of the landscape design segment in which rural highways. Highway types are categorized ac- they are located. ** Context-sensitive: Includes themes, design goals and objectives, and projects that relate specifically to the landscape design cording to the type of road, the speed and volume of segment in which they are located. The goals and objectives should be considered in addition to the general goals travel, and the type of access. Each classification may and objectives. 2.1 Chapter Two — Landscape Design Segments Introduction Chapter Two — Landscape Design Segments SECTION TWO: Mojave Desert Vista Sections Two through Five: Landscape Using the Landscape Design Segments DESIGN INTERPRETATION SUMMARY Theme and Design Interpretation Mojave Desert Vista Interpretation of the segment’s design themes occurs during individual project design. The corridor plan establishes the direction for project level design. Examples illustrate The segment theme describes the vision for the segment in terms Landscape design segments provide an orga- forms and materials that could be used to accomplish the stated design objectives. Design Segments of how the highway should appear. Images that depict how the The last four sections describe the design objec- nizational tool for applying design concepts theme may be interpreted and applied through individual project Photo courtesy of K. Helphand, 2002, p. 190. (4) The elegant use of native material compliments the natural landscape. design are provided. tives, theme, and specific features associated along the highway. After understanding the with each landscape design segment. Landscape project components that may be applied (1) Native rock walls echo the existing rock material and (2) Appropriate colors and materials (3) Architectural forms that echo natural forms fit seemlessly into the form. enhance the natural setting. landscape. design segments organize the highway into areas within each highway zone (community in- of similar character based upon elements such terface, managed landscape character, etc.), (5) Vibrant native vegetation provides visual interest. as topography, plant communities, and commu- it is important to understand the theme and nity development. Segments set the major design design objectives of the segment. These ele- (9) Contrasting materials and color and native vegetation allow structures to blend into their environments. (6) Pedestrian friendly streetscape elements, such as (7) Shade structures add to the architectural (8) Architectural elements consistent with the desert climate are theme and provide a unifying design concept that ments describe how the features should look. bump-outs for crossings and angled parking, help interest and relate to the areas’s culture at rest appropriate in desert landscapes. highways integrate with communities. areas. 2.18 is interpreted during individual project design. Design interpretation images provide physi- CONTINUE ON MAP B3 Stonewall ENTIRE CORRIDOR JOSHUA TREE PRESERVATION 1 PULL-OFF AND KIOSK WITH TRAVEL 5 Mountain 3 cal examples of potential projects. Support- INFORMATION FOR LIDA AND GOLD POINT 4 COORDINATE POTENTIAL REGIONAL TRAIL CONNECTIONS WITH ESMERALDA Specific Features Figure 8 describes the way in which landscape de- SR 266 Gold Flat Lida SR 266 2 DEER CROSSING IMPROVEMENTS RECREATIONAL TRAILS PROJECT 3 PLACE NAME SIGNAGE COORDINATION WITH SILVER TRAILS PROGRAM 105 Potential projects and improvements identified within the ing maps, sections, aerial photos, and imagery SR 71 3 COMPLETE REST AREA AND 1 UTILIZE SCATTERED ROCK MULCH TO sign segments are used to develop context sensi- Gold Point RECREATIONAL GATEWAY TO CONTROL DUST Slate Ridge 100 DEATH VALLEY LEGEND 7 ROAD SHOULDER ENHANCEMENT FOR segment. Projects are grouped into six categories – community, 3 SIGNAGE FOR TIMBISHA INDIAN VEHICLE RECOVERY WHILE MAINTAINING COMMUNITY OPPORTUNITIES 95 Scotty’s RESERVATION INTEGRITY OF EXISTING LANDSCAPE 1. Statewide gateway Junction 2. Community gateway Pah CONSIDER PASSING LANES IN RURAL AREAS illustrate the design objectives and appropri- 3. Pedestrian linkage & circulation ut 7 travel and tourism, planting, natural resource and wildlife, views e tive designs. 4. Bike & multi-use trail linkage Mes RATHER THAN THROUGH COMMUNITIES 90 5. Highway archaeology, cultural, or historic Nevada a awareness 6. Highway & community compatibility California US 95 3 PLACE NAME SIGN FOR SARCOBATUS FLAT improvement 85 and landmarks, and roadway practices and structures. 7. Partnerships & resource leveraging NEVADA TEST SITE Papoose ate application throughout the corridor. TRAVEL & TOURISM OPPORTUNITIES 80 TRAIL 1. Roadside Services SR 267 3 PLACE NAME SIGN FOR NEVADA TEST SITE Lake 2. Viewpoints & points of interest Flat ORIC 3. Travel information program Sarcobatus 75 4. Highway
Recommended publications
  • Geodesy and Contemporary Strain in the Yucca Mountain Region, Nevada
    Geodesy and Contemporary Strain in the Yucca Mountain Region, Nevada By W.R. Keefer, J.A. Coe, S.K. Pezzopane, anofW. Clay Hunter U.S. GEOLOGICAL SURVEY Open-File Report 97-383 Prepared in cooperation with the NEVADA OPERATIONS OFFICE U.S. DEPARTMENT OF ENERGY (Interagency Agreement DE-AI08-92NV10874) Denver, Colorado 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: Chief, Earth Science Investigations Program U.S. Geological Survey Yucca Mountain Project Branch Information Services U.S. Geological Survey Box 25286 Box 25046, Mail Stop 421 Federal Center Denver Federal Center Denver, CO 80225 Denver, CO 80225-0046 CONTENTS Abstract................................................................................................................................................................................. 1 Introduction .............................................................................. 1 Background and Piirpose...........................................................................................................................................^ 1 Geologic Setting ......................................................................................................................................................... 4 Geodetic
    [Show full text]
  • Mercury Bowling Alley Demolition
    MEMORANDUM OF AGREEMENT BETWEEN THE U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA FIELD OFFICE, AND THE NEVADA STATE HISTORIC PRESERVATION OFFICER REGARDING THE DEMOLITION OF THE MERCURY BOWLING ALLEY, NEVADA NATIONAL SECURITY SITE, NEVADA WHEREAS, the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) intends to demolish the Mercury Bowling Alley (Building 23-517) on the Nevada National Security Site (NNSS) in Nye County, Nevada, as part of its plans for new construction and modernization of Mercury to support the NNSS's changing role in national security; and WHEREAS, the present undertaking consists of the demolition of Building 23-517 (SHPO Resource Number B 14451) that has remained vacant since the mid-i 990s following the end of nuclear testing activities at the NNSS (formerly Nevada Test Site [NTS]). In planning for the undertaking, NNSA/NFO considered all possible alternatives to avoid and minimize adverse effects to historic properties; and WHEREAS, theNNSA/NFO has defined the undertaking's area of potential effect (APE) as a 4.5-acre area in Mercury bounded on the west by the Mercury Highway, on the east by Teapot Street, on the south by Trinity Avenue, and on the north by a prominent terrace immediately south of a parking lot, park, and tennis/basketbatl court (Attachment A); and WHEREAS, the NNSA/NFO recorded and evaluated Building 23-517 (Attachment A) En accordance with the Nevada ArchUectvral Survey and Inventory Guidelines, and has determined that Building 23-517 is eligible for listing in the National Register of Historic Places (NRHP) under the Secretary's Significance Criteria A and C at the locai level of historic significance related to the era of nuclear testing; and WHEREAS, the NNSA/NFO has determined that the undertaking will constitute an adverse effect to the historic property Building 23-517, and has consulted with the Nevada Historic Preservation Officer (SHPO) pursuant to 36 C.F.R.
    [Show full text]
  • Weiss Et Al, 1995) This Paper Disputes the Interpretation of Castor Et Al
    EVALUATION OF THE GEOLOGIC RELATIONS AND SEISMOTECTONIC STABILITY OF THE YUCCA MOUNTAIN AREA NEVADA NUCLEAR WASTE SITE INVESTIGATION (NNWSI) PROGRESS REPORT 30 SEPTEMBER 1995 CENTER FOR NEOTECTONIC STUDIES MACKAY SCHOOL OF MINES UNIVERSITY OF NEVADA, RENO DISTRIBUTION OF ?H!S DOCUMENT IS UKLMTED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document CONTENTS SECTION I. General Task Steven G. Wesnousky SECTION II. Task 1: Quaternary Tectonics John W. Bell Craig M. dePolo SECTION III. Task 3: Mineral Deposits Volcanic Geology Steven I. Weiss Donald C. Noble Lawrence T. Larson SECTION IV. Task 4: Seismology James N. Brune Abdolrasool Anooshehpoor SECTION V. Task 5: Tectonics Richard A. Schweickert Mary M. Lahren SECTION VI. Task 8: Basinal Studies Patricia H. Cashman James H. Trexler, Jr. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Plate 1 117° 116°
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2015–5175 U.S. Geological Survey U.S. Department of Energy Plate 1 117° 116° Monitor Range White River Valley Hot Creek Valley 5,577 (1,700) Warm Springs Railroad Valley 6 5,000 4,593 (1,400) Stone Cabin Valley Quinn Canyon Range Tonopah 5,577 (1,700) Ralston Valley NYE COUNTY 4,921 (1,500) LINCOLN COUNTY Big Smoky Valley 5,249 (1,600) 38° 38° 5,906 (1,800) 5,249 (1,600) Ralston Valley Coal Valley 5,249 (1,600) Kawich Range 4,265 (1,300) 4,921 (1,500) 5,249 (1,600) 6,234 (1,900) 5,577 (1,700) 4,921 (1,500) Railroad Valley South CACTUS FLAT 5,200 | 200 Cactus Range Penoyer Valley Goldfield 5,249 (1,600) 3,800 | 3,800 4,921 (1,500) Clayton Valley 3,609 (1,100) Rachel Sand Spring Valley 5,249 (1,600) 5,577 (1,700) Sarcobatus Flat North Kawich Valley 4,593 (1,400) 5,600 | 5,600 93 Pahranagat Valley 4,921 4,593 (1,400) 4,593 (1,400)5,249 3,937 (1,200)4,265 (1,300) Gold Flat Pahranagat Range 4,921 (1,500) Pahute Mesa–Oasis Valley 6,300 | 5,900 Belted Range Alamo 4,265 (1,300) 4,593 (1,400) 3,609 (1,100) Scottys Emigrant Valley Junction Black Pahute Mesa Nevada National Mountain Security Site 3,281 (1,000) NYE COUNTY Sarcobatus Flat ESMERALDA COUNTY ESMERALDA Rainier Mesa 3,937 (1,200) Yucca Flat Timber Death Valley North Mountain 4,000 | 4,000 Yucca Flat Sarcobatus Flat South Oasis Valley subbasin Grapevine 37° 37° Springs area 1,900 | 1,900 4,265 Grapevine Mountains Bullfrog Hills 2,297 (700) 100 | 100 3,937 (1,200) Ash Meadows 20,50020,500 |
    [Show full text]
  • USGS-OFR-91-367, "Seismicity and Focal Mechanisms for the Southern Great Basin of Nevada and California in 1990."
    bf/w4E? P~? USGS-OFR-91-367 USGS-OFR-91-367 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SEISMICITY AND FOCAL MECHANISMS FOR THE SOUTHERN GREAT BASIN OF NEVADA AND CALIFORNIA IN 1990 by S. C. Harmsen Open-File Report 91-367 Prepared In cooperation with the Nevada Operations Office U.S. Department of Energy (Interagency Agreement DE-AI08-78ET44802) This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Company names are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey. Denver, Colorado 1991 USGS-OFR-91-367 USGS-OFR-91-367 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Denver, Colorado SEISMICITY AND FOCAL MECHANISMS FOR THE SOUTHERN GREAT BASIN OF NEVADA AND CALIFORNIA IN 1990 - Stephen C. Harmsen Open-File Report 91-367 Copies of this Open-File Report may be purchased from Books and Open-File Reports Section Branch of Distribution U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 PREPAYMENT IS REQUIRED Price information will be published in the monthly listing 'New Publications of the Geological Survey" FOR ADDITIONAL ORDERING INFORMATION CALL: Commercial: (303) 236-5456 FTS: 776-5456 CONTENTS Page Abstract----------------------------------------------------------------- 1 Introduction------------------------------------------------------------- I Acknowledgements--------------------------------------------------------- 1 Calibrations of instruments----------------------------------------------
    [Show full text]
  • Distribution of Amargosa River Pupfish (Cyprinodon Nevadensis Amargosae) in Death Valley National Park, CA
    California Fish and Game 103(3): 91-95; 2017 Distribution of Amargosa River pupfish (Cyprinodon nevadensis amargosae) in Death Valley National Park, CA KRISTEN G. HUMPHREY, JAMIE B. LEAVITT, WESLEY J. GOLDSMITH, BRIAN R. KESNER, AND PAUL C. MARSH* Native Fish Lab at Marsh & Associates, LLC, 5016 South Ash Avenue, Suite 108, Tempe, AZ 85282, USA (KGH, JBL, WJG, BRK, PCM). *correspondent: [email protected] Key words: Amargosa River pupfish, Death Valley National Park, distribution, endangered species, monitoring, intermittent streams, range ________________________________________________________________________ Amargosa River pupfish (Cyprinodon nevadensis amargosae), is one of six rec- ognized subspecies of Amargosa pupfish (Miller 1948) and survives in waters embedded in a uniquely harsh environment, the arid and hot Mojave Desert (Jaeger 1957). All are endemic to the Amargosa River basin of southern California and Nevada (Moyle 2002). Differing from other spring-dwelling subspecies of Amargosa pupfish (Cyprinodon ne- vadensis), Amargosa River pupfish is riverine and the most widely distributed, the extent of which has been underrepresented prior to this study (Moyle et al. 2015). Originating on Pahute Mesa, Nye County, Nevada, the Amargosa River flows intermittently, often under- ground, south past the towns of Beatty, Shoshone, and Tecopa and through the Amargosa River Canyon before turning north into Death Valley National Park and terminating at Badwater Basin (Figure 1). Amargosa River pupfish is data deficient with a distribution range that is largely unknown. The species has been documented in Tecopa Bore near Tecopa, Inyo County, CA (Naiman 1976) and in the Amargosa River Canyon, Inyo and San Bernardino Counties, CA (Williams-Deacon et al.
    [Show full text]
  • United States Department of the Interior Geological Survey
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GUIDEBOOK FOR PAST FIELD TRIPS TO THE NEVADA TEST SITE by R. L* Christiansen, F. G. Poole, Harley Barnes, P. P. Orkild, F. M. Byers, Jr., W. J. Carr, F. A. McKeown, F. N. Houser, E. M. Shoemaker, and W. L. Emerick Open-file Report 1969 69 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. CONTENTS Page General Introduction, by Robert L. Christiansen. ........ 1 Paleozoic Stratigraphy and post-Paleozoic tectonic structure of Nevada Test Site and Vicinity, by F. G. Poole and Harley Barnes. ........................ 2 Timber Mountain Caldera and Related Volcanic Rocks, by Robert L. Christiansen, Paul P. Orkild, F. M. Byers, Jr., and W. J. Carr ........................ 24 Engineering Geology and Surface Effects of Nuclear Explosions, by F. A. McKeown, F. N. Houser, E. M. Shoemaker, and W. L. Emerick. ........................ 47 GENERAL INTRODUCTION A wide variety of geological studies has been undertaken by the U.S. Geological Survey at the Nevada Test Site since 1957 in cooperation with the Nevada Operations Office of the U.S. Atomic Energy Commission. This book has been prepared as a guide to some of the major results of the Survey's studies in this area and has been*divided into three topically oriented field trips. In several respects the Nevada Test Site is located in an area that is especially interesting geologically. It lies along the projected trend of the Walker Lane and the Las Vegas Valley Shear Zone (Locke and others, 1940; Longwell, 1960), one of the major crustal features of the Basin-Range province.
    [Show full text]
  • Figure 3-72. Groundwater Usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, P
    AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Figure 3-72. Groundwater usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, p. 7.) There are a number of published estimates of perennial yield for many of the hydrographic areas in Nevada, and those estimates often differ by large amounts. The perennial-yield values listed in Table 3-35 predominantly come from a single source, the Nevada Division of Water Planning (DIRS 103406-Nevada Division of Water Planning 1992, for Hydrographic Regions 10, 13, and 14); therefore, the table does not show a range of values for each hydrographic area. In the Yucca Mountain area, the Nevada Division of Water Planning identifies a combined perennial yield for hydrographic areas 225 through 230. DOE obtained perennial yields from Data Assessment & Water Rights/Resource Analysis of: Hydrographic Region #14 Death Valley Basin (DIRS 147766-Thiel 1999, pp. 6 to 12) to provide estimates for hydrographic areas the Caliente rail alignment would cross: 227A, 228, and 229. That 1999 document presents perennial-yield estimates from several sources. Table 3-35 lists the lowest (that is, the most conservative) values cited in that document, which is consistent with the approach DOE used in the Yucca Mountain FEIS (DIRS 155970-DOE 2002, p. 3-136). DOE/EIS-0369 3-173 AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Table 3-35 also summarizes existing annual committed groundwater resources for each hydrographic area along the Caliente rail alignment. However, all committed groundwater resources within a hydrographic area might not be in use at the same time. Table 3-35 also includes information on pending annual duties within each of these hydrographic areas.
    [Show full text]
  • Estimated Potentiometric Surface of the Death Valley Regional Groundwater Flow System, Nevada and California by Michael T
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2016-5150 U.S. Geological Survey Bureau of Land Management, National Park Service, U.S. Department of Energy National Nuclear Security Administration Sheet 1 (Interagency Agreement DE–AI52–01NV13944), and Office of Civilian Radioactive Waste Management (Interagency Agreement DE–AI28–02RW12167), U.S. Fish and Wildlife Service, and Nye County, Nevada 650000 115° 117° 550000 116° 600000 118° 450000 500000 San Antonio Mts Monte Cristo Range Monitor Range Big Smokey Stone Valley Cabin Grant Range Valley Railroad 1600 Tonopah Valley Quinn Canyon Range Reveille Range 38° 38° Lincoln County Reveille Valley 4200000 4200000 Esmeralda County 1700 1500 1800 1500 Cactus Penoyer Valley Goldfield 00 00 16 Flat 16 (Sand Spring Worthington Range Hill Valley) Nye County 1600 Cactus Range Clayton Valley Stonewall Montezuma Range Flat Kawich Range Timpahute Range Hiko Range Kawich Fish Lake Valley 1700 1500 Gold Valley North Pahranagat Range 1600 Flat Palmetto Mts 1400 Stonewall 1400 4150000 4150000 1500 Mtn 1600 1500 East Pahranagat Range Pahranagat Range 1300 Magruder Mtn Tikaboo Valley Belted Range EmigrantValley Groom Range Last Chance Range 1500 Slate Ridge 1200 1300 Eureka Valley 1200 Pahute 1100 Black Mesa 1100 Mtn 1000 Gold Rainier Eleana 1500 Range Mtn Stonewall Mesa 1000 White Mts Pass Desert Range 900 Halfpint Range Shoshone Yucca 800 Grapevine Mts Flat 1300 Timber Mtn 1500 Sarcobatus Mtn 700 4100000 4100000 1700 Flat 37° 37° 1400 Desert 1600 Valley
    [Show full text]
  • Underground Test Area (UGTA) Sub-Project Strategy: Radiological Environmental Monitoring Plan (RREMP)
    Nevada Test Site 828 underground nuclear tests were conducted on the Nevada Underground Test Area Test Site from 1951 to 1992. Some of the tests occurred near or below the water table, (UGTA) Sub-Project resulting in groundwater contamination. Pahute Mesa Earth Vision three-dimensional 5'4!3UB 0ROJECTSTAFFARERESPONSIBLEFOR computer model EVALUATINGTHEIMPACTOFHISTORICNUCLEARTESTS ONGROUNDWATERRESOURCESANDSTUDYINGTHE EXTENTOFCONTAMINANTMIGRATION 4HE5'4!!PPROACH q /RGANIZEDINTOFIVE#ORRECTIVE!CTION5NITS#!5S q !#!5ISAGROUPINGOF#ORRECTIVE!CTION3ITES#!3S BASEDONTHE LOCATIONSOFHISTORICUNDERGROUNDNUCLEARTESTSANDSIMILARGEOLOGY q %ACH#!5ISANALYZEDANDEVALUATED q 7ELLSAREDRILLEDTOCOLLECTFIELDDATASAMPLES q &IELDDATAISUSEDTOCREATETHREE DIMENSIONALCOMPUTERMODELS q -ODELSAREUSEDTOESTIMATEGROUNDWATERFLOWANDTRANSPORTPARAMETERS q -ODELSARETHEPREFERREDDECISIONTOOLSFORPREDICTINGCURRENTANDFUTURE location of contamination q -ONITORINGOFGROUNDWATERISUSEDTOEVALUATEMODELPREDICTIONSAND ENSURECOMPLIANCEWITHREGULATORYREQUIREMENTS Central Pahute Mesa CAU 9UCCA 5'4!WELL%2 DURINGMOBILIZATIONON9UCCA&LAT &LAT CAU $/%STAFFWORKSWITHOTHERORGANIZATIONSINACOLLABORATIVE Western Pahute APPROACHTOUNDERSTANDTHENATUREANDEXTENTOFGROUNDWATER Mesa CAU contamination: s,AWRENCE,IVERMORE.ATIONAL,ABORATORY s,OS!LAMOS.ATIONAL,ABORATORY &RENCHMAN 2AINIER &LAT s $ESERT2ESEARCH)NSTITUTE Mesa CAU 3HOSHONE s 5NITED3TATES'EOLOGICAL3URVEY Mountain CAU s 3TATEOF.EVADA s .ATIONAL3ECURITY4ECHNOLOGIES s .AVARRO )NTERA !LLACTIVITIESARECONDUCTEDINACCORDANCEWITHTHE&EDERAL &ACILITY!GREEMENTAND#ONSENT/RDER&&!#/
    [Show full text]
  • Identification of Aircraft Hazards
    QA: QA 000-30R-WHSO-00 100-000-005 March 2005 Identification of Aircraft Hazards Prepared for: U.S.Department of Energy Office of Civilian Radioactive Waste Management Office of Repository Development 1551 Hillshire Drive Las Vegas, Nevada 89134-6321 Prepared by: Bechtel SAC Company, LLC 1 180 Town Center Drive Las Vegas, Nevada 89144 Under Contract Number DE-AC28-01RW 12101 I DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. 000-30R-WHSO-00 100-000-005 11 March 2005 I Originators: K.L. Ashlei Preclosyjfe Safety Analysis Checkers: Guy Ragan,YU Checker, - Preclosure Safety Analysis WhDQ&U* 22 )uUQ 2005 W. Dockery, Quality En'gineering Representative Date Responsible Manager: 3/!!+6- Date ..
    [Show full text]
  • A. Geologic Section B. Hydrogeologic Section SECTIONS SHOWING
    WATER-RESOURCES INVESTIGATIONS REPORT 96-4109 Prepared in cooperation with the Regional ground-water flow at and near the Nevada Test Site (sections)—PLATE 2 OF 4 U.S. DEPARTMENT OF THE INTERIOR Laczniak and others, 1996, Summary of hydrogeologic controls U.S. GEOLOGICAL SURVEY U.S. DEPARTMENT OF ENERGY on ground-water flow at the Nevada Test Site, Nye County, Nevada 116°22'30" A. Geologic Section A A' Rainier Mesa NEVADA CALIFORNIA FEET FEET Rock Valley 8,000 Rainier Mesa Ex.1 8,000 Eleana fault system Dolomite Hill Range Tongue Wash fault Yucca Flat French Peak Frenchman Flat Mercury Specter Range Amargosa Flat Amargosa Valley Funeral Mountains Death Valley Valley UE-2ce Yucca Carpetbag fault Yucca faultU-7a UE-6e Lake U-11f Water Well 5b Travertine Well Bat Mountain fault Tracer 2 Devils Hole Travertine Springs SEA LEVEL SEA LEVEL -5,000 -5,000 Major buried fault NO VERTICAL EXAGGERATION in this zone; see text B. Hydrogeologic Section A Ash Meadows ground-water subbasin Alkali Flat - Furnace Creek Ranch ground-water subbasin A' Rainier Mesa FEET Eleana FEET Range Rock Valley 8,000 Rainier Mesa Ex.1 8,000 Dolomite Hill Yucca fault system Funeral Mountains Yucca Flat Lake French Peak Frenchman Flat Specter Range Amargosa Flat Amargosa Valley Death Valley UE-2ce U-7a Ash UE-6e Amargosa River U-11f Meadows Water Well 5b Travertine Well Tracer 2 Devils Hole Travertine Springs SEA LEVEL SEA LEVEL -5,000 -5,000 NO VERTICAL EXAGGERATION MILES 5 0 5 1015 20 51020300 51525 KILOMETERS EXPLANATION Geologic / hydrogeologic units—Units are shown on geologic section and hydrogeologic section Contact—Dashed where uncertain or inferred.
    [Show full text]