Bipolar Junction Transistor As a Detector for Measuring in Diagnostic X-Ray Beams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Photodiode and LIGHT EMITTING DIODE
Photodiode and LIGHT EMITTING DIODE Presentation by JASWANT KUMAR ROLL NO.-12 rd IT(3 SEM.) 1 About LEDs (1/2) • A light emitting diode (LED) is essentially a PN junction opto- semiconductor that emits a monochromatic (single color) light when operated in a forward biased direction. • LEDs convert electrical energy into light energy. LED SYMBOL 2 ABOUT LEDS (2/2) • The most important part of a light emitting diode (LED) is the semi-conductor chip located in the center of the bulb as shown at the right. • The chip has two regions separated by a junction. • The junction acts as a barrier to the flow of electrons between the p and the n regions. 3 LED CIRCUIT • In electronics, the basic LED circuit is an electric power circuit used to power a light-emitting diode or LED. The simplest such circuit consists of a voltage source and two components connect in series: a current-limiting resistor (sometimes called the ballast resistor), and an LED. Optionally, a switch may be introduced to open and close the circuit. The switch may be replaced with another component or circuit to form a continuity tester. 4 HOW DOES A LED WORK? • Each time an electron recombines with a positive charge, electric potential energy is converted into electromagnetic energy. • For each recombination of a negative and a positive charge, a quantum of electromagnetic energy is emitted in the form of a photon of light with a frequency characteristic of the semi- conductor material. 5 Mechanism behind photon emission in LEDs? MechanismMechanism isis “injection“injection Electroluminescence”.Electroluminescence”. -
Integrated High-Speed, High-Sensitivity Photodiodes and Optoelectronic Integrated Circuits
Sensors and Materials, Vol. 13, No. 4 (2001) 189-206 MYUTokyo S &M0442 Integrated High-Speed, High-Sensitivity Photodiodes and Optoelectronic Integrated Circuits Horst Zimmermann Institut fiirElektrische Mess- und Schaltungstechnik, Technische Universitat Wien, Gusshausstrasse, A-1040 Wien, Austria (Received February 28, 2000; accepted February3, 2001) Key words: integrated circuits, integrated optoelectronics, optical receivers, optoelectronic de vices, PIN photodiode, double photodiode, silicon A review of the properties of photodiodes available through the use of standard silicon technologies is presented and some examples of how to improve monolithically integrated photodiodes are shown. The application of these photodiodes in optoelectronic integrated circuits (OEICs) is described. An innovative double photodiode requiring no process modificationsin complementary metal-oxide sem!conductor (CMOS) and bipolar CMOS (BiCMOS) technologies achieves a bandwidth in excess of 360 MHzand data rates exceeding 622 Mb/s. Furthermore, a new PIN photodiode requiring only one additional mask for the integration in a CMOS process is capable of handling a data rate of 1.1 Gb/s. Antireflection coating improves the quantum efficiencyof integrated photodiodes to values of more than 90%. Integrated optical receivers for data communication achieve a high bandwidth and a high sensitivity. Furthermore, an OEIC for application in optical storage systems is introduced. Author's e-mail address: [email protected] 189 l 90 Sensors and Materials, Vol. 13, No. 4 (2001) 1. Introduction Photons with an energy larger than the band gap generate electron-hole pairs in semiconductors. This photogeneration G obeys an exponential law: aP,0 G( x) = -- exp( -ax), Ahv (1) where xis the penetration depth coordinate, P0 is the nonreflectedportion of the incident optical power, A is the light-sensitive area of a photodiode, hv is the energy of the photon, and a is the wavelength-dependent absorption coefficient. -
Leds As Single-Photon Avalanche Photodiodes by Jonathan Newport, American University
LEDs as Single-Photon Avalanche Photodiodes by Jonathan Newport, American University Lab Objectives: Use a photon detector to illustrate properties of random counting experiments. Use limiting probability distributions to perform statistical analysis on a physical system. Plot histograms. Condition a detector’s signal for further electronic processing. Use a breadboard, power supply and oscilloscope to construct a circuit and make measurements. Learn about semiconductor device physics. Reading: Taylor 3.2 – The Square-Root Rule for a Counting Experiment pp. 48-49 Taylor 5.1-5.3 – Histograms and the Normal Distribution pp. 121-135 Taylor Ch. 11 – The Poisson Distribution pp. 245-254 Taylor Problem 5.6 – The Exponential Distribution p. 155 Experiment #1: Lighting an LED A Light-Emitting Diode is a non-linear circuit element that can produce a controlled amount of light. The AND113R datasheet shows that the luminous intensity is proportional to the current flowing through the LED. As illustrated in the IV curve shown below, the current flowing through the diode is in turn proportional to the voltage across the diode. Diodes behave like a one-way valve for current. When the voltage on the Anode is more positive than the voltage on the Cathode, then the diode is said to be in Forward Bias. As the voltage across the diode increases, the current through the diode increases dramatically. The heat generated by this current can easily destroy the device. It is therefore wise to install a current-limiting resistor in series with the diode to prevent thermal runaway. When the voltage on the Cathode is more positive than the voltage on the Anode, the diode is said to be in Reverse Bias. -
Transistor Applications in Electronics
Transistor Applications In Electronics Controlling Barnard boded, his gondola aestivating spires essentially. Excitable and premeditative Immanuel directs some canard so murderously! Signed Bart cowl, his handrails epigrammatised demote redeemably. If you if you continue browsing experience. Bipolar transistor applications where on at base voltage less loading your transistor functions such as they were made from potential than along with increase. If you continue browsing experience on switch is used in a standard microcontroller and heat sink and be. Archived via amazon services llc associates program, and saturation or check your circuit switches, means that will have found this process. The electrons that when these integrated circuit to control function of various configurations and rename for? Alternatively turn a simple switch in saturation level, opening episode concentrates on or positively charged, our website for a few hundred millivolts, vb should act in. The connected across them into play in turn a small voltages at a high power? Once you apply a check your application. My exam that occurs at this site require complex compared with no current ib leads towards base voltage drop occur mainly high power supply into existence vacuum. There will heat when excessive load, television and arrangement of transistor applications in heavy motors to the transistor is used in this exponential relationship of electronic technology? Why all transistors can produce current into saturation region a substantially more likely already tripped -
Basic Electronics (Class-XI)
BASIC ELECTRONICS Student Handbook Class - XI CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110092 BASIC ELECTRONICS Student Handbook Class - XI CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110092 Basic Electronics Student Handbook, Class - XI Price: ` First Edition : January 2018, CBSE No. of Copies : Paper Used : 80 GSM CBSE Water Mark White Maplitho “This book or part thereof may not be reproduced by any person any agency in any manner.” Published By : The Secretary, Central Board of Secondary Education, Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110092 Design Layout : Vijaylakshmi Printing Works Pvt. Ltd., & B-117, Sector-5, Noida-201301(U.P.) Composed By Hkkjr dk lafo/ku mísf'kdk ge] Hkkjr ds yksx] Hkkjr dks ,d lEiw.kZ 1izHkqRo&laiUu lektoknh iaFkfujis{k yksdra=kkRed x.kjkT; cukus ds fy,] rFkk mlds leLr ukxfjdksa dks% lkekftd] vkfFkZd vkSj jktuSfrd U;k;] fopkj] vfHkO;fDr] fo'okl] /eZ vkSj mikluk dh Lora=krk] izfr"Bk vkSj volj dh lerk izkIr djkus ds fy, rFkk mu lc esa O;fDr dh xfjek 2vkSj jk"Vª dh ,drk vkSj v[kaMrk lqfuf'pr djus okyh ca/qrk c<+kus ds fy, n`<+ladYi gksdj viuh bl lafo/ku lHkk esa vkt rkjh[k 26 uoEcj] 1949 bZñ dks ,rn~}kjk bl lafo/ku dks vaxhÑr] vf/fu;fer vkSj vkRekfiZr djrs gSaA 1- lafo/ku (c;kyhloka la'kks/u) vf/fu;e] 1976 dh /kjk 2 }kjk (3-1-1977) ls ¶izHkqRo&laiUu yksdra=kkRed x.kjkT;¸ ds LFkku ij izfrLFkkfirA 2- lafo/ku (c;kyhloka la'kks/u) vf/fu;e] 1976 dh /kjk 2 }kjk (3-1-1977) ls ¶jk"Vª dh ,drk¸ ds LFkku -
Bipolar Junction Transistors (Bjts) and Unipolar Transistors (Fets)
Bipolar Junction Transistors (BJTs) and Unipolar Transistors (FETs) (Prepared by Ron, K8DMR, for series of GRARA meetings this year but now only posted on their website because of COVID -19 Pandemic ) including Junction FETs (JFETs) Metal-Semiconductor FETs (MESFETs) and Metal-Oxide-Semiconductor FETs (MOSFETs) INTRODUCTION • A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and holes as charge carriers. • Current is produced both by electric field action on the carriers (drift current) and by thermal diffusion of carriers from regions of high concentration to regions of lower carrier concentration. • Which current predominates depends on the region (p or n type material), material thickness, n/p doping, applied electric field, etc. • BJTs use two p-n type material junctions. Unipolar transistors such as field effect transistors use only one type of charge carrier, electrons for N-channel FETs and holes for p channel FETs. FETs either use a single p-n junction (JFET), a single metal- semiconductor junction (MESFET) or no junction at all (MOSFET). In the MOSFET case the carrier flow is controlled by a metallic plate separated from the semiconductor by an insulation layer, typically SiO2. Let’s consider the Bipolar Junction Transistor first. PNP and NPN BJT Circuit Symbols Showing Positive Current Directions and Positive Voltmeter Leads Electron and Hole flow in an NPN BJT in Active Mode OPERATING REGIONS IN AN NPN BJT Rc is the assumed collector load resistance Note that a BJT is a current controlled current source. Saturation Mode, Cutoff Mode, Active Mode • Saturation mode and cutoff mode are the two BJT modes most used in digital circuits. -
Public Version United States International Trade
PUBLIC VERSION UNITED STATES INTERNATIONAL TRADE COMMISSION Washington, D.C. In the Matter of CERTAIN NON-VOLATILE MEMORY Inv. No. 337-TA-1046 DEVICES AND PRODUCTS CONTAINING SAME INITIAL DETERMINATION ON VIOLATION OF SECTION 337 Administrative Law Judge Dee Lord (April 27, 2018) Appearances: For Complainants Macronix International Co., Ltd. and Macron ix America, Inc.: Michael J. McKeon, Esq., Christian A. Chu, Esq., Thomas "Monty" Fusco, Esq., and Chris W. Dryer, Esq. of Fish & Richardson P.C. in Washington, DC; Leeron G. Kalay, Esq., David M. Barkan, Esq., and Bryan K. Basso, Esq. of Fish & Richardson P.C. in Redwood City, CA; Kevin Su, Esq. of Fish & Richardson P.C. in Boston, MA; Robert Courtney, Esq. and Will J. Orlady, Esq. of Fish & Richardson P.C. in Minneapolis, MN; and Christopher Winter, Esq. of Fish & Richardson P.C. in Wilmington, DE. For Respondents Toshiba Corporation, Toshiba America, Inc., Toshiba America Electronic Components, Inc., Toshiba America Information Systems, Inc., and Toshiba Information Equipment (Philippines), Inc.: Mark Fowler, Esq., Aaron Wainscoat, Esq., Saori Kaji, Esq., Brent K. Yamashita, Esq., Kfista C. Grewal, Esq., and Alan A. Limbach, Esq. of DLA Piper LLP in East Palo Alto, CA; Gerald T. Sekimura, Esq. of DLA Piper LLP in San Francisco, CA; and Steven L. Park, Esq. of DLA Piper LLP in Atlanta, GA. For the Commission Investigative Staff: Vu Q. Bui, Esq. and Anne Goalwin, Esq., of the Office of Unfair Import Investigations, U.S. International Trade Commission of Washington, DC. PUBLIC VERSION Pursuant to the Notice of Investigation (Apr. 6, 2017) and Commission Rule 210.42, this is the administrative law judge's final initial determination in the matter of Certain Non-Volatile Memory Devices and Products Containing Same, Inv. -
Designing Photodiode Amplifier Circuits with Opa128
® DESIGNING PHOTODIODE AMPLIFIER CIRCUITS WITH OPA128 The OPA128 ultra-low bias current operational amplifier RS achieves its 75fA maximum bias current without compro- mise. Using standard design techniques, serious perfor- I R C mance trade-offs were required which sacrificed overall P J J amplifier performance in order to reach femtoamp (fA = 10–15 A) bias currents. IP = photocurrent RJ = shunt resistance of diode junction CJ = junction capacitance UNIQUE DESIGN MINIMIZES R = series resistance PERFORMANCE TRADE-OFFS S FIGURE 1. Photodiode Equivalent Circuit. Small-geometry FETs have low bias current, of course, but FET size reduction reduces transconductance and increases noise dramatically, placing a serious restriction on perfor- Responsivity ≈ 109V/W 5pF mance when low bias current is achieved simply by making Bandwidth: DC to ≈ 30Hz input FETs extremely small. Unfortunately, larger geom- Offset Voltage ≈ ±485µV etries suffer from high gate-to-substrate isolation diode leak- HP 109Ω age (which is the major contribution to BIFET® amplifier 5082-4204 input bias current). Replacing the reverse-biased gate-to-substrate isolation di- 2 6 OPA128LM ode structure of BlFETs with dielectric isolation removes 3 this large leakage current component which, together with a 8 noise-free cascode circuit, special FET geometry, and ad- 109Ω vanced wafer processing, allows far higher Difet ® perfor- mance compared to BIFETs. FIGURE 2. High-Sensitivity Photodiode Amplifier. HOW TO IMPROVE PHOTODIODE AMPLIFIER PERFORMANCE An important electro-optical application of FET op amps is √ for photodiode amplifiers. The unequaled performance of eOUT = 4k TBR the OPA128 is well-suited for very high sensitivity detector k: Boltzman’s constant = 1.38 x 10–23 J/K ° designs. -
SDN136 Analog High Speed Optocoupler 1Mbd, Photodiode with Transistor Output
SDN136 Analog High Speed Optocoupler 1MBd, Photodiode with Transistor Output Description Features The SDN136 is a high speed optocoupler consisting of an TTL Compatible infrared GaAs LED optically coupled through a high High Bit Rate: 1Mb/s isolation barrier to an integrated high speed transistor and Bandwidth: 2.0MHz photodiode. Open Collector Output High Isolation Voltage (5000VRMS) Separate access to the photodiode and transistor allow High Common Mode Interference Immunity users to reduce base-collector capacitance, enabling much RoHS / Pb-Free / REACH Compliant higher switching speeds. Signals with frequencies of up to 2.0MHz can be switched, giving the SDN136 a much broader application range than traditional optocouplers. Agency Approvals The SDN136 comes standard in an 8 pin DIP package. UL / C-UL: File # E201932 Applications VDE: File # 40035191 (EN 60747-5-2) High Speed Logic Ground Isolation Replace Slower Speed Optocouplers Absolute Maximum Ratings Line Receivers Power Transistor Isolation Pulse Transformer Replacement The values indicated are absolute stress ratings. Functional Switch Mode Power Supplies operation of the device is not implied at these or any High Voltage Insulation conditions in excess of those defined in electrical Ground Isolation – Analog Signals characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability. Schematic Diagram Storage Temperature …………………………..-55 to +125°C Operating Temperature …………………………-40 -
100 Transistor Circuits Go To: 101 - 200 Transistor Circuits Go To: 100 IC Circuits
Save 50 - 555 Circuits (more than 97 Circuits) as: .doc (2.1MB) or .pdf (1.4MB) (26-5-2011) For our other free eBooks, Go to: 1 - 100 Transistor Circuits Go to: 101 - 200 Transistor Circuits Go to: 100 IC Circuits For more data on the 555, see these pages: 555-Page 1 for CD users: 555-Page 1 555-Page 2 555-Page 2 555-Page 3 555-Page 3 555-Test 555-Test To learn about the development and history of the 555, go to these links: http://semiconductormuseum.com/Museum_Index.htm - a general discussion about the development of the transistor http://semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Index.htm - history of the 555 - Page1 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page2.h tm - history of the 555 - Page2 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page3.h tm - history of the 555 - Page3 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page4.h tm - history of the 555 - Page4 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page5.h tm - history of the 555 - Page5 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page6.h tm - history of the 555 - Page6 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page7.h tm - history of the 555 - Page7 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page8.h tm - history of the 555 - Page8 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page9.h tm - history of the 555 - Page9 http://www.semiconductormuseum.com/Transistors/LectureHall/Camenzind/Camenzind_Page10. htm - history of the 555 - Page10 For a list of every electronic symbol, see: Circuit Symbols. -
Photovoltaic Couplers for MOSFET Drive for Relays
Photocoupler Application Notes Basic Electrical Characteristics and Application Circuit Design of Photovoltaic Couplers for MOSFET Drive for Relays Outline: Photovoltaic-output photocouplers(photovoltaic couplers), which incorporate a photodiode array as an output device, are commonly used in combination with a discrete MOSFET(s) to form a semiconductor relay. This application note discusses the electrical characteristics and application circuits of photovoltaic-output photocouplers. ©2019 1 Rev. 1.0 2019-04-25 Toshiba Electronic Devices & Storage Corporation Photocoupler Application Notes Table of Contents 1. What is a photovoltaic-output photocoupler? ............................................................ 3 1.1 Structure of a photovoltaic-output photocoupler .................................................... 3 1.2 Principle of operation of a photovoltaic-output photocoupler .................................... 3 1.3 Basic usage of photovoltaic-output photocouplers .................................................. 4 1.4 Advantages of PV+MOSFET combinations ............................................................. 5 1.5 Types of photovoltaic-output photocouplers .......................................................... 7 2. Major electrical characteristics and behavior of photovoltaic-output photocouplers ........ 8 2.1 VOC-IF characteristics .......................................................................................... 9 2.2 VOC-Ta characteristic ........................................................................................ -
(PPS) • CMOS Photodiode Active Pixel Sensor (APS) • Photoga
Lecture Notes 4 CMOS Image Sensors CMOS Passive Pixel Sensor (PPS) • Basic operation ◦ Charge to output voltage transfer function ◦ Readout speed ◦ CMOS Photodiode Active Pixel Sensor (APS) • Basic operation ◦ Charge to output voltage transfer function ◦ Readout speed ◦ Photogate and Pinned Diode APS • Multiplexed APS • EE 392B: CMOS Image Sensors 4-1 Introduction CMOS image sensors are fabricated in \standard" CMOS technologies • Their main advantage over CCDs is the ability to integrate analog and • digital circuits with the sensor Less chips used in imaging system ◦ Lower power dissipation ◦ Faster readout speeds ◦ More programmability ◦ New functionalities (high dynamic range, biometric, etc) ◦ But they generally have lower perofrmance than CCDs: • Standard CMOS technologies are not optimized for imaging ◦ More circuits result in more noise and fixed pattern noise ◦ In this lecture notes we discuss various CMOS imager architectures • In the following lecture notes we discuss fabrication and layout issues • EE 392B: CMOS Image Sensors 4-2 CMOS Image Sensor Architecture Word Pixel: Row Decoder Photodetector & Readout treansistors Bit Column Amplifiers/Caps Output Column Mux Readout performed by transferring one row at a time to the column • storage capacitors, then reading out the row, one (or more) pixel at a time, using the column decoder and multiplexer In many CMOS image sensor architectures, row integration times are • staggerred by the row/column readout time (scrolling shutter) EE 392B: CMOS Image Sensors 4-3 CMOS Image Sensor