Leptothecata (Cnidaria: Hydrozoa)(Thecate Hydroids) Willem Vervoort and Jeanette E

Total Page:16

File Type:pdf, Size:1020Kb

Leptothecata (Cnidaria: Hydrozoa)(Thecate Hydroids) Willem Vervoort and Jeanette E ISSN 0083–7908; 119 The Marine Fauna of New Zealand:Leptothecata (Cnidaria: Hydrozoa)(Thecate Hydroids) Willem Vervoort and Jeanette E. Watson Willem Vervoort The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) Willem Vervoort and Jeanette E. Watson NIWA Biodiversity Memoir 119 COVER PHOTO: Endemic Dictyocladium monilifer (Hutton, 1873), Red Baron Caves, Poor Knights Islands. Photo: Malcolm Francis, NIWA.. NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) Willem Vervoort National Museum of Natural History P.O. Box 9517, 2300 RA Leiden THE NETHERLANDS Jeanette E. Watson Honorary Associate, Museum of Victoria Melbourne 3000, AUSTRALIA NIWA Biodiversity Memoir 119 2003 1 Cataloguing in Publication VERVOORT, W.; WATSON, J.E. The marine fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) / by Willem Vervoort and Jeanette E. Watson — Wellington : NIWA (National Institute of Water and Atmospheric Research), 2003 (NIWA Biodiversity memoir, ISSN 0083–7908: 119) ISBN 0-478-23261-6 I. Title II. Series Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson and Geoff Gregory National Institute of Water and Atmospheric Research (NIWA) (incorporating N.Z. Oceanographic Institute) Wellington Received for publication — July 2000 © NIWA Copyright 2003 2 CONTENTS Page ABSTRACT....................................................................................................................................................... 5 INTRODUCTION ........................................................................................................................................... 6 GLOSSARY .................................................................................................................................................... 15 LIST OF SPECIES .......................................................................................................................................... 18 SYSTEMATICS .............................................................................................................................................. 22 Order CONICA ........................................................................................................................................ 22 Suborder CAMPANULINIDA ......................................................................................................... 22 Superfamily CAMPANULINOIDEA ...................................................................................... 22 Superfamily LAODICEOIDEA .................................................................................................. 29 Superfamily EIRENOIDEA .................................................................................................... 34 Superfamily LOVENELLOIDEA ............................................................................................... 37 Superfamily MITROCOMOIDEA.............................................................................................. 40 Suborder LAFOEIDA ........................................................................................................................ 41 Superfamily LAFOEOIDEA ....................................................................................................... 41 Suborder HALECIIDA ...................................................................................................................... 85 Superfamily HALECIOIDEA ..................................................................................................... 85 Suborder PLUMULARIIDA ........................................................................................................... 102 Superfamily SERTULAROIDEA .............................................................................................. 102 Superfamily PLUMULARIOIDEA .......................................................................................... 260 Order PROBOSCOIDA ......................................................................................................................... 413 Suborder CAMPANULARIIDA .................................................................................................... 413 Superfamily CAMPANULARIOIDEA ................................................................................... 413 ACKNOWLEDGMENTS ........................................................................................................................... 448 REFERENCES .............................................................................................................................................. 449 APPENDIX 1. LIST OF STATIONS .......................................................................................................... 482 INDEX ....................................................................................................................................................... 527 3 AB CD Frontispiece: A, Synthecium sp., Otamatiti Point, Cape Karikari. B, Aglaophenia ctenata (Totton, 1930). C, Nemertesia elongata Totton, 1930. D, Wanglaophenia longicarpa n. gen., n. sp., holotype specimen, Wanganella Bank, West Norfolk Ridge. Photos: A-C, Malcolm Francis, NIWA; D, Jeanette Watson 4 The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids) WILLEM VERVOORT National Museum of Natural History P.O. Box 9517, 2300 RA Leiden THE NETHERLANDS JEANETTE E. WATSON Honorary Associate, Museum of Victoria Melbourne 3000, AUSTRALIA ABSTRACT This memoir deals with the New Zealand Leptolida Leptothecatae (formerly named Hydroida Thecaphora, also referred to as Hydroida Leptomedusae and colloquially known as thecate hydroids), based on collections of the New Zealand Oceanographic Institute (now incorporated in NIWA — the National Institute of Water and Atmospheric Research), Wellington; the National Museum of New Zealand Te Papa Tongarewa, Wellington; the Otago Museum, Dunedin; and the Portobello Marine Biological Station of the University of Otago, Dunedin. About 300 species are discussed and where necessary described and figured. This group of animals was the subject of a thorough survey by Dr Patricia M. Ralph in the years 1957–1961 but largely based on shore- based collections, only a small portion of her material coming from deeper waters. The present survey covers a much wider area, extending into deep waters and dealing with a greatly increased number of species. In many cases the number of specimens studied was much larger than the comparatively modest number of samples at Dr Ralph’s disposal, so our views in certain cases differ from hers. Nevertheless we have closely followed Dr Ralph’s discussion, having access to the major part of her collections. The number of new species in the extensive collections is considerable, some 45 being described. The taxonomic part of the present report is preceded by introductory paragraphs including an historical introduction, a paragraph highlighting the general structure of Leptothecatae and a glossary. Keywords: Conica, Campanulinida, Lafoeida, Haleciida, Plumulariida, Proboscoida, Campanulariida, New Zealand, thecate hydroids, taxonomy, distribution, deep-water species, new species 5 INTRODUCTION INTRODUCTORY REMARKS The medusa phases of Anthoathecatae, Lepto- thecatae, and Limnomedusae, as well as the Narco-, The present paper is the result of two visits of two Langio-, and Trachymedusae are grouped together as months each, in 1993 and 1995, to various New Zealand ‘Hydromedusae’; these have, for the New Zealand institutions to study their hydroid collections, the visits area, been treated by Bouillon and Barnett (1999). being largely financed by NIWA funds. As the For a full description of the structure and biology collections were much more extensive than could be of Leptothecatae we refer to one of the many textbooks handled in four months, bearing in mind the necessity of invertebrate taxonomy. A very recent and up to date to make microslide preparations of the principal treatment is found in Bouillon (1995); though recently colonies, it was decided to inspect additional material published, its literature references date from some sent on loan to our respective laboratories. The Ralph years before the date of publication; additional Collection of tubed material in possession of the references can easily be obtained from the Zoological National Museum of New Zealand, for instance, was Records. Cornelius’s introduction to his two volumes completely studied in Leiden. on British Leptothecatae (Cornelius 1995a, b) also During our study of the New Zealand leptolid presents a complete survey of up to date information collections we also saw many Anthoathecatae. The on this group of animals. The following paragraph lists present report exclusively deals with the Leptothecatae; some basic facts necessary to use the present volume the data on Anthoathecatae, many of which have not at its full advantage. been published before, will hopefully form the basis of Cnidaria are the most primitive phylum of the a future paper. Eumetazoa, multicellular animals, mainly consisting of two cell layers, the ‘ectoderm’ or outer layer, and the ‘endoderm’ or inner layer, separated by an inter- GENERAL REMARKS mediate layer of varied thickness and composition, called mesoglea; it may contain cells and fibrillar The present paper deals with New Zealand leptothecate elements. The endoderm, referred to as ‘gastrodermis’
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • 3 Hydroids from the John Murray Expedtion to The
    REES & VERVOORT: HYDROIDS JOHN MURRAY EXPEDITION 3 HYDROIDS FROM THE JOHN MURRAY EXPEDTION TO THE INDIAN OCEAN, WITH REVISORY NOTES ON HYDRODENDRON, ABIETI- NELLA, CRYPTOLARIA AND ZYGOPHYLAX (CNIDARIA: HYDRO- ZOA) by W. J. REES and W. VERVOORT Rees, W. J. & W. Vervoort: Hydroids from the John Murray Expedition to the Indian Ocean, with revisory notes on Hydrodendron, Abietinella, Cryptolaria and Zygophylax (Cnidaria, Hydro- zoa). Zool. Verh. Leiden 237, 16-ii-1987: 1-209, figs. 1-43, tabs. 1-37. - ISSN 0024-1652. Key words: Cnidaria; Hydrozoa; genera; relationships, new species; deep-water fauna Indian Ocean. Fourty-four species and one variety of hydroids were identified in the John Murray hydroid collection, obtained from the Gulf of Aden, the Arabian Sea and the northern part of the Indian Ocean, largely from deep water localities. Of these 44 species 2 could be identified only to genus, 1 species is doubtfully mentioned and 5 are new to science. The 44 species we assigned to 2 families of athecate and 6 families of thecate hydroids. In many instances the species have been compared with the type material which, where necessary, was redescribed. A number of additional species, not represented in the John Murray collection has also been redescribed and/or figured. Practical• ly all the John Murray hydroids are figured. Deposition of spirit-preserved type and other material (alc.), including microslide preparations (slds) in the collections of the British Museum (Natural History) (BMNH) and in the collections of the Rijksmuseum van Natuurlijke Historie (National Museum of Natural History), Leiden, Netherlands (RMNH), is indicated. Holotypes, and where necessary paratypes, have been indicated of Zygophylax millardae sp.
    [Show full text]
  • A New Computing Environment for Modeling Species Distribution
    EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • (Cnidaria, Hydrozoa) from the Madeira Archipelago
    On a collection of hydroids (Cnidaria, Hydrozoa) from the Madeira archipelago PETER WIRTZ Wirtz, P. 2007. On a collection of hydroids (Cnidaria, Hydrozoa) from the Madeira archipelago. Arquipélago. Life and Marine Sciences 24:11-16. Hydroids were collected from Madeira and Porto Santo Islands (eastern temperate Atlantic Ocean) by SCUBA diving over a depth range from 0 to 62 m, as well as by two trawls off the city of Funchal, at depths of 60 and 100 m. A preliminary list of 53 identified species from 33 genera and 17 families is given and comments are made on some of them. Eight of them could not be determined to species level because they either lacked gonophores or the medusa stage is necessary for identification. An undescribed species (genus Sertularella) will be described in a separate publication. Additional species have been sent to hydroid specialists, and their identifications are pending. Key words: hydrozoa, Madeira, Sertularella, species list Peter Wirtz (e-mail: [email protected]), Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal. INTRODUCTION Hydroid colonies were collected by SCUBA diving, at depths ranging from 0 to 62 m, and The Hydrozoa of Madeira were reported on as during two trawls off the city of Funchal, at early as the middle of the 19th century (Busk depths of 60 and 100 m. Specimens were 1858-1861 Kirchenpauer 1876) and subsequently preserved in formol for further study and are now in many widely scattered publications, most in the private collections of A. Svoboda notably by Svoboda & Cornelius (1991) and by (Bochum) and F.
    [Show full text]
  • Molecular Investigation of the Cnidarian-Dinoflagellate Symbiosis
    AN ABSTRACT OF THE DISSERTATION OF Laura Lynn Hauck for the degree of Doctor of Philosophy in Zoology presented on March 20, 2007. Title: Molecular Investigation of the Cnidarian-dinoflagellate Symbiosis and the Identification of Genes Differentially Expressed during Bleaching in the Coral Montipora capitata. Abstract approved: _________________________________________ Virginia M. Weis Cnidarians, such as anemones and corals, engage in an intracellular symbiosis with photosynthetic dinoflagellates. Corals form both the trophic and structural foundation of reef ecosystems. Despite their environmental importance, little is known about the molecular basis of this symbiosis. In this dissertation we explored the cnidarian- dinoflagellate symbiosis from two perspectives: 1) by examining the gene, CnidEF, which was thought to be induced during symbiosis, and 2) by profiling the gene expression patterns of a coral during the break down of symbiosis, which is called bleaching. The first chapter characterizes a novel EF-hand cDNA, CnidEF, from the anemone Anthopleura elegantissima. CnidEF was found to contain two EF-hand motifs. A combination of bioinformatic and molecular phylogenetic analyses were used to compare CnidEF to EF-hand proteins in other organisms. The closest homologues identified from these analyses were a luciferin binding protein involved in the bioluminescence of the anthozoan Renilla reniformis, and a sarcoplasmic calcium- binding protein involved in fluorescence of the annelid worm Nereis diversicolor. Northern blot analysis refuted link of the regulation of this gene to the symbiotic state. The second and third chapters of this dissertation are devoted to identifying those genes that are induced or repressed as a function of coral bleaching. In the first of these two studies we created a 2,304 feature custom DNA microarray platform from a cDNA subtracted library made from experimentally bleached Montipora capitata, which was then used for high-throughput screening of the subtracted library.
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • A New Jellyfish Species in the Turkish Coastal Waters - Aequorea Forskalea Péron & Lesueur, 1810 (Cnidaria: Hydrozoa)
    J. Black Sea/Mediterranean Environment Vol. 19, No. 3: 380˗384 (2013) SHORT COMMUNICATION A new jellyfish species in the Turkish coastal waters - Aequorea forskalea Péron & Lesueur, 1810 (Cnidaria: Hydrozoa) Mevlüt Gürlek1, Deniz Yağlıoğlu2, Deniz Ergüden1, Cemal Turan1* 1Marine Science and Technology Faculty, Mustafa Kemal University, 31220 Iskenderun, Hatay, TURKEY 2Biodiversity Implementation and Research Center (DU–BIYOM), Duzce University, Duzce, TURKEY *Corresponding author: [email protected] Abstract Aequorea forskalea Péron & Lesueur, 1810 was recorded for the first time from the Turkish coastal waters. A. forskalea was observed from January 2012 until September 2012 in Iskenderun Bay, the northeastern Mediterranean coast of Turkey. The occurrence of this species in the Turkish coastal waters may be related to its extension from the western Mediterranean waters. Keywords: Jellyfish, Aequorea forskalea, Turkish Coastal Waters. Introduction The family Aequoreidae include five genera (Aequorea, Aldersladia, Gangliostoma, Rhacostoma and Zygocanna) in the world, of which only Aequorea and Zygocanna genera are found in the Mediterranean Sea (Bouillon et al. 2004; Schuchert 2013). The genus Aequorea has 24 species in the world and 3 species in the Mediterranean Sea (Bouillon et al. 2004; WoRMS 2013). Aequorea forskalea Péron and Lesueur, 1810, common in north-western Europe, from where it extends southwards along the west coast of Africa as far as the Gulf of Guinea, on the east coast of Africa and Indian Ocean and Mediterranean. A. forskalea also occurs on the Pacific coast of North America (Kramp 1956; 1968; Navas-Pereira and Vannucci 1991; Bouillon et al. 2004; Schuchert 2013). In the Mediterranean, A. forskalea is distributed in the eastern 380 and western Mediterranean, including the Adriatic (Bouillon et al.
    [Show full text]
  • Hydroids and Hydromedusae of Southern Chesapeake Bay
    W&M ScholarWorks Reports 1971 Hydroids and hydromedusae of southern Chesapeake Bay Dale Calder Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Calder, D. (1971) Hydroids and hydromedusae of southern Chesapeake Bay. Special papers in marine science; No. 1.. Virginia Institute of Marine Science, William & Mary. http://doi.org/10.21220/V5MS31 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. LIST OF TABLES Table Page Data on Moerisia lyonsi medusae ginia ...................... 21 rugosa medusae 37 Comparison of hydroids from Virginia, with colonies from Passamaquoddy Bay, New Brunswick.. .................. Hydroids reported from the Virginia Institute of Marine Science (Virginia Fisheries Laboratory) collection up to 1959 ................................................ Zoogeographical comparisons of the hydroid fauna along the eastern United States ............................... List of hydroids from Chesapeake Bay, with their east coast distribution ...me..................................O 8. List of hydromedusae known from ~hesa~eakeBay and their east coast distribution .................................. LIST OF FIGURES Figure Page 1. Southern Chesapeake Bay and adjacent water^.............^^^^^^^^^^^^^^^^^^^^^^^^ 2. Oral view of Maeotias inexpectata ........e~~~~~e~~~~~~a~~~~~~~~~~~o~~~~~~e 3. rature at Gloucester Point, 1966-1967..........a~e.ee~e~~~~~~~aeaeeeeee~e 4. Salinity at Gloucester Point, 1966-1967..........se0me~BIBIeBIBI.e.BIBIBI.BIBIBIs~e~eeemeea~ LIST OF PLATES Plate Hydroids, Moerisia lyonsi to Cordylophora caspia a a e..a a * a 111 ...................
    [Show full text]