22Nd Fungal Genetics Conference at Asilomar

Total Page:16

File Type:pdf, Size:1020Kb

22Nd Fungal Genetics Conference at Asilomar Fungal Genetics Reports Volume 50 Article 18 22nd Fungal Genetics Conference at Asilomar Fungal Genetics Conference Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Fungal Genetics Conference. (2003) "22nd Fungal Genetics Conference at Asilomar," Fungal Genetics Reports: Vol. 50, Article 18. https://doi.org/10.4148/1941-4765.1164 This Supplementary Material is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. 22nd Fungal Genetics Conference at Asilomar Abstract Abstracts from the 2003 Fungal Genetics Conference at Asilomar This supplementary material is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol50/iss1/18 : 22nd Fungal Genetics Conference at Asilomar 22nd Fungal Genetics Conference at Asilomar Plenary Session Abstracts Microtubules in polar growth of Ustilago maydis Gero Steinberg Polar growth of yeasts and filamentous fungi depends on cytoskeleton-based transport of vesicles and protein complexes towards the expanding cell pole. While solid evidence exists for a central function of F-actin in fungal growth, the importance of the tubulin cytoskeleton is by far less understood. In vivo observation of microtubules in growing cells of Ustilago maydis revealed that the dynamic ends ("plus"-ends) of these tubulin polymers are growing towards the cell poles, while cytoplasmic microtubule organizing centers focus the microtubule minus-ends at the neck region. This microtubule orientation suggests that minus-end directed dynein motors support transport towards the neck, whereas plus-end directed kinesin motors might be required for transport towards the poles of the cell. This concept is supported by the recent identification of the transport machinery for microtubule-based traffic of early endosomes that depends on both a Kif1A-like kinesin and cytoplasmic dynein. Interestingly, a balance of the activity of these motors determines the cell cycle-dependent formation of endosome clusters at both cell poles, where the endosomes apparently support polar growth, bipolar budding and septation. However, it emerges that, in addition to their function in membrane transport, both motors influence the organization of their transport "tracks" by modifying dynamic parameters of microtubules in U. maydis. Understanding this dual function of motors will be a fascinating future challenge, and might be key to the understanding of the role of microtubules in polar fungal growth. Genetics analysis of the regulation of cytoplasmic dynein in Neurospora. M. Plamann, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499. Cytoplasmic dynein is the most complex of the cytoplasmic microtubule-associated motor proteins, and it has been shown to be required for retrograde vesicle transport and the movement and positioning of nuclei in fungi. Analysis of cytoplasmic dynein from mammals reveals that at least 16 different gene products are required for formation of the dynein motor, the dynein activator complex dynactin, and the LIS1 complex, required for dynein function. Examination of the recently completed genome sequence of Neurospora crassa reveals a high degree of conservation for nearly all these gene products. We have developed a simple genetic system for the isolation of mutants defective in cytoplasmic dynein function. We have shown previously that most of the genes defined through this screen encode subunits of cytoplasmic dynein or dynactin. We have now cloned all but one of the genes defined by our screen. Interestingly, we have not identified mutations in four genes encoding known dynein/dynactin subunits, although genomic sequence data suggests that apparent orthologs are present in N. crassa. In addition, we have also defined two genes that have not previously been implicated as required for dynein/dynactin function. Septins in Aspergillus nidulans. Michelle Momany. Department of Plant Biology, University of Georgia, Athens, GA. USA Septins form scaffolds that organize division sites and areas of new growth in fungi and animals. Many proteins critical for cytokinesis and cell cycle regulation depend upon septins for proper localization. Five septins (AspA-AspE) have been identified in A. nidulans. AspB localizes to forming septa and conidiophore layers. It also localizes to emerging branches where it may play a role in cell cycle regulation of subapical compartments. Deletion of AspB is lethal and deletion of other septins results in branched conidiophores. Nuclear migration in Aspergillus nidulans: Motors, microtubules and more Reinhard Fischer, Max-Planck-Institute for terrestrial Microbiology and Philipps-University Marburg, Karl-von- Frisch-Str., D-35043 Marburg, Germany. Published by New Prairie Press, 2017 1 Fungal Genetics Reports, Vol. 50 [2003], Art. 18 Nuclei migrate through growing hyphae of A. nidulans with a similar speed as hyphae elongate. However, nuclear behavior is much more complex than just a simple tipward travel. They oscillate on their way around a certain position, move backwards for short time periods, enter newly formed branches, devide while moving and populate the reproductive structures such as asexual and sexual spores. The movement requires the microtubule-dependent motor dynein and an intact microtubule cytoskeleton. We asked whether kinesins may play a role in the migration process and isolated three novel genes. The corresponding proteins displayed similarity to conventional kinesin and S. cerevisiae Kip2 (KipA) and Kip3 (KipB). Deletion analyses revealed that only conventional kinesin had an effect on nuclear migration. KipA-mutation affected polarized growth, likely through the positioning of the Spitzenkörper and KipB appeared to be involved in mitosis and meiosis. Likewise, the latter protein localised to cytoplasmic and to mitotic microtubules. In addition to motor proteins and the microtubule tracks, nuclear positioning in A. nidulans requires two proteins, ApsA and ApsB. In vivo localisation studies revealed that ApsA forms a protein gradient along the cortex. This gradient depends on the actin cytoskeleton to be maintained. In contrast, ApsB localised to the nucleus and appeared to be associated to the spindle pole body. Simultaneous observation of nuclear movement, microtubule dynamics and ApsB behavior suggested that ApsB might be invovled in the movement of nuclei along microtubule filaments. We observed migration of the nucleus along one microtubule filament towards the plus and the minus end of one microtubule, suggesting the involvement of motors with different polarity. We believe that this movement represents one possibility how nuclei can be translocated within a hyphal cell. Fungal mitosis, closed or open? Colin De Souza and Stephen Osmani. Department of Molecular Genetics, the Ohio State University, Columbus, OH43210, USA The nuclear envelope is broken down at mitosis in higher eukaryotes leading to an "open" mitosis but in fungi the mitotic apparatus is enclosed within a nuclear envelope and so remains "closed". Recent work on the NIMA kinase of Aspergillus nidulans suggests that the closed mitosis of fungi may be more open than previously recognized. We have determined the location of NIMA in real time through the cell cycle. At G2 it is excluded from the nucleus and at early mitosis it locates transiently to the nuclear pore complex (NPC) before locating to the nucleus. The C- terminal regulatory domain of NIMA is sufficient to target GFP to the NPC and this domain acts in a dominant negative fashion, delaying entry into mitosis. The data support a mitotic role for NIMA at the NPC. We have previously isolated sonA as a NPC protein that could specifically suppress nimA1. A second extragenic suppressor of nimA1 has now been cloned (sonB) and identified as a NPC protein with homology to human Nup98/Nup96 proteins. Not only do mutations of sonA and sonB suppress the nimA1 mutation, these two NPC proteins physically interact as revealed by co-immunoprecipitation experiments. Moreover, the interaction between SONA and SONB is reduced by the sonB1 mutation which is within a domain of SONB responsible for binding to SONA. Thus, both genetic and biochemical data indicate that NIMA and two interacting NPC proteins play a role in mitotic regulation. The dynamic localization of SONA and SONB further implicates these proteins in mitotic regulation, as both are precipitously lost from the NPC at mitotic onset and then locate back to the NPC at mitotic exit. These studies reveal for the first time that the protein makeup of the NPC radically changes during a closed fungal mitosis. We propose that these changes open the NPC to allow protein diffusion either in or out of nuclei during mitosis. Proteins which have an affinity for nuclear components concentrate within nuclei, for example tubulin and NIMA. Other nuclear proteins, with no affinity for nuclear components, escape from nuclei during mitosis into the cytoplasm. As daughter nuclei are produced, and SONA and SONB relocate to the NPC, normal nuclear transport is reestablished. This then plays a role in relocating proteins by active transport. Therefore, perhaps the "closed" mitosis of fungi is more open then previously realized. Distinct endophyte genome evolution associated
Recommended publications
  • Identification and Characterization of Alternaria Species Causing Leaf Spot
    Eur J Plant Pathol (2017) 149:401–413 DOI 10.1007/s10658-017-1190-0 Identification and characterization of Alternaria species causing leaf spot on cabbage, cauliflower, wild and cultivated rocket by using molecular and morphological features and mycotoxin production Ilenia Siciliano & Giovanna Gilardi & Giuseppe Ortu & Ulrich Gisi & Maria Lodovica Gullino & Angelo Garibaldi Accepted: 22 February 2017 /Published online: 11 March 2017 # Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 Abstract Alternaria species are common pathogens of Keywords Crucifers . Toxins . Leaf spot . Tenuazonic fruit and vegetables able to produce secondary metabo- acid lites potentially affecting human health. Twenty-nine isolates obtained from cabbage, cauliflower, wild and cultivated rocket were characterized and identified Introduction based on sporulation pattern and virulence; the phylo- β genetic analysis was based on the -tubulin gene. Most Alternaria species are saprophytes and ubiquitous Isolates were identified as A. alternata, A. tenuissima, in the environment, however some are plant pathogenic, A. arborescens, A. brassicicola and A. japonica. inducing diseases on a large variety of economically Pathogenicity was evaluated on plants under greenhouse important crops like cereals, oil-crops, vegetables and conditions. Two isolates showed low level of virulence fruits (Pitt and Hocking, 1997). Most Alternaria spp. on cultivated rocket while the other isolates showed produce chains of conidia with transverse and longitu- medium or high level of virulence. Isolates were also dinal septa with a tapering apical cell. Conidial size, characterized for their mycotoxin production on a mod- presence and size of a beak, the pattern of catenation ified Czapek-Dox medium. Production of the five and longitudinal and transverse septation are key taxo- Alternaria toxins, tenuazonic acid, alternariol, nomic features for this genus (Joly 1964; Ellis 1971 and alternariol monomethyl ether, altenuene and tentoxin 1976, Simmons 1992).
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Clemente C. Morales Family Salinas, California
    The Filipino American Experience Research Project Copyright © October 3, 1998 The Filipino American Experience Research Project Clemente C. Morales Family Salinas, California Edited by Alex S. Fabros, Jr., The Filipino American Experience Research Project is an independent research project of The Filipino American National Historical Society Page 1 The Filipino American Experience Research Project Copyright © October 3, 1998 The Filipino American Experience Research Project Copyright (c) October 3, 1998 by Alex S. Fabros, Jr. All rights reserved. Printed in the U.S.A. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in a magazine, newspaper, or broadcast. Published in the United States by: The Filipino American Experience Research Project, Fresno, California. Library of Congress Cataloging-in-Publication Data Library of Congress Catalog Card Number: 95-Pending First Draft Printing: 08/05/98 For additional information: The Filipino American Experience Research Project is an independent project within The Filipino American National Historical Society - FRESNO ALEX S. FABROS, JR. 4199 W. Alhambra Street Fresno, CA 93722 209-275-8849 The Filipino American Experience Research Project-SFSU is an independent project sponsored by Filipino American Studies Department of Asian American Studies College of Ethnic Studies San Francisco State University 1600 Holloway Avenue San Francisco, CA 94132 415-338-6161 (Office) 415-338-1739 (FAX) Page 2 The Filipino American Experience Research Project Copyright © October 3, 1998 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................
    [Show full text]
  • Comparative Genomics of Alternaria Species Provides Insights Into the Pathogenic Lifestyle of Alternaria Brassicae – a Pathoge
    Rajarammohan et al. BMC Genomics (2019) 20:1036 https://doi.org/10.1186/s12864-019-6414-6 RESEARCH ARTICLE Open Access Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae – a pathogen of the Brassicaceae family Sivasubramanian Rajarammohan1,2, Kumar Paritosh3, Deepak Pental3 and Jagreet Kaur1* Abstract Background: Alternaria brassicae, a necrotrophic pathogen, causes Alternaria Leaf Spot, one of the economically important diseases of Brassica crops. Many other Alternaria spp. such as A. brassicicola and A. alternata are known to cause secondary infections in the A. brassicae-infected Brassicas. The genome architecture, pathogenicity factors, and determinants of host-specificity of A. brassicae are unknown. In this study, we annotated and characterised the recently announced genome assembly of A. brassicae and compared it with other Alternaria spp. to gain insights into its pathogenic lifestyle. Results: We also sequenced the genomes of two A. alternata isolates that were co-infecting B. juncea using Nanopore MinION sequencing for additional comparative analyses within the Alternaria genus. Genome alignments within the Alternaria spp. revealed high levels of synteny between most chromosomes with some intrachromosomal rearrangements. We show for the first time that the genome of A. brassicae, a large-spored Alternaria species, contains a dispensable chromosome. We identified 460 A. brassicae-specific genes, which included many secreted proteins and effectors. Furthermore, we have identified the gene clusters responsible for the production of Destruxin-B, a known pathogenicity factor of A. brassicae. Conclusion: The study provides a perspective into the unique and shared repertoire of genes within the Alternaria genus and identifies genes that could be contributing to the pathogenic lifestyle of A.
    [Show full text]
  • Hip-Hop and Cultural Interactions: South Korean and Western Interpretations
    HIP-HOP AND CULTURAL INTERACTIONS: SOUTH KOREAN AND WESTERN INTERPRETATIONS. by Danni Aileen Lopez-Rogina, B.A. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Arts with a Major in Sociology May 2017 Committee Members: Nathan Pino, Chair Rachel Romero Rafael Travis COPYRIGHT by Danni Aileen Lopez-Rogina 2017 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Danni Aileen Lopez-Rogina, refuse permission to copy in excess of the “Fair Use” exemption without my written permission. DEDICATION To Frankie and Holly for making me feel close to normal. ACKNOWLEDGEMENTS I want to acknowledge my mom, dad, and sister first and foremost. Without their love and support over the years, I would not have made it this far. They are forever my cheerleaders, no matter how sassy I may be. Professor Nathan Pino was my chosen mentor who took me under his wing when I chose him like a stray cat. His humor and dedication to supporting me helped me keep my head up even when I felt like I was drowning. Professor Rachel Romero was the one to inspire me to not only study sociology, but also to explore popular culture as a key component of society.
    [Show full text]
  • Alternaria Brassicicola – Brassicaceae Pathosystem: Insights Into the Infection Process and Resistance Mechanisms Under Optimized Artificial Bio-Assay
    Eur J Plant Pathol https://doi.org/10.1007/s10658-018-1548-y Alternaria brassicicola – Brassicaceae pathosystem: insights into the infection process and resistance mechanisms under optimized artificial bio-assay Marzena Nowakowska & Małgorzata Wrzesińska & Piotr Kamiński & Wojciech Szczechura & Małgorzata Lichocka & Michał Tartanus & Elżbieta U. Kozik & Marcin Nowicki Accepted: 10 July 2018 # The Author(s) 2018 Abstract Heavy losses incited yearly by Alternaria that the plant genotype was crucial in determining its brassicicola on the vegetable Brassicaceae have response to the pathogen. The bio-assays for prompted our search for sources of genetic resistance A. brassicicola resistance were run under more stringent against the pathogen and the resultant disease, dark leaf lab conditions than the field tests (natural epidemics), spot. We optimized several parameters to test the perfor- resulting in identification of two interspecific hybrids mance of the plants under artificial inoculations with this that might be used in breeding programs. Based on the pathogen, including leaf age and position, inoculum results of the biochemical analyses, reactive oxygen concentration, and incubation temperature. Using these species and red-ox enzymes interplay has been suggested optimized conditions, we screened a collection of 38 to determine the outcome of the plant-A. brassicicola Brassicaceae cultigens with two methods (detached leaf interplay. Confocal microscopy analyses of the leaf sam- and seedlings). Our results show that either method can ples provided data on the pathogen mode of infection: be used for the A. brassicicola resistance breeding, and Direct epidermal infection or stomatal attack were relat- ed to plant resistance level against A. brassicicola among Electronic supplementary material The online version of this the cultigens tested.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Isolation, Pathogenicity and Effect of Different Culture Media on Growth and Sporulation of Alternaria Brassicae (Berk.) Sacc
    Int.J.Curr.Microbiol.App.Sci (2019) 8(4): 1900-1910 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 04 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.804.223 Isolation, Pathogenicity and Effect of Different Culture Media on Growth and Sporulation of Alternaria brassicae (berk.) Sacc. causing Alternaria Leaf Spot Disease in Cauliflower H.T. Valvi, J.J. Kadam and V.R. Bangar* Department of Plant Pathology, College of Agriculture, Dapoli, India Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist., Ratnagiri- 415 712(M.S.), India *Corresponding author ABSTRACT The leaf spot disease of Cauliflower (Brassica oleracae L. var. Botrytis) caused by A. brassicae (Berk.) Sacc. was noticed in moderate to severe form on farm of College of K e yw or ds Agriculture Engineering and Technology, Dapoli during 2014-2016. The pathogenic fungus was isolated on potato dextrose agar medium from infected leaves of cauliflower. Caulif lower, Isolation, Pathogenicity, The pathogenicity of the isolated fungus was proved by inoculating healthy seedlings of Alternaria brassicae cauliflower. On the basis of typical symptoms on foliage, microscopic observations and (B erk.) Sacc., Culture cultural characteristics of the fungus, it was identified as Alternaria spp. The Chief media, Sporulation Mycologist, Agharkar Research Institute, Pune identified the pathogenic fungus as and mycelial growth Alternaria brassicae (Berk.) Sacc. Eight culture media were tested among that, the potato Article Info dextrose agar medium was found most suitable and encouraged maximum radial mycelial growth (90.00 mm) of A. brassicae. The second best culture medium found was host leaf Accepted: extract agar medium (87.00 mm).
    [Show full text]
  • Immortal Song Seventeen Eng Sub 2018
    Immortal song seventeen eng sub 2018 Continue Contest South Korean television music program Immortal Songs: Singing LegendGenreMusicPresented Shin Dong-YupCountry OriginsSut Korea Origin (s) Korean No. episodes426 (as of October 19, 2019) ManufacturingInsyant Manufacturer (s)Kwon Yong Taek KBSProduction location (s) South KoreaRunning time110 minutesProduction company (s) KBS EntertainmentReleaseOriginal networkKBSOriginal release4, 2011 - March 31, 2012 (as Immortal Songs 2), April 7, 2012 (2012-04-07) -PresentChronologyPreced byImmortal Songs (2007-2009)External LinksWebsite Immortal Songs: Singing Legends (Korean: 불후의 명곡: 전설을 노래하다; RR: Bulhu-ui Myeong-gok: Jeonseoreul Noraehada), also known as Immortal Song 2 (Korean: 불후의 명곡 2), is a South Korean television music competition program presented by Shin Dong-yup. This is the revival of Immortal Songs (2007-2009), and in each episode there are singers who perform their reimagined versions of the songs. Synopsis Originally aired as Immortal Songs 2 as part of KBS Saturday Freedom, each episode had six idol singers who performed the singer's songs of the episode. After restructuring in 2012, the show returned on April 7 as an independent program and renamed Immortal Songs: Singing the Legend. Each episode now includes seven singers or bands from different walks of life and annual experiences ranging from members of popular idol K-pop bands to legendary solo artists. As before, each of them performs their own reimagined versions of the famous songs of the legendary singer of the episode. The new format features special episodes that revolve around specific topics, such as festivities or festivities. Invited singers sit in the waiting room with three hosts, where they meet the audience.
    [Show full text]
  • 2020 Annual Meeting Seismological Society of America Technical Sessions 27–30 April Albuquerque Convention Center Albuquerque, New Mexico
    Annual Meeting Announcement, 1095 2020 Annual Meeting Seismological Society of America Technical Sessions 27–30 April Albuquerque Convention Center Albuquerque, New Mexico PROGRAM COMMITTEE Tuesday, 28 April • Technical Sessions. The Co-Chairs of the 2020 SSA Annual Meeting are Rick • SSA Luncheon (open to all attendees). Awards Ceremony Aster of Colorado State University and Brandon Schmandt of to follow. Noon–1 pm, Hall 3. University of New Mexico. • Mentoring Luncheon (RSVP required with registration). Noon–1 pm, Hall 3. Meeting Contacts • SSA Awards Ceremony. 1:15–2:15 pm, Kiva Auditorium. • Lightning Talks. 6:30–7:30 pm, Kiva Auditorium (see page Technical Program Co-Chairs 1096). Rick Aster and Brandon Schmandt • Early-Career and Student Reception. 7:30–8:30 pm, [email protected] Ballroom B. Abstracts Wednesday, 29 April Rikki Anderson • Technical Sessions. 510.559.1784 • SSA Luncheon (open to all attendees). Public Policy [email protected] Lecture to follow. Noon–1 pm, Hall 3. • Women in Seismology Luncheon (RSVP required with Registration registration). Noon–1 pm, Hall 3. Mattie Adam • Public Policy Lecture. Speaker: Terry Wallace, Director 510.559.1781 Emeritus, Los Alamos National Laboratory, 1:15–2:15 pm, [email protected] Kiva Auditorium (see page 1100). • Joyner Lecture. Lecturer: Julian Bommer, Imperial Media Registration and Press Releases College of London. 6:15–7:15 pm, Kiva Auditorium (see Becky Ham page 1100). 602.300.9600 • Joyner Reception. 7:15–8:45 pm, Outdoor Plaza. [email protected] • Special Interest Group: Seismic Tomography 2020: What Comes Next? 8–9:30 pm, Room 215 + 220 (see page 1098).
    [Show full text]
  • Cabbage Black Leaf Spot (133)
    Pacific Pests and Pathogens - Fact Sheets https://apps.lucidcentral.org/ppp/ Cabbage black leaf spot (133) Photo 2. Cabbage leaf spot, possibly Alternaria brassicicola, showing dark brown areas where spores Photo 1. Roughly circular leaf spots, with concentric are forming, and a large spot (lower left) with a crack rings, mostly between the veins on cabbage caused by in the centre; later, the crack will widen and the centre black leaf spot, Alternaria brassicicola. of the spot will fall out becoming similar to Photo 5. Photo 4. Single leaf spot on a cabbage leaf caused by Alternaria brassicicola, showing the "shot-hole" effect: Photo 3. Spots of black leaf spot, Alternaria the centre of the spot rots and falls out. A yellow brassicicola, on Chinese cabbage. margin or halo is also seen. Photo 5. Spores of black leaf spot, Alternaria brassicicola. Compare with spores of cabbage grey leaf spot, Alternaria brassaicae (see Fact sheet no. 310). Common Name Cabbage black leaf spot Scientific Name Alternaria brassicicola. Another Alternaria fungus, Alternaria brassicae, grey leaf spot, also occurs, and causes similar symptoms (see Fact Sheet no. 310). Microscopic examination of the spores is needed to distinguish between the two species (Photo 5). Distribution Worldwide, temperate as well as tropical countries. Asia, africa, North, South and Central America, the Caribbean, Europe, Oceania. It is recorded from American Samoa, Australia, Cook Islands, French Polynesia, Federated States of Micronesia, New Zealand, Niue, Papua New Guinea, Samoa, Tonga, Tuvalu, Vanuatu, and Wallis & Futuna. Note that Alternaria brassicae has not been recorded in Fiji, Samoa, Solomon Islands, or Tonga, but has been recorded from Niue and Papua New Guinea.
    [Show full text]
  • USA Archery 51St Indoor Nationals Results
    51st USA Archery Indoor Nationals - Combined Results United States Jan 17, 2020 - Mar 01, 2020 Recurve Senior Men Rank Name Rnd 1 Rnd 2 Rnd 3 Rnd 4 Total Score 10s 9s 1 Brady Ellison 297 297 299 298 1191 111 9 2 Jack Williams 297 299 296 286 1178 107 12 3 Joonsuh Oh 294 296 293 294 1177 98 21 4 Glen Thomas 295 294 291 296 1176 97 22 5 Alex Bourdage 289 298 292 293 1172 94 24 6 Matthew Nofel 294 291 295 290 1170 94 23 7 Joseph McGlyn 291 294 292 289 1166 88 30 8 Matthew Requa 291 294 291 290 1166 86 34 9 Zach Garrett 288 296 288 292 1164 84 36 10 Jackson Mirich 293 287 291 286 1157 83 32 11 Eric Bennett 289 290 289 288 1156 79 38 12 Adam Whitlatch 288 286 293 275 1142 76 40 13 Minsoo Kim 281 287 287 284 1139 72 38 14 Benjamin Hur 282 290 277 289 1138 73 41 15 Michael Martel 284 280 280 294 1138 68 43 16 Micheal Plummer 280 284 282 290 1136 76 32 17 David Wolfe 282 284 287 283 1136 72 35 18 Jason Pfister 285 286 278 287 1136 71 38 19 Andrew Querol 284 285 285 280 1134 66 44 20 Christopher Garcia 288 282 281 283 1134 63 48 21 Seth Mcwherter 271 293 278 286 1128 63 44 22 Jeff Anderson 270 286 283 288 1127 71 42 23 Brandon Spray 285 277 281 283 1126 65 44 24 Matthew Hanson 282 281 280 283 1126 62 43 25 Andrew Park 278 284 281 281 1124 63 43 26 Vickram Rampersad 281 272 284 287 1124 59 48 27 Kent Nitta 271 279 281 291 1122 62 40 28 Arsi Arceo 278 282 273 285 1118 59 45 29 Jason Syman 280 285 278 275 1118 55 51 30 Joony Kim 279 281 277 281 1118 52 55 51st USA Archery Indoor Nationals - Combined Results United States Jan 17, 2020 - Mar 01, 2020
    [Show full text]