Evolutionary Directions of Single Nucleotide Substitutions And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Article Chimonanthus Nitens Var. Salicifolius Aqueous Extract Protects Against 5-Fluorouracil Induced Gastrointestinal Mucositis in a Mouse Model
Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 789263, 12 pages http://dx.doi.org/10.1155/2013/789263 Research Article Chimonanthus nitens var. salicifolius Aqueous Extract Protects against 5-Fluorouracil Induced Gastrointestinal Mucositis in a Mouse Model Zhenze Liu,1,2 Jun Xi,3 Sven Schröder,4 Weigang Wang,3 Tianpei Xie,5 Zhugang Wang,3 Shisan Bao,2,6 and Jian Fei1,2,3 1 School of Life Science and Technology, Tongji University, Shanghai 200092, China 2 The Sino-Australia Joint Laboratory, Lishui Institute of Traditional Chinese Medicine, Tongji University, Lishui 323000, China 3 Shanghai Research Centre for Model Organisms, Shanghai 201203, China 4 HanseMerkur Centre for Traditional Chinese Medicine at the University Medical Centre Hamburg-Eppendorf, Haus Ost 55, UKE Campus, Martinistraße 52, 20246 Hamburg, Germany 5 Shanghai Standard Biotech Co., Ltd., Shanghai 201203, China 6 Discipline of Pathology, Bosch Institute and School of Medical Sciences, University of Sydney, NSW 2006, Australia Correspondence should be addressed to Shisan Bao; [email protected] and Jian Fei; [email protected] Received 19 June 2013; Revised 8 September 2013; Accepted 16 September 2013 Academic Editor: Lorenzo Cohen Copyright © 2013 Zhenze Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gastrointestinal mucositis is a major side effect of chemotherapy, leading to life quality reduction in patients and interrupting the therapy of cancer. Chimonanthus nitens var. salicifolius (CS) is a traditional Chinese herb for enteral disease. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Published the Papers of GC-MS Analysis
J Pharm Anal Voll, No 1, 60 -78 (2011) INFORMATION Published the papers of GC-MS Feng Lei, Ji Haiwei, Wang Decai, Wang Jianmei: liu Renmin. Analysis of volatile constituents from different parts of analysis Salvia miltiorrhiza by GC- MS China Pharmacy, 2010, 21(39) :3706-3709. -'fraditional Chinese medicine * Correspondence to: Wang Jianmei. Ermail: [email protected] Medicinal materials Wu Naizhu, Wu Juan, Yan Renlong, A Ping, Zhou XianJi: GeMS analysis of volatile oils of Tibetan medicine Rhododendron primu!aeflorum Bur. et Franch Chinese Journal ofPharmaceutical Analysis, 2010, 30(10): 1909-1912. * Correspondence to: Zhau Xianli. Ermai!: [email protected] Wu Huaien: Liang ehenyan, Li Yaohua, Huang Xiaoqiu, Zhu Xiaoyong. GC- MS analysis of chemical constituents of the essential oil from Adenosma indianum (Lour.) Merr. by different extraction methods Salvia miltiorrhiza Bge. ChinRse Journal of PhamUlceutical Analysis, 2010, 30(10): Salvia miltiorrhiza Bge. (Lamiaceae) is mainly distributed in Sbanxi, 1941-1946. Saanxi. Gansu. Guangxi. Liaoning. Hebei, Henan. Shandong, , Correspondence to: Wu Huaien. Anhui. Jiangsu, Zhejiang. Jiangxi and Hubei provinces, China. The Er mail: [email protected] roots are used medicinaUy. (Photography by Ren Vi; Text by Wang Xumei; Provided by Ren Vi and Wang Xumei, Shaanxi Normal University, Xi'an, China) She Jimning, Kuai Bihua, Xiong Jun, liang Yizeng: lang Xu. Analysis of essential oil in Rhizoma Atractylodes Zhang Suying: Zhang Renbo. Macrocephala by GC- MS and chemometric resolution Analysis of chemical constituents of the volatile oil from method Boenninghausenia albiflora in Kuankuoshui Nationa! Nature ChinRse Journal of Modern Applied Pharmacy, 2010, 27 Reserve (10) :928-931. China Pharmacy, 2010, 21(39) :3719-3721. -
Commercialized Non-Camellia Tea Traditional Function And
Acta Pharmaceutica Sinica B 2014;4(3):227–237 Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Commercialized non-Camellia tea: traditional function and molecular identification Ping Longa,b, Zhanhu Cuia,b, Yingli Wanga,b, Chunhong Zhangb, Na Zhangb, Minhui Lia,b,n, Peigen Xiaoc,d,nn aNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China bBaotou Medical College, Baotou 014060, China cSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China dInstitute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Received 10 November 2013; revised 16 December 2013; accepted 10 February 2014 KEY WORDS Abstract Non-Camellia tea is a part of the colorful Chinese tea culture, and is also widely used as beverage and medicine in folk for disease prevention and treatment. In this study, 37 samples were Non-Camellia tea; Traditional function; collected, including 33 kinds of non-Camellia teas and 4 kinds of teas (Camellia). Traditional functions of Molecular identification; non-Camellia teas were investigated. Furthermore, non-Camellia teas of original plants were characterized BLASTN; and identified by molecular methods. Four candidate regions (rbcL, matK, ITS2, psbA-trnH) were Phylogenetic tree amplified by polymerase chain reaction. In addition, DNA barcodes were used for the first time to discriminate the commercial non-Camellia tea and their adulterants, and to evaluate their safety. This study showed that BLASTN and the relevant phylogenetic tree are efficient tools for identification of the commercial non-Camellia tea and their adulterants. -
Chimonanthus Praecox
Shang et al. Genome Biology (2020) 21:200 https://doi.org/10.1186/s13059-020-02088-y RESEARCH Open Access The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter Junzhong Shang1†, Jingpu Tian1†, Huihui Cheng2†, Qiaomu Yan1, Lai Li1, Abbas Jamal1, Zhongping Xu3,4, Lin Xiang1, Christopher A. Saski5, Shuangxia Jin3,4* , Kaige Zhao1*, Xiuqun Liu1* and Longqing Chen6* * Correspondence: [email protected]. edu.cn; [email protected]; Abstract [email protected]; clqhzau@126. com Background: Wintersweet (Chimonanthus praecox), an important ornamental plant, †Junzhong Shang, Jingpu Tian and has evolved unique fragrant aroma and winter-flowering properties, which are critical Huihui Cheng contributed equally for its successful sexual reproduction. However, the molecular mechanisms underlying to this work. 3National Key Laboratory of Crop these traits are largely unknown in this species. In addition, wintersweet is also a typical Genetic Improvement, Huazhong representative species of the magnoliids, where the phylogenetic position of which Agricultural University, Wuhan, relative to eudicots and monocots has not been conclusively resolved. Hubei 430070, People’s Republic of China Results: Here, we present a chromosome-level wintersweet genome assembly with a 1Key Laboratory of Horticultural total size of 695.36 Mb and a draft genome assembly of Calycanthus chinensis. Plant Biology, Ministry of Education, Huazhong Agricultural University, Phylogenetic analyses of 17 representative angiosperm genomes suggest that Wuhan, Hubei 430070, People’s Magnoliids and eudicots are sister to monocots. Whole-genome duplication Republic of China signatures reveal two major duplication events in the evolutionary history of the 6Southwest Engineering Technology and Research Center of wintersweet genome, with an ancient one shared by Laurales, and a more recent Landscape Architecture, State one shared by the Calycantaceae. -
Annual Benefit Plant Sale 2012
Annual Benefit Plant Sale 2012 Botanic Gardens COLLEGE OF AGRICULTURE & NATURAL RESOURCES Connect to nature Get inspired by wildflowers, naturalistic gardening and meadows in a whole new way with our seasonal garden tours. Enjoy an art class in the garden or learn about native plant gardening, conservation, and habitats by taking one of our classes. And if you can’t visit us, enroll in our new online distance learning program, Mt. Cuba Center Connect. Visit www.mtcubacenter.org to reserve a tour or sign up for a class. Two-Hour Guided Tours | $5 per person Spring Wildflower Tours April 12th – May 27th Summer Twilight Tours May 30th – July 26th 8th Annual Wildflower Celebration |Free th April 29 , 10am – 4pm Purple pitcherplant (Sarracenia purpurea) Greenville, DE P: 302.239.4244 www.mtcubacenter.org INSPIRATION x EDUCATION x CONSERVATION 2 2012 SPRING PLANT SALE CATALOG WEBSITE: http://ag.udel.edu/udbg/events/annualsale.html WELCOME We welcome you to the twentieth annual UDBG benefit plant sale. In addition to its role as the major source of funding for the UDBG, 2012 BENEFIT PLANT SALE CATALOG we hope it also serves as a major educational event for our members and the public. It presents an opportunity to learn about new plants and consider possibilities. We should always look for ways to expand and improve our knowledge about plants and this catalog offers possibilities to accomplish both. As always, we offer an in- depth look at a particular group of plants, this year the genus Camellia. The selection goes beyond offering various cultivars with differing flower color, to a more extensive exploration of the genus with particular emphasis on hardy selections and new hybrids Camellia ‘Autumn Spirit’. -
And Intercontinental Biogeography of Calycanthaceae
Molecular Phylogenetics and Evolution 39 (2006) 1–15 www.elsevier.com/locate/ympev Molecular phylogeny and intra- and intercontinental biogeography of Calycanthaceae Shiliang Zhou a, Susanne S. Renner b, Jun Wen a,c,¤ a Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China b Department of Biology, Ludwig Maximilians University, Menzinger Str. 67, D-80638 Munich, Germany c Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA Received 27 December 2004; revised 27 December 2005; accepted 9 January 2006 Available online 21 February 2006 Abstract Based on nuclear and chloroplast sequences we resolve species relationships in Calycanthaceae and develop a biogeographic hypothe- sis that explains their intercontinental disjunctions and intra-continental diversiWcation in eastern Asia. Fossil-calibrated penalized likeli- hood and Bayesian divergence time estimates indicate that the Northern Hemisphere Calycanthus and Chimonanthus diverged from each other in the mid-Miocene, while the Australian Idiospermum had already diverged by the Upper Cretaceous and likely represents a rem- nant of a former Gondwanan distribution of Calycanthaceae that included South America, as indicated by the occurrence of Cretaceous Calycanthaceae fossils in Brazil. Relationships within Calycanthus were diYcult to resolve, but a shared 155-bp deletion in the trnL–F intergenic spacer unites the two North American species, which were also sisters in a cpDNA restriction site study. Their ancestor appar- ently crossed the Bering land bridge in the Miocene. The six species of Chimonanthus, by contrast, diverged from each other as recently as 1–2 my ago, and a DIVA analysis with four areas of endemism recognized within China suggests three vicariance and two dispersal events within Chimonanthus, with initial vicariance having occurred between eastern and southwestern or central China. -
Analysis of Floral Fragrance Compounds of Chimonanthus Praecox with Different Floral Colors in Yunnan, China
separations Article Analysis of Floral Fragrance Compounds of Chimonanthus praecox with Different Floral Colors in Yunnan, China Liubei Meng 1,†, Rui Shi 2,† , Qiong Wang 1,* and Shu Wang 1,2,* 1 College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224, China; [email protected] 2 Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming 650224, China; [email protected] * Correspondence: [email protected] (Q.W.); [email protected] (S.W.) † These authors contributed equally to this work and should be considered as co-first authors. Abstract: In order to better understand the floral fragrance compounds of Chimonanthus praecox belonging to genus Chimonanthus of Chimonanaceae in Yunnan, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was used to analyze these compounds from four C. praecox plants with different floral colors. Thirty-one types of floral fragrance compounds were identified, among which terpenes, alcohols, esters, phenols, and heterocyclic compounds were the main compounds. Interestingly, the floral fragrance compounds identified in the flowers of C. praecox var. concolor included benzyl acetate, α-ocimene, eugenol, indole, and benzyl alcohol. By contrast, the floral fragrance compounds β-ocimene, α-ocimene, and trans-β-ocimene were detected in C. praecox var. patens. Cluster analysis showed that C. praecox var. concolor H1, H2, and C. praecox var. patens H4 were clustered in one group, but C. praecox var. patens H3 was individually clustered in Citation: Meng, L.; Shi, R.; Wang, Q.; α Wang, S. Analysis of Floral Fragrance the other group. Additionally, principal component analysis showed that -ocimene, benzyl alcohol, Compounds of Chimonanthus praecox benzyl acetate, cinnamyl acetate, eugenol, and indole were the main floral fragrance compounds that with Different Floral Colors in could distinguish the four C. -
Calycanthus Chinensis: the Chinese Sweetshrub Jianhua Li ~ Peter Del Tredici
Calycanthus chinensis: The Chinese Sweetshrub jianhua Li ~ Peter Del Tredici chinensis is a ~ beautiful deciduous shrub alycanthuswith a narrow geographic distribution m Zhejiang Province, China. It grows up to ten feet tall with a broad profile. The leaves are oppositely arranged with short petioles and are glossy green with a touch of roughness on the upper surface. In the Boston area its nod- ding flowers appear in mid to late spring. Appearances notwithstand- ing, the sepals and petals are not differentiated (therefore termed tepals): the outer tepals are a silky white with a tinge of pink and a diameter of two to three inches, while the inner tepals are a waxy pale yellow to white with maroon markings. Unlike the native Caly- canthus floridus the flowers are not fragrant and are pollinated by small beetles. Tepals and stamens occupy the rim of a deep floral cup; the ovaries are attached to the side of the cup. The fruits, top-shaped with many seeds, overwinter on the shrub. In its natural habitat, it grows under- neath a canopy and therefore is best cultivated in partial shade with wind protection and good soil mois- ture. In 1998 Michael Dirr described it as "a unique plant but doubtfully " as worthy as Calycanthus floridus. as to the Opinions may vary species’ The pendant flowers of Calycanthus chinensis have an unusual, waxy texture. comparative garden worthiness, but where evolutionary and taxonomic histories are Calycanthus chinensis belongs to Calycan- concerned, C. chinensis definitely provokes more thaceae, which includes two genera and about interest. As a practical matter, the species is rare ten species.’ Chimonanthus (wintersweet) is in the wild and needs our help to survive. -
Non-Volatile Constituents and Pharmacology of Chimonanthus: a Review SHU Ren-Geng1*, WAN Yi-Li1, 2, WANG Xiao-Min3
Chinese Journal of Natural Chinese Journal of Natural Medicines 2019, 17(3): 01610186 Medicines •Review• Non-volatile constituents and pharmacology of Chimonanthus: A review SHU Ren-Geng1*, WAN Yi-Li1, 2, WANG Xiao-Min3 1 School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; 2 School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; 3 School of Life Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China Available online 20 Mar., 2019 [ABSTRACT] Chimonanthus plants widely distributed in southern area of China, which have a long history of edibles and medicine. Phytochemical investigations have shown that Chimonanthus produced 143 non-volatile constituents, including alkaloids, flavonoids, terpenoids, coumarins and others, which exhibit significant anti-oxidant, anti-bacterial, anti-cancer, anti-inflammatory, antihypergly- cemic, antihyperlipidemic and other biological activities. On the basis of systematic reviewing of literatures, this article overviews the non-volatile constituents and pharmacology of Chimonanthus from domestic and foreign over the last 30 years (until June 2018), and may provide a useful reference for the further development of Chimonanthus. [KEY WORDS] Chimonanthus; Non-volatile constituents; Pharmacology; Review [CLC Number] R965 [Document code] A [Article ID] 2095-6975(2019)03-0161-26 Introduction oxidant, anti-inflammatory, anti-cancer, antihyperglycemic, antihyperlipidemic effects [3-9]. Further more, some species of The genus Chimonanthus, a popular garden and ornamental Chimonanthus have been processed into beverages and plant, is a member of the family Calycanthaceae endemic to preparations, like Golden Tea, Xiang-Feng Tea, Shi-Liang Tea, [1] China, which has survived since the tertiary relic period . Shanlameiye Granule, Tiekuaizi, Fufangxianlingfengshijiu, According to the Flora of China, the genus comprises only six Malanganhan Capsule, Piweishu, Huatuo bill ointmentetc. -
Effect of Fertilizer Rates & Sources On
UNIVERSITI PUTRA MALAYSIA GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING SALUMIAH BINTI MIJIN FP 2014 12 GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING UPM SALUMIAH BINTI MIJIN COPYRIGHT MASTER OF SCIENCE © UNIVERSITI PUTRA MALAYSIA 2014 GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING UPM By SALUMIAH BINTI MIJIN Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of COPYRIGHTScience March 2014 © All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia UPM COPYRIGHT © DEDICATION This thesis is dedicated to my beloved husband and son, Abdul Sadar Abuda and Abdul Arieff Anaqiey, who tought me to hope, believe and have faith UPM COPYRIGHT © Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING By SALUMIAH BINTI MIJIN March 2014 Chairman: Associate Professor Siti Aishah Hassan, PhD Faculty: Agriculture UPM A study was conducted to determine the effects of fertilizer sources and rates on growth, physiology and phytonutritional quality of Cosmos caudatus, a herbal species that is normally consumed fresh as a salad. -
1. CHIMONANTHUS Lindley, Bot. Reg. 5: T. 404. 1819, Nom. Cons. 蜡梅属 La Mei Shu Butneria Duhamel (1755), Not Byttneria Loefling (1758), Nom
Flora of China 7: 92–94. 2008. 1. CHIMONANTHUS Lindley, Bot. Reg. 5: t. 404. 1819, nom. cons. 蜡梅属 la mei shu Butneria Duhamel (1755), not Byttneria Loefling (1758), nom. cons.; Meratia Loiseleur-Deslongchamps. Shrubs or small trees, erect, deciduous or evergreen. Branchlets dichotomous, quadrangular to subterete; winter buds with im- bricate scales but exposed in summer. Leaf blade papery or subleathery, adaxially scabrous or ± smooth. Flowers axillary, fragrant, subsessile to very shortly pedicellate. Tepals numerous, yellow, yellowish white, or white and sometimes with purple markings, membranous, varying in size and shape from outer to inner but not distinctly dimorphic. Stamens 5–8, arranged on cuplike recep- tacle; filaments filamentous but basally broad and connate, usually puberulent; staminodes few to numerous, puberulous, arranged inside stamens on receptacle. Carpels 5–15, distinct; ovules 2 per carpel but 1 ovule usually abortive. Pseudocarp urceolate, ovoid- ellipsoid, obovoid-ellipsoid, or campanulate, pubescent. Achenes oblong, oblong-ellipsoid, ellipsoid, oblong-ovoid, or reniform. ● Six species: China. It is estimated that the Chinese species diverged from each other perhaps as recently as 1–2 million years ago, and the presently available molecular evidence distinguishes all six species but groups Chimonanthus campanulatus and C. praecox separately (with a bootstrap support of 100) from the other four species (S. L. Zhou et al., Molec. Phylogenetic. Evol. 39: 1–15. 2006). However, the molecular evidence is based on a limited number of samples, mostly from botanical gardens. It is difficult to morphologically circumscribe differences to distinguish all six species. Because the molecular evidence does distinguish all six species, it seems best to treat all six in this account but to point out that additional research may well change this interpretation.