Hydraulic Traits Are More Diverse in Flowers Than in Leaves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
45Th Anniversary Year
VOLUME 45, NO. 1 Spring 2021 Journal of the Douglasia WASHINGTON NATIVE PLANT SOCIETY th To promote the appreciation and 45 conservation of Washington’s native plants Anniversary and their habitats through study, education, Year and advocacy. Spring 2021 • DOUGLASIA Douglasia VOLUME 45, NO. 1 SPRING 2021 journal of the washington native plant society WNPS Arthur R. Kruckberg Fellows* Clay Antieau Lou Messmer** President’s Message: William Barker** Joe Miller** Nelsa Buckingham** Margaret Miller** The View from Here Pamela Camp Mae Morey** Tom Corrigan** Brian O. Mulligan** by Keyna Bugner Melinda Denton** Ruth Peck Ownbey** Lee Ellis Sarah Reichard** Dear WNPS Members, Betty Jo Fitzgerald** Jim Riley** Mary Fries** Gary Smith For those that don’t Amy Jean Gilmartin** Ron Taylor** know me I would like Al Hanners** Richard Tinsley Lynn Hendrix** Ann Weinmann to introduce myself. I Karen Hinman** Fred Weinmann grew up in a small town Marie Hitchman * The WNPS Arthur R. Kruckeberg Fellow Catherine Hovanic in eastern Kansas where is the highest honor given to a member most of my time was Art Kermoade** by our society. This title is given to Don Knoke** those who have made outstanding spent outside explor- Terri Knoke** contributions to the understanding and/ ing tall grass prairie and Arthur R. Kruckeberg** or preservation of Washington’s flora, or woodlands. While I Mike Marsh to the success of WNPS. Joy Mastrogiuseppe ** Deceased love the Midwest, I was ready to venture west Douglasia Staff WNPS Staff for college. I earned Business Manager a Bachelor of Science Acting Editor Walter Fertig Denise Mahnke degree in Wildlife Biol- [email protected] 206-527-3319 [email protected] ogy from Colorado State Layout Editor University, where I really Mark Turner Office and Volunteer Coordinator [email protected] Elizabeth Gage got interested in native [email protected] plants. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B
Aliso: A Journal of Systematic and Evolutionary Botany Volume 29 | Issue 1 Article 4 2011 Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B. Harper Terra Peninsular, Coronado, California Sula Vanderplank Rancho Santa Ana Botanic Garden, Claremont, California Mark Dodero Recon Environmental Inc., San Diego, California Sergio Mata Terra Peninsular, Coronado, California Jorge Ochoa Long Beach City College, Long Beach, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Biodiversity Commons, Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Harper, Alan B.; Vanderplank, Sula; Dodero, Mark; Mata, Sergio; and Ochoa, Jorge (2011) "Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 29: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol29/iss1/4 Aliso, 29(1), pp. 25–42 ’ 2011, Rancho Santa Ana Botanic Garden PLANTS OF THE COLONET REGION, BAJA CALIFORNIA, MEXICO, AND A VEGETATION MAPOF COLONET MESA ALAN B. HARPER,1 SULA VANDERPLANK,2 MARK DODERO,3 SERGIO MATA,1 AND JORGE OCHOA4 1Terra Peninsular, A.C., PMB 189003, Suite 88, Coronado, California 92178, USA ([email protected]); 2Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711, USA; 3Recon Environmental Inc., 1927 Fifth Avenue, San Diego, California 92101, USA; 4Long Beach City College, 1305 East Pacific Coast Highway, Long Beach, California 90806, USA ABSTRACT The Colonet region is located at the southern end of the California Floristic Province, in an area known to have the highest plant diversity in Baja California. -
Chimonanthus Praecox
Shang et al. Genome Biology (2020) 21:200 https://doi.org/10.1186/s13059-020-02088-y RESEARCH Open Access The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter Junzhong Shang1†, Jingpu Tian1†, Huihui Cheng2†, Qiaomu Yan1, Lai Li1, Abbas Jamal1, Zhongping Xu3,4, Lin Xiang1, Christopher A. Saski5, Shuangxia Jin3,4* , Kaige Zhao1*, Xiuqun Liu1* and Longqing Chen6* * Correspondence: [email protected]. edu.cn; [email protected]; Abstract [email protected]; clqhzau@126. com Background: Wintersweet (Chimonanthus praecox), an important ornamental plant, †Junzhong Shang, Jingpu Tian and has evolved unique fragrant aroma and winter-flowering properties, which are critical Huihui Cheng contributed equally for its successful sexual reproduction. However, the molecular mechanisms underlying to this work. 3National Key Laboratory of Crop these traits are largely unknown in this species. In addition, wintersweet is also a typical Genetic Improvement, Huazhong representative species of the magnoliids, where the phylogenetic position of which Agricultural University, Wuhan, relative to eudicots and monocots has not been conclusively resolved. Hubei 430070, People’s Republic of China Results: Here, we present a chromosome-level wintersweet genome assembly with a 1Key Laboratory of Horticultural total size of 695.36 Mb and a draft genome assembly of Calycanthus chinensis. Plant Biology, Ministry of Education, Huazhong Agricultural University, Phylogenetic analyses of 17 representative angiosperm genomes suggest that Wuhan, Hubei 430070, People’s Magnoliids and eudicots are sister to monocots. Whole-genome duplication Republic of China signatures reveal two major duplication events in the evolutionary history of the 6Southwest Engineering Technology and Research Center of wintersweet genome, with an ancient one shared by Laurales, and a more recent Landscape Architecture, State one shared by the Calycantaceae. -
Annual Benefit Plant Sale 2012
Annual Benefit Plant Sale 2012 Botanic Gardens COLLEGE OF AGRICULTURE & NATURAL RESOURCES Connect to nature Get inspired by wildflowers, naturalistic gardening and meadows in a whole new way with our seasonal garden tours. Enjoy an art class in the garden or learn about native plant gardening, conservation, and habitats by taking one of our classes. And if you can’t visit us, enroll in our new online distance learning program, Mt. Cuba Center Connect. Visit www.mtcubacenter.org to reserve a tour or sign up for a class. Two-Hour Guided Tours | $5 per person Spring Wildflower Tours April 12th – May 27th Summer Twilight Tours May 30th – July 26th 8th Annual Wildflower Celebration |Free th April 29 , 10am – 4pm Purple pitcherplant (Sarracenia purpurea) Greenville, DE P: 302.239.4244 www.mtcubacenter.org INSPIRATION x EDUCATION x CONSERVATION 2 2012 SPRING PLANT SALE CATALOG WEBSITE: http://ag.udel.edu/udbg/events/annualsale.html WELCOME We welcome you to the twentieth annual UDBG benefit plant sale. In addition to its role as the major source of funding for the UDBG, 2012 BENEFIT PLANT SALE CATALOG we hope it also serves as a major educational event for our members and the public. It presents an opportunity to learn about new plants and consider possibilities. We should always look for ways to expand and improve our knowledge about plants and this catalog offers possibilities to accomplish both. As always, we offer an in- depth look at a particular group of plants, this year the genus Camellia. The selection goes beyond offering various cultivars with differing flower color, to a more extensive exploration of the genus with particular emphasis on hardy selections and new hybrids Camellia ‘Autumn Spirit’. -
Bob Allen's OCCNPS Presentation About Plant Families.Pages
Stigma How to identify flowering plants Style Pistil Bob Allen, California Native Plant Society, OC chapter, occnps.org Ovary Must-knows • Flower, fruit, & seed • Leaf parts, shapes, & divisions Petal (Corolla) Anther Stamen Filament Sepal (Calyx) Nectary Receptacle Stalk Major local groups ©Bob Allen 2017 Apr 18 Page !1 of !6 A Botanist’s Dozen Local Families Legend: * = non-native; (*) = some native species, some non-native species; ☠ = poisonous Eudicots • Leaf venation branched; veins net-like • Leaf bases not sheathed (sheathed only in Apiaceae) • Cotyledons 2 per seed • Floral parts in four’s or five’s Pollen apertures 3 or more per pollen grain Petal tips often • curled inward • Central taproot persists 2 styles atop a flat disk Apiaceae - Carrot & Parsley Family • Herbaceous annuals & perennials, geophytes, woody perennials, & creepers 5 stamens • Stout taproot in most • Leaf bases sheathed • Leaves alternate (rarely opposite), dissected to compound Style “horns” • Flowers in umbels, often then in a secondary umbel • Sepals, petals, stamens 5 • Ovary inferior, with 2 chambers; styles 2; fruit a dry schizocarp Often • CA: Apiastrum, Yabea, Apium*, Berula, Bowlesia, Cicuta, Conium*☠ , Daucus(*), vertically Eryngium, Foeniculum, Torilis*, Perideridia, Osmorhiza, Lomatium, Sanicula, Tauschia ribbed • Cult: Apium, Carum, Daucus, Petroselinum Asteraceae - Sunflower Family • Inflorescence a head: flowers subtended by an involucre of bracts (phyllaries) • Calyx modified into a pappus • Corolla of 5 fused petals, radial or bilateral, sometimes both kinds in same head • Radial (disk) corollas rotate to salverform • Bilateral (ligulate) corollas strap-shaped • Stamens 5, filaments fused to corolla, anthers fused into a tube surrounding the style • Ovary inferior, style 1, with 2 style branches • Fruit a cypsela (but sometimes called an achene) • The largest family of flowering plants in CA (ca. -
And Intercontinental Biogeography of Calycanthaceae
Molecular Phylogenetics and Evolution 39 (2006) 1–15 www.elsevier.com/locate/ympev Molecular phylogeny and intra- and intercontinental biogeography of Calycanthaceae Shiliang Zhou a, Susanne S. Renner b, Jun Wen a,c,¤ a Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China b Department of Biology, Ludwig Maximilians University, Menzinger Str. 67, D-80638 Munich, Germany c Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA Received 27 December 2004; revised 27 December 2005; accepted 9 January 2006 Available online 21 February 2006 Abstract Based on nuclear and chloroplast sequences we resolve species relationships in Calycanthaceae and develop a biogeographic hypothe- sis that explains their intercontinental disjunctions and intra-continental diversiWcation in eastern Asia. Fossil-calibrated penalized likeli- hood and Bayesian divergence time estimates indicate that the Northern Hemisphere Calycanthus and Chimonanthus diverged from each other in the mid-Miocene, while the Australian Idiospermum had already diverged by the Upper Cretaceous and likely represents a rem- nant of a former Gondwanan distribution of Calycanthaceae that included South America, as indicated by the occurrence of Cretaceous Calycanthaceae fossils in Brazil. Relationships within Calycanthus were diYcult to resolve, but a shared 155-bp deletion in the trnL–F intergenic spacer unites the two North American species, which were also sisters in a cpDNA restriction site study. Their ancestor appar- ently crossed the Bering land bridge in the Miocene. The six species of Chimonanthus, by contrast, diverged from each other as recently as 1–2 my ago, and a DIVA analysis with four areas of endemism recognized within China suggests three vicariance and two dispersal events within Chimonanthus, with initial vicariance having occurred between eastern and southwestern or central China. -
Round Valley Regional Preserve Checklist of Wild Plants Sorted Alphabetically by Growth Form, Scientific Name
Round Valley Regional Preserve Checklist of Wild Plants Sorted Alphabetically by Growth Form, Scientific Name This is a comprehensive list of the wild plants reported to be found in Round Valley Regional Preserve. The plants are sorted alphabetically by growth form, then by scientific name. This list includes the common name, family, status, invasiveness rating, origin, longevity, habitat, and bloom dates. EBRPD plant names that have changed since the 1993 Jepson Manual are listed alphabetically in an appendix. Column Heading Description Checklist column for marking off the plants you observe Scientific Name According to The Jepson Manual: Vascular Plants of California, Second Edition (JM2) and eFlora (ucjeps.berkeley.edu/IJM.html) (JM93 if different) If the scientific name used in the 1993 edition of The Jepson Manual (JM93) is different, the change is noted as (JM93: xxx) Common Name According to JM2 and other references (not standardized) Family Scientific family name according to JM2, abbreviated by replacing the “aceae” ending with “-” (ie. Asteraceae = Aster-) Status Special status rating (if any), listed in 3 categories, divided by vertical bars (‘|’): Federal/California (Fed./Calif.) | California Native Plant Society (CNPS) | East Bay chapter of the CNPS (EBCNPS) Fed./Calif.: FE = Fed. Endangered, FT = Fed. Threatened, CE = Calif. Endangered, CR = Calif. Rare CNPS (online as of 2012-01-23): 1B = Rare, threatened or endangered in Calif, 3 = Review List, 4 = Watch List; 0.1 = Seriously endangered in California, 0.2 = Fairly endangered in California EBCNPS (online as of 2012-01-23): *A = Statewide listed rare; A1 = 2 East Bay regions or less; A1x = extirpated; A2 = 3-5 regions; B = 6-9 regions; C = watch list Inv California Invasive Plant Council Inventory (Cal-IPCI) Invasiveness rating: H = High, L = Limited, M = Moderate, N = Native OL Origin and Longevity. -
Wildflower Hot Spots of the Eastern Sierra Welcome to the Eastern Sierra…
Wildflower Hot Spots of the Eastern Sierra Welcome to the Eastern Sierra… THE EASTERN SIERRA truly is a land of superlatives: Elevations you will visit using this guide range from the oldest living trees on the planet (bristlecone pines); 3,300 feet (1,005 meters) at Fossil Falls to 10,200 feet the highest peak in the contiguous United States (Mt. (3,100 meters) at the Mosquito Flat trailhead in Rock Whitney); the youngest mountain range in North Creek. Many of the peaks around you soar to more than America (Mono Craters); one of the oldest lakes in 13,000 feet, and a side trip into Death Valley will plunge North America (Mono Lake). All of these and more are you down to below sea level at Badwater. within an easy day’s drive of each other. The spectacular landscapes of this area draw a worldwide audience, and with good reason. The elevation range combined with the diverse geologic environment results in a wide variety of vegetation communities. Three major biotic provinces—the Mojave Geology field classes often visit the area for the Desert, Great Basin, and Sierra Nevada—all converge in relatively easy access to a wide variety of geologic this area. Dozens of plant communities and thousands formations and rock types. Volcanic craters, basalt flows, of plant species occur here, many of them unique to layers of ash and pumice, carbonate formations, and the Eastern Sierra. This guide is an introduction to the granite peaks, walls, and spires all can be seen here. botanical gems to be encountered here. -
Vegetation Classification for San Juan Island National Historical Park
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science San Juan Island National Historical Park Vegetation Classification and Mapping Project Report Natural Resource Report NPS/NCCN/NRR—2012/603 ON THE COVER Red fescue (Festuca rubra) grassland association at American Camp, San Juan Island National Historical Park. Photograph by: Joe Rocchio San Juan Island National Historical Park Vegetation Classification and Mapping Project Report Natural Resource Report NPS/NCCN/NRR—2012/603 F. Joseph Rocchio and Rex C. Crawford Natural Heritage Program Washington Department of Natural Resources 1111 Washington Street SE Olympia, Washington 98504-7014 Catharine Copass National Park Service North Coast and Cascades Network Olympic National Park 600 E. Park Ave. Port Angeles, Washington 98362 . December 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Evolutionary Directions of Single Nucleotide Substitutions And
Dong et al. BMC Evolutionary Biology (2020) 20:96 https://doi.org/10.1186/s12862-020-01661-0 RESEARCH ARTICLE Open Access Evolutionary directions of single nucleotide substitutions and structural mutations in the chloroplast genomes of the family Calycanthaceae Wenpan Dong1,2, Chao Xu1, Jun Wen1,3 and Shiliang Zhou1,4* Abstract Background: Chloroplast genome sequence data is very useful in studying/addressing the phylogeny of plants at various taxonomic ranks. However, there are no empirical observations on the patterns, directions, and mutation rates, which are the key topics in chloroplast genome evolution. In this study, we used Calycanthaceae as a model to investigate the evolutionary patterns, directions and rates of both nucleotide substitutions and structural mutations at different taxonomic ranks. Results: There were 2861 polymorphic nucleotide sites on the five chloroplast genomes, and 98% of polymorphic sites were biallelic. There was a single-nucleotide substitution bias in chloroplast genomes. A → TorT→ A(2.84%)and G → CorC→ G (3.65%) were found to occur significantly less frequently than the other four transversion mutation types. Synonymous mutations kept balanced pace with nonsynonymous mutations, whereas biased directions appeared between transition and transversion mutations and among transversion mutations. Of the structural mutations, indels and repeats had obvious directions, but microsatellites and inversions were non-directional. Structural mutations increased the single nucleotide mutations rates. The mutation rates per site per year were estimated to be 0.14–0.34 × 10− 9 for nucleotide substitution at different taxonomic ranks, 0.64 × 10− 11 for indels and 1.0 × 10− 11 for repeats. Conclusions: Our direct counts of chloroplast genome evolution events provide raw data for correctly modeling the evolution of sequence data for phylogenetic inferences. -
Calycanthus Chinensis: the Chinese Sweetshrub Jianhua Li ~ Peter Del Tredici
Calycanthus chinensis: The Chinese Sweetshrub jianhua Li ~ Peter Del Tredici chinensis is a ~ beautiful deciduous shrub alycanthuswith a narrow geographic distribution m Zhejiang Province, China. It grows up to ten feet tall with a broad profile. The leaves are oppositely arranged with short petioles and are glossy green with a touch of roughness on the upper surface. In the Boston area its nod- ding flowers appear in mid to late spring. Appearances notwithstand- ing, the sepals and petals are not differentiated (therefore termed tepals): the outer tepals are a silky white with a tinge of pink and a diameter of two to three inches, while the inner tepals are a waxy pale yellow to white with maroon markings. Unlike the native Caly- canthus floridus the flowers are not fragrant and are pollinated by small beetles. Tepals and stamens occupy the rim of a deep floral cup; the ovaries are attached to the side of the cup. The fruits, top-shaped with many seeds, overwinter on the shrub. In its natural habitat, it grows under- neath a canopy and therefore is best cultivated in partial shade with wind protection and good soil mois- ture. In 1998 Michael Dirr described it as "a unique plant but doubtfully " as worthy as Calycanthus floridus. as to the Opinions may vary species’ The pendant flowers of Calycanthus chinensis have an unusual, waxy texture. comparative garden worthiness, but where evolutionary and taxonomic histories are Calycanthus chinensis belongs to Calycan- concerned, C. chinensis definitely provokes more thaceae, which includes two genera and about interest. As a practical matter, the species is rare ten species.’ Chimonanthus (wintersweet) is in the wild and needs our help to survive.