Redalyc.Primer Registro De Phialella Quadrata Y Ampliación Del Límite De

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Primer Registro De Phialella Quadrata Y Ampliación Del Límite De Hidrobiológica ISSN: 0188-8897 [email protected] Universidad Autónoma Metropolitana Unidad Iztapalapa México Mendoza-Becerril, María de los Angeles; Ocaña-Luna, Alberto; Sánchez-Ramírez, Marina; Segura- Puertas, Lourdes Primer registro de Phialella quadrata y ampliación del límite de distribución de ocho especies de hidromedusas (Hydrozoa) en el Océano Atlántico Occidental Hidrobiológica, vol. 19, núm. 3, 2009, pp. 257-267 Universidad Autónoma Metropolitana Unidad Iztapalapa Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=57812781009 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Hidrobiológica 2009, 19 (3): 257-267 Primer registro de Phialella quadrata y ampliación del límite de distribución de ocho especies de hidromedusas (Hydrozoa) en el Océano Atlántico Occidental First record of Phialella quadrata and range extension of eight species of hydromedusae (Hydrozoa) in the Western Atlantic Ocean María de los Angeles Mendoza-Becerril1, Alberto-Ocaña-Luna1, Marina Sánchez-Ramírez1 y Lourdes Segura-Puertas2 † 1 Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Lab. de Ecología. Dpto. de Zoología. Prolongación de Carpio y Plan de Ayala s.n. Col. Sto. Tomás. México, D. F. 11340. México 2 Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología. Unidad Académica Puerto Morelos. P. O. Box 1152, Cancún, Q. Roo, 77500, México e-mail: [email protected] Mendoza-Becerril, M. A., A. Ocaña-Luna, M. Sánchez-Ramírez y L. Segura-Puertas. 2009. Primer registro de Phialella quadrata y ampliación del límite de distribución de ocho especies de hidromedusas (Hydrozoa) en el Océano Atlántico Occidental. Hidrobiológica 19 (3): 257-267. RESUMEN Los nuevos registros que se presentan en este trabajo, amplían la distribución geográfica conocida de nueve especies de hidromedusas, que fueron recolectadas en la Laguna Madre, Tamaulipas, México. La identificación de Phialella quadrata constituye el primer registro para el Océano Atlántico Occidental, mientras que Ectopleura dumortieri lo es para el Golfo de México y Clytia folleata para la región norte del mismo. Se extiende el área geográfica de distribución de Bougainvillia superciliaris, Nemopsis bachei, Sarsia tubulosa y Clytia globosa a menor latitud, mientras que Eirene tenuis y Octophialucium medium a mayor latitud. Palabras clave: Nuevos registros, Leptothecata, Anthoathecata, Laguna Madre. ABSTRACT The new records provided here extend the geographic distribution know of nine hydromedusae species collected in the Laguna Madre, Tamaulipas, Mexico. The record of Phialella quadrata is the first one for the Western Atlantic Ocean, while Ectopleura dumortieri is registered for the first time in the Gulf of Mexico and Clytia folleata in the north of the same gulf. The geographic distribution of Bougainvillia superciliaris, Nemopsis bachei, Sarsia tubulosa and Clytia globosa is extended to a lower latitude, while Eirene tenuis and Octophialucium medium increase to a higher latitude. Key words: New records, Leptothecata, Anthoathecata, Laguna Madre. INTRODUCCIÓN sos organismos zooplanctónicos (Purcell, 1985; Purcell & Arai, 2001). La abundancia y distribución de esta fauna depende de los Las hidromedusas son depredadores que actúan en los primeros patrones de comportamiento de las propias especies (Arai, 1992) niveles de la cadena trófica del ecosistema marino, por lo que y de la interacción con factores biológicos, químicos y físicos afectan la abundancia de estadios larvarios y adultos de diver- (Graham et al., 2001). 258 Mendoza-Becerril, M. A., et al. La distribución de las hidromedusas se altera por el trans- Tabla 1. Posición geográfica de las estaciones de muestreo en la porte pasivo a través de masas de agua (van der Spoel, 1991) Laguna Madre, Tamaulipas (1997-1998). y por mecanismos asociados a las actividades humanas (p. ej. tráfico marítimo), estos últimos dan lugar a la introducción de Estaciones Latitud N Longitud O especies no nativas, las cuales pueden modificar la estructura 1 24º 16’ 41.8’’ 97º 43’.11.7’’ de las comunidades autóctonas y causar un impacto económico 2 24º 14’ 14.1’’ 97º 44’.14.4’’ negativo (Ruíz et al., 1997). 3 24º 14’ 05.7’’ 97º 45’.18.6’’ Los estudios sobre hidromedusas realizados en la zona 4 24º 15’ 41.2’’ 97º 44’.17.7’’ nerítica y oceánica del Golfo de México han sido realizados 5 24º 16’ 39.3’’ 97º 43’.51.3’’ por: Sears (1954), Simmons (1957), Moore (1962), Hopkins (1966), 6 24º 18’ 20.1’’ 97º 43’.41.7’’ Burke (1975), Segura-Puertas (1992), Suárez-Morales et al. (2002) 7 24º 20’ 20.7’’ 97º 43’.25.2’’ y Loman-Ramos et al. (2007). 8 24º 24’ 06.3’’ 97º 42’.38.7’’ En las últimas décadas se han incrementado los trabajos 9 24º 25’ 27.0’’ 97º 43’.36.8’’ que dan a conocer nuevos registros geográficos de hidrome- 10 24º 27’ 14.1’’ 97º 44’.49.0’’ dusas en aguas mexicanas del Golfo de México; entre ellos se encuentran los de: Canudas-González (1979); Segura-Puertas 11 24º 26’ 04.8’’ 97º 47’.37.6’’ (1992); Correia-Valenca & Segura-Puertas (1996) y Loman-Ramos 12 24º 25’ 03.6’’ 97º 47’.40.2’’ et al. (2007) entre otros. 13 24º 26’ 16.5’’ 97º 50’.34.6’’ 14 24º 27’ 11.7’’ 97º 50’.55.8’’ 15 24º 31’ 36.0’’ 97º 48’.35.4’’ N 16 24º 31’ 08.8’’ 97º 50’.13.3’’ W E 17 24º 32’ 22.5’’ 97º 49’.53.1’’ S ESTERO 18 24º 32’ 48.9’’ 97º 48’.42.6’’ EL GATO 19 24º 32’ 23.1’’ 97º 46’.28.6’’ ESTERO EL PERRO 20 24º 29’ 50.7’’ 97º 46’.41.4’’ • • • 17 18 19 LAGUNA • 16 PUNTA LOS MADRE LEGALES • 24˚ 30’ En este trabajo se da a conocer por primera vez la presen- 20 • 15 cia de Phialella quadrata (Forbes, 1848) y la ampliación del límite BOCA DE • 14 BAHÍA DE CATÁN CATÁN de distribución geográfico de ocho especies de hidromedusas en • 10 11 el Océano Atlántico Occidental, identificadas por primera vez en PUNTA • 13 • ALGODONES la Laguna Madre, Tamaulipas, México, por tal motivo se analiza 12 9 • la distribución mundial y los intervalos de salinidad y temperatura • 8 • en los cuales se localizaron a las especies. GOLFO DE BAYUCO MATERIALES Y MÉTODOS DE ORO MÉXICO 7 • Los ejemplares se obtuvieron de la recolecta de zooplancton en 6 • la Laguna Madre, Tamaulipas, México (23° 48’ y 25° 30’ N, 97° 23’ y 97° 52’ O). La laguna posee una superficie de 2,000 km2 y 28˚ BOCA 1 • una profundidad promedio de 0.7 m (Ayala Castañares & Segura, Golfo de EL CABALLO México 5 • 1968). Fue declarada como área natural protegida, con carácter • 4 de área de protección de flora y fauna por la Secretaría de Medio 2 • Ambiente y Recursos Naturales (SEMARNAT, 2005). Esta laguna 16˚ ENRAMADA 96˚ • 3 5 km junto con la Laguna Madre de Texas, E. U. A. forman el sistema hipersalino más extenso del mundo (Tunell, 2002). 97˚ 56’ 24˚ 08’ Al sur de la Laguna Madre se establecieron 20 estaciones Figura 1. Área de estudio y ubicación de estaciones de muestreo en de muestreo, durante octubre 1997, enero, mayo y julio, 1998, las la Laguna Madre, Tamaulipas, México (1997-1998). cuales fueron referenciadas geográficamente (Fig. 1 y tabla 1). Hidrobiológica Nuevos registros de hidromedusas, México 259 Figura 2a-d. Hidromedusas de: a) Bougainvillia superciliaris, b) Nemopsis bachei, c) Sarsia tubulosa, d) Clytia folleata. La toma de muestras se realizó mediante arrastres superficiales, 1849), Nemopsis bachei L. Agassiz, 1849, Sarsia tubulosa (M. con una red de zooplancton de apertura de malla de 500 µm y Sars, 1835), Clytia folleata (McCrady, 1859), Clytia globosa (Mayer, boca de 50 cm de diámetro, las muestras biológicas se fijaron en 1910), Octophialucium medium Kramp, 1955, Phialella quadrata y formalina al 4 % neutralizada con borato de sodio. Se midió in situ Ectopleura dumortieri (van Beneden, 1844). la salinidad y la temperatura superficiales. Los ejemplares fueron A continuación se proporcionan los datos del material separados de la muestra completa e identificados de acuerdo a recolectado en la laguna, así como la distribución mundial para las descripciones de: Mayer (1910), Russell (1953), Kramp (1959), cada especie. Kramp (1961) y Bouillon & Boero (2000). Para cada especie se señala: fecha (día/mes/año): estación (número de individuos). Orden Anthoathecata: Los parámetros ambientales están referidos a los sitios de reco- lecta de cada especie. Los ejemplares están depositados en la Familia Bougainvillidae Lûtken, 1850 Colección de Invertebrados Planctónicos, de la Escuela Nacional Bougainvillia superciliaris (L. Agassiz, 1849). (Fig. 2a) de Ciencias Biológicas del Instituto Politécnico Nacional. Material examinado: 23/10/1997: 7(1), 9(2); 24/10/1997: 11(5), 12(4), 13(34), 14(26), 15(21), 16(1), 20(37). 22/01/1998: 2(1), 5(5), 9(11); RESULTADOS 24/01/1998: 10(114), 11(543), 12(323), 14(35), 15(43), 16(9), 17(6), Las nueve especies registradas en el presente estudio per- 18(5), 19(1), 2(48). 03/05/1998: 10(6), 11(22), 12(37), 13(7), 14(1), 15(4), tenecen al Phylum Cnidaria, Subphylum Medusozoa, Clase 16(17), 18(3), 19(1), 20(13). Hydrozoa, Subclase Hydroidolina y se agrupan en los Ordenes: Parámetros ambientales: 21-45 ups y 18-28ºC. Leptothecata y Anthoathecata de acuerdo a la clasificación propuesta por Marques & Collins (2004). Se analizaron 60,709 Registros previos: Alaska; Point Borrow: MacGinitie (1955; en medusas, de las cuales el 97.5 % correspondieron a Eirene tenuis Kramp, 1961). Rusia; Mar Kara: Yashnow (1952), Mar Blanco: (Browne, 1905) y el 2.5 % a Bougainvillia superciliaris (L.
Recommended publications
  • 1 Creating a Species Inventory for a Marine Protected Area: the Missing
    Katherine R. Rice NOAA Species Inventory Project Spring 2018 Creating a Species Inventory for a Marine Protected Area: The Missing Piece for Effective Ecosystem-Based Marine Management Katherine R. Rice ABSTRACT Over the past decade, ecosystem-based management has been incorporated into many marine- management administrations as a marine-conservation tool, driven with the objective to predict, evaluate and possibly mitigate the impacts of a warming and acidifying ocean, and a coastline increasingly subject to anthropogenic control. The NOAA Office of National Marine Sanctuaries (ONMS) is one such administration, and was instituted “to serve as the trustee for a network of 13 underwater parks encompassing more than 600,000 square miles of marine and Great Lakes waters from Washington state to the Florida Keys, and from Lake Huron to American Samoa” (NOAA, 2015). The management regimes for nearly all national marine sanctuaries, as well as other marine protected areas, have the goal of managing and maintaining biodiversity within the sanctuary. Yet none of those sanctuaries have an inventory of their known species nor a standardized protocol for measuring or monitoring species biodiversity. Here, I outline the steps required to compile a species inventory for an MPA, but also describe some of stumbling blocks that one might encounter along the way and offer suggestions on how to handle these issues (see Appendix A: Process for Developing the MBNMS Species Inventory (PD-MBNMS)). This project consists of three research objectives: 1. Determining what species inventory efforts exist, how they operate, and their advantages and disadvantages 2. Determining the process of creating a species inventory 3.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Fisheries Centre Research Reports 2011 Volume 19 Number 6
    ISSN 1198-6727 Fisheries Centre Research Reports 2011 Volume 19 Number 6 TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE Fisheries Centre, University of British Columbia, Canada TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE edited by Maria Lourdes D. Palomares and Daniel Pauly Fisheries Centre Research Reports 19(6) 175 pages © published 2011 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 Fisheries Centre Research Reports 19(6) 2011 TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE edited by Maria Lourdes D. Palomares and Daniel Pauly CONTENTS PAGE DIRECTOR‘S FOREWORD 1 EDITOR‘S PREFACE 2 INTRODUCTION 3 Offshore oil vs 3E‘s (Environment, Economy and Employment) 3 Frank Gordon Kirkwood and Audrey Matura-Shepherd The Belize Barrier Reef: a World Heritage Site 8 Janet Gibson BIODIVERSITY 14 Threats to coastal dolphins from oil exploration, drilling and spills off the coast of Belize 14 Ellen Hines The fate of manatees in Belize 19 Nicole Auil Gomez Status and distribution of seabirds in Belize: threats and conservation opportunities 25 H. Lee Jones and Philip Balderamos Potential threats of marine oil drilling for the seabirds of Belize 34 Michelle Paleczny The elasmobranchs of Glover‘s Reef Marine Reserve and other sites in northern and central Belize 38 Demian Chapman, Elizabeth Babcock, Debra Abercrombie, Mark Bond and Ellen Pikitch Snapper and grouper assemblages of Belize: potential impacts from oil drilling 43 William Heyman Endemic marine fishes of Belize: evidence of isolation in a unique ecological region 48 Phillip Lobel and Lisa K.
    [Show full text]
  • Proceedings of National Seminar on Biodiversity And
    BIODIVERSITY AND CONSERVATION OF COASTAL AND MARINE ECOSYSTEMS OF INDIA (2012) --------------------------------------------------------------------------------------------------------------------------------------------------------- Patrons: 1. Hindi VidyaPracharSamiti, Ghatkopar, Mumbai 2. Bombay Natural History Society (BNHS) 3. Association of Teachers in Biological Sciences (ATBS) 4. International Union for Conservation of Nature and Natural Resources (IUCN) 5. Mangroves for the Future (MFF) Advisory Committee for the Conference 1. Dr. S. M. Karmarkar, President, ATBS and Hon. Dir., C B Patel Research Institute, Mumbai 2. Dr. Sharad Chaphekar, Prof. Emeritus, Univ. of Mumbai 3. Dr. Asad Rehmani, Director, BNHS, Mumbi 4. Dr. A. M. Bhagwat, Director, C B Patel Research Centre, Mumbai 5. Dr. Naresh Chandra, Pro-V. C., University of Mumbai 6. Dr. R. S. Hande. Director, BCUD, University of Mumbai 7. Dr. Madhuri Pejaver, Dean, Faculty of Science, University of Mumbai 8. Dr. Vinay Deshmukh, Sr. Scientist, CMFRI, Mumbai 9. Dr. Vinayak Dalvie, Chairman, BoS in Zoology, University of Mumbai 10. Dr. Sasikumar Menon, Dy. Dir., Therapeutic Drug Monitoring Centre, Mumbai 11. Dr, Sanjay Deshmukh, Head, Dept. of Life Sciences, University of Mumbai 12. Dr. S. T. Ingale, Vice-Principal, R. J. College, Ghatkopar 13. Dr. Rekha Vartak, Head, Biology Cell, HBCSE, Mumbai 14. Dr. S. S. Barve, Head, Dept. of Botany, Vaze College, Mumbai 15. Dr. Satish Bhalerao, Head, Dept. of Botany, Wilson College Organizing Committee 1. Convenor- Dr. Usha Mukundan, Principal, R. J. College 2. Co-convenor- Deepak Apte, Dy. Director, BNHS 3. Organizing Secretary- Dr. Purushottam Kale, Head, Dept. of Zoology, R. J. College 4. Treasurer- Prof. Pravin Nayak 5. Members- Dr. S. T. Ingale Dr. Himanshu Dawda Dr. Mrinalini Date Dr.
    [Show full text]
  • Cnidaria: Hydrozoa: Leptothecata and Limnomedusae
    Aquatic Invasions (2018) Volume 13, Issue 1: 43–70 DOI: https://doi.org/10.3391/ai.2018.13.1.05 © 2018 The Author(s). Journal compilation © 2018 REABIC Special Issue: Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011 Research Article Hydroids (Cnidaria: Hydrozoa: Leptothecata and Limnomedusae) on 2011 Japanese tsunami marine debris landing in North America and Hawai‘i, with revisory notes on Hydrodendron Hincks, 1874 and a diagnosis of Plumaleciidae, new family Henry H.C. Choong1,2,*, Dale R. Calder1,2, John W. Chapman3, Jessica A. Miller3, Jonathan B. Geller4 and James T. Carlton5 1Invertebrate Zoology, Royal British Columbia Museum, 675 Belleville Street, Victoria, BC, Canada, V8W 9W2 2Invertebrate Zoology Section, Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada, M5S 2C6 3Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr., Newport, Oregon 97365, USA 4Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA 5Williams College-Mystic Seaport Maritime Studies Program, Mystic, Connecticut 06355, USA Author e-mails: [email protected] (HHCC), [email protected] (DRC), [email protected] (JWC), [email protected] (JTC) *Corresponding author Received: 13 May 2017 / Accepted: 14 December 2017 / Published online: 20 February 2018 Handling editor: Amy Fowler Co-Editors’ Note: This is one of the papers from the special issue of Aquatic Invasions on “Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011." The special issue was supported by funding provided by the Ministry of the Environment (MOE) of the Government of Japan through the North Pacific Marine Science Organization (PICES).
    [Show full text]
  • Jellyfish Identification and Quantification in the San Francisco
    Jellyfish Identification and Quantification in the San Francisco Estuary Amalia Borson1, Lindsay Sullivan2, Wim Kimmerer2 1Graduate College of Education, San Francisco State University, 1600 Holloway Ave., San Francisco, Ca. USA, 94132, [email protected] 2Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Dr., Tiburon Ca. USA, 92920 Identification Obelia spp.4 Amphenima Bougainvillia Coryne Phialella sp.8 Pleurobrachia Turritopsis sp.1,9,10 sp.1,5 muscus1,6,7 eximia1 (Order Leptotheca) bachei5 Copepod Copepod Egg • 48-60 tentacles • 2 pink tentacles • 4 tentacle bulbs • 4 tentacles • Variable tentacle # • 2 tentacles • 80-90 tentacles • 4 spherical gonads • Yellow, folded • 3-5 tentacles/bulb • Gonads along gut • Gonads along gut • 8 rows of cilia • Red gonads • Flat gonads • Branched oral • Bell shaped • Bell shaped • Spherical • Bell shaped • Bell shaped tentacles * Found in live tow, not abundance tow • Bell shaped Rationale Abundance Results Previous studies in the San Francisco Estuary (SFE) incurred difficulties identifying Jellyfish Abundance at RTC 35 small offshore jellyfish. Thus, jellyfish were reared to larger stages to aid in ) 3 - Obelia spp. determining identification and abundance. This information is important for 30 m Amphenima sp. determining and monitoring invasions, habitat, and interactions with fish. 25 Bougainvillia muscus 20 Objectives Coryne eximia 15 - Identify small jellies by rearing them until distinguishing characteristics are visible. Order Leptotheca 10 Pleurobrachia bachei - Quantify the abundance of jellyfish in the SFE. 5 Methods (Jellies Abundance 0 6/20/13 6/27/13 7/3/13 7/11/13 * 7/22/13 Sample Date 1 Two plankton tows were taken weekly from the Romberg Tiburon Center (RTC).
    [Show full text]
  • Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models Of
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. Callaghan, E., et al., 2020. JoNSC. 7. pp.34-43. Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Eric Callaghan1, Bernhard Egger2, Hazel Doyle1, and Emmanuel G. Reynaud1* 1School of Biomolecular and Biomedical Science, University College Dublin, University College Belfield, Dublin 4, Ireland. 2Institute of Zoology, University of Innsbruck, Austria Received: 28th June 2019 *Corresponding author: [email protected] Accepted: 3rd Feb 2020 Citation: Callaghan, E., et al. 2020. Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Inverte- brates1888 catalogue, with correction of authorities. Journal of Natural Science Collections.
    [Show full text]
  • Hydrozoa of Southern Chesapeake Bay
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1968 Hydrozoa of Southern Chesapeake Bay Dale R. Calder College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, Dale R., "Hydrozoa of Southern Chesapeake Bay" (1968). Dissertations, Theses, and Masters Projects. Paper 1550154024. https://doi.org/10.25773/r8f9-eg95 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. HYDROZOA OF SOUTHERN CHESAPEAKE BAY A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy By Dale Ralph Calder 1968 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dale Ralph Calder Approved, July 1968 M. L. Brehmer, Ph.D., Major Professor Aj J" D. Andrews , Ph. D rgis, Jr M. M. Nichols, Ph.D. M. L. Wass, Ph.D. Dean, hool Marine Science DEDICATION This thesis is dedicated with heartfelt thanks to my ^parents, Mr. and Mrs. Wilfred Calder, for their many sacrifices on my behalf. iii ACKNOWLEDGMENTS It is a pleasure to acknowledge with gratitude the help of Dr.
    [Show full text]
  • Hydrozoa, Hydroidolina)
    Lat. Am. J. Aquat. Res., 41(5): 908-924, 2013 Knowledge and distribution of the Bougainvilliidae 908 1 DOI: 103856/vol41-issue5-fulltext-11 Research Article Synopsis on the knowledge and distribution of the family Bougainvilliidae (Hydrozoa, Hydroidolina) María de los Angeles Mendoza-Becerril1 & Antonio C. Marques1 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão Trav. 14, 101, 05508-090, São Paulo, SP, Brasil ABSTRACT. The family Bougainvilliidae comprises a group of anthoathecate hydrozoans that is biologically, ecologically and biogeographically poorly understood, and consequently, poorly taxonomically organized. Here, our goal is to synthesize knowledge of the family from an historical perspective, and to analyze their potential distribution based on their ecology. We analyzed all the available information on the family (based on 303 articles and databases), comprising 15 genera and 97 valid species in five oceans. Two temporal peaks (1900 and 2000) in publications are dominated by records of meroplanktonic species. The coastal zone has the most frequently reported occurrences. The widest latitudinal ranges are found in the genera Bimeria and Bougainvillia. Ecological niche modeling of 25 species (MaxEnt algorithm) finds that chlorophyll is the most important variable that influences the distribution of the family. Five possible latitudinal distributional patterns are derived from the model, dominated by the subtropical-polar distribution. Keywords: Filifera, Anthoathecata, Bougainvilliidae, niche, taxonomy, biogeography. Sinopsis sobre el conocimiento y distribución de la familia Bougainvilliidae (Hydrozoa, Hydroidolina) RESUMEN. La familia Bougainvilliidae comprende un grupo de hidrozoos antoatecados, taxonómicamente mal estructurado y biológica, ecológica y biogeográficamente poco conocidos. En este caso, el objetivo de este estudio es sintetizar el conocimiento actual de la familia, desde una perspectiva histórica, y analizar su potencial de distribución en función de su ecología.
    [Show full text]
  • Leptothecata (Cnidaria: Hydrozoa)(Thecate Hydroids) Willem Vervoort and Jeanette E
    ISSN 0083–7908; 119 The Marine Fauna of New Zealand:Leptothecata (Cnidaria: Hydrozoa)(Thecate Hydroids) Willem Vervoort and Jeanette E. Watson Willem Vervoort The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) Willem Vervoort and Jeanette E. Watson NIWA Biodiversity Memoir 119 COVER PHOTO: Endemic Dictyocladium monilifer (Hutton, 1873), Red Baron Caves, Poor Knights Islands. Photo: Malcolm Francis, NIWA.. NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) Willem Vervoort National Museum of Natural History P.O. Box 9517, 2300 RA Leiden THE NETHERLANDS Jeanette E. Watson Honorary Associate, Museum of Victoria Melbourne 3000, AUSTRALIA NIWA Biodiversity Memoir 119 2003 1 Cataloguing in Publication VERVOORT, W.; WATSON, J.E. The marine fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) / by Willem Vervoort and Jeanette E. Watson — Wellington : NIWA (National Institute of Water and Atmospheric Research), 2003 (NIWA Biodiversity memoir, ISSN 0083–7908: 119) ISBN 0-478-23261-6 I. Title II. Series Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson and Geoff Gregory National Institute of Water and Atmospheric Research (NIWA) (incorporating N.Z. Oceanographic Institute) Wellington Received for publication — July 2000 © NIWA Copyright 2003 2 CONTENTS Page ABSTRACT......................................................................................................................................................
    [Show full text]
  • Resolving the Role of Jellyfish in Marine Food Webs
    Resolving the role of jellyfish in marine food webs Philip Lamb A thesis submitted for the degree of Doctor of Philosophy University of East Anglia School of Biological Sciences Submission Date: September 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Abstract Jellyfish populations in the Irish Sea have been increasing. This has caused a variety of economic problems, such as the destruction of aquaculture installations, and new opportunities, such as the establishment of a jellyfish fishery. However, interactions between jellyfish and other biota in the ecosystem is poorly characterised and ecological consequences of an increasing jellyfish population remains unknown. Molecular gut content analysis methodologies were developed to address this data gap. Cnidarian specific primers were developed and showed using more than 2500 stomachs that, during February and March, moon and mauve-stinger jellyfish were consumed by common fish species including herring, whiting, and lesser-spotted dogfish. Revisiting the ecosystem in October with 375 additional samples, the primers indicated jellyfish predation varied temporally: small jellyfish were still targeted by mackerel, however moon jellyfish adults were not preyed upon. To understand the context in which jellyfish consumption occurred a high throughput sequencing (HTS) approach using two universal primers was developed. A meta-analysis of HTS studies suggested results contained a quantitative signal, and the methodology could be used to move beyond a presence/absence approach.
    [Show full text]
  • Synopsis of the Families and Genera of the Hydromedusae of the World, with a List of the Worldwide Species
    Phylogeny and Classification of Hydroidomedusae SYNOPSIS OF THE FAMILIES AND GENERA OF THE HYDROMEDUSAE OF THE WORLD, WITH A LIST OF THE WORLDWIDE SPECIES. Jean Bouillon (1) and Ferdinando Boero (2) (1) Laboratoire de Biologie Marine, Université Libre de Bruxelles, 50 Ave F. D. Roosevelt, 1050 Bruxelles, Belgium. (2) Dipartimento di Biologia, Stazione di Biologia Marina, Università di Lecce, 73100 Lecce, Italy. Abstract: This report provides a systematic review of the pelagic Hydrozoa, Siphonophores excluded; diagnoses and keys are given for the different families and genera with a short description of their hydroid stage where known; a list of the world-wide hydromedusae species is established. Key words: Hydrozoa, Automedusae, Hydroidomedusae, systematics, diagnosis A: INTRODUCTION: The hydromedusae are on the whole one of the best known groups of all the Hydrozoa, three great monographs covering the world-wide described species having been dedicated to them, the first by Haeckel (1879-1880), the second by Mayer (1910) and the last by Kramp (1961). A generic revision has been done by Bouillon, 1985, 1995 and several large surveys covering various 47 Thalassia Salentina n. 24/2000 geographical regions have been published in recent times, more particularly, those by Kramp, 1959 the “Atlantic and adjacent waters”, 1968 “Pacific and Indian Ocean”, Arai and Brinckmann-Voss, 1980 “British Columbia and Puget Sound”; Bouillon, 1999 “South Atlantic”; Bouillon and Barnett, 1999 “New- Zealand”; Boero and Bouillon, 1993 and Bouillon et al, (in preparation) “ Mediterranean”; they all largely improved our knowledge about systematics and hydromedusan biodiversity. The present work is a compilation of all the genera and species of hydromedusae known, built up from literature since Kramp’s 1961 synopsis to a few months before publication.
    [Show full text]