Hydrozoa of Southern Chesapeake Bay

Total Page:16

File Type:pdf, Size:1020Kb

Hydrozoa of Southern Chesapeake Bay W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1968 Hydrozoa of Southern Chesapeake Bay Dale R. Calder College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, Dale R., "Hydrozoa of Southern Chesapeake Bay" (1968). Dissertations, Theses, and Masters Projects. Paper 1550154024. https://doi.org/10.25773/r8f9-eg95 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. HYDROZOA OF SOUTHERN CHESAPEAKE BAY A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy By Dale Ralph Calder 1968 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dale Ralph Calder Approved, July 1968 M. L. Brehmer, Ph.D., Major Professor Aj J" D. Andrews , Ph. D rgis, Jr M. M. Nichols, Ph.D. M. L. Wass, Ph.D. Dean, hool Marine Science DEDICATION This thesis is dedicated with heartfelt thanks to my ^parents, Mr. and Mrs. Wilfred Calder, for their many sacrifices on my behalf. iii ACKNOWLEDGMENTS It is a pleasure to acknowledge with gratitude the help of Dr. M. L. Brehmer, Virginia Institute of Marine Science, under whose supervision this research was conducted. His patience, assistance, encouragement, and ready provision of the necessities required for the study are sincerely appreciated. Thanks are due the following hydrozoan specialists for their aid: Dr. Sears Crowell, Indiana University; Dr. P. L. Kramp and Dr. X. W. Petersen, Universitetets Zoologiske Museum, Copenhagen, Denmark; Dr. N. A. H. Millard, Zoology Department, University of Cape Town, South Africa; and the late Dr. W. J. Rees, British Museum (Natural History), London, England. I am indebted to the following staff members of VIMS for their"loan of apparatus used in the project: Mr. D. S. Haven, Dr. E. B. Joseph, Mr. R. Morales-Alamo, and Mr. W. I. Simmonds. Mr. M. Castagna and Mr. P. E. Chanley of the VIMS Wachapreague Laboratory aided in providing compressed air for SCUBA early in the study. Miss Evelyn Wells, VIMS librarian, is to be thanked for her assistance in procuring the necessary literature. Salinities were determined by Mr. Weston Eayrs of VIMS. I am grateful to the following persons who either provided specimens or aided in their collection: Victor Burrell, Elizabeth Calder, Harold Cones, James Feeley, James Greene, Sarah Haigler, William Johnson, Gail Mackiernan, Alex Marsh, James Melvin, Morris Roberts, W. A. Van Engel, Dr. M. L. Wass,J and particularly Reinaldo Morales-Alamo for his large iv collection made during 1959-1961. I am obligated to my wife, Elizabeth, for her patience throughout the study and for typing the original manuscript. Mrs. Beverly Ripley is to be thanked for typing the final copy. The constructive criticisms of the manuscript by Dr. J. D. Andrews, Dr. M. L. Brehmer, and Dr. M. L. Wass are greatly appreciated. This study was supported in part by contract NBy-46710 from the Bureau of Yards and Docks, United States Navy. TABLE OF CONTENTS Page ACKNOWLEDGMENTS......................... iv LIST OF TABLES. .................... vii LIST OF F I G U R E S........................ ix LIST OF PLATES................. X ABSTRACT.................... xi INTRODUCTION. ...... 2 MATERIALS AND METHODS . 7 RESULTS Taxonomic Account. 13 Life History Dipurena strangulata. 90 Bougainvillia rugosa. 95 Proboscidactyla ornata. 99 Lovenella gracilis........ 102 Phenology. ................ ,109 DISCUSSION. .......... 125 LITERATURE CITED. ........ 144 APPENDIX. ................ 156 VITA vi LIST OF TABLES Table Page 1. Data on Moerisia lyonsi medusae from the James River, Virginia .......... 28 2. Comparison between Clytia paulensis hydroids from the York River, Virginia, and the south coast of South Africa . - 61 3. Comparison between Obelia geniculata hydroids from Chesapeake Bay, Virginia, with colonies from Deer Island in Passamaquoddy Bay, Canada .......... 66 4. Hydroids reported from the Virginia Institute of Marine Science (Virginia Fisheries Laboratory) collection up to 1959 ............ 88 5. Data on laboratory-reared Bougainvillia rugosa medusae of different ages. 98 6. Summary of gross morphological differences between Proboscidactyla ornata populations from Virginia and the Gulf of Naples. 103 7. Occurrence of hydromedusae at Gloucester Point during 1966-1967.................... 116 8. Number of hydroid cultures showing growth after 192 hours under two regimes of temperature . .... 119 vii Table Page 9. Influence of temperature on growth after 192 hours in laboratory cultures of hydroids............................... 120 10. Influence of temperature on growth after 192 hours in laboratory cultures of hydroids....................................... 121 11. Water temperatures at the beginning and end of activity for several species of hydroids . 124 12. Zoogeographic comparisons of the hydroid fauna along the eastern United States . 134 13. List of hydroids from Chesapeake Bay, with their east coast distribution. 13 5 14. Comparison of the neritic hydromedusae in the three provinces of Xramp?s (1959) West Atlantic Boreal region . 139 15. Zoogeographic comparisons of the neritic hydromedusae along the eastern United States. ......... .............. 140 16. List of hydromedusae known from Chesapeake Bay, and their east coast distribution. 141 viii LIST OF FIGURES Figure Page 1. Southern Chesapeake Bay and adjacent waters .......... 2. Water temperature at Gloucester Point, 1966-1967 . 110 3. Salinity at Gloucester Point, 1966-1967 . Ill 4. Seasonality of athecate hydroids in southern Chesapeake Bay......... 113 5. Seasonality of thecate hydroids in southern Chesapeake Bay................. 114 6. Seasonality of fixed gonophores ...... 115 ix LIST OF PLATES Plate 1. Hydroids, Moerisia lyonsi to Cordylophora lacustris. 2. Hydroids, Turritopsis nutricula to Amphinema dinema. 3. Hydroids, Proboscidactyla ornata to Obelia bicuspidata. 4. Hydroids, Obelia commissuralis to Opercularella lacerata. 5. Hydroids, ?uCampanopsis1T sp. to Halopteris tenella. 6. Hydromedusae, Moerisia lyonsi to Turritopsis nutricula. 7. Hydromedusae, Hydractinia arge to Obelia sp. 8. Hydromedusae, Eucheilota ventricularis to Cunina octonaria. ABSTRACT Hydrozoans of southern Chesapeake Bay and its tributaries were studied from April 1965 until March 1968 to determine faunal diversity, seasonality and reproductive periodicities. Laboratory culture techniques were used in describing unknown or inadequately known stages in the life history of several species and as an aid in identification. A total of 55 species was identified, including 43 hydroids and 32 medusae. Of these, 22 hydroids and 15 medusae are reported in Chesapeake Bay for the first time. Two species earlier reported from the bay, Eudendrium carneum and Blackfordia virginica, were not found. Clytia paulensis and the hydroid of Proboscidactyla ornata are previously unreported in North America, and the hydroid of Amphinema dinema is recorded for the first time from the North American Atlantic coast. The southern range of Hybocodon prolifer, Obelia longissima and Opercularella pumila is extended, as is the northward range of Podocoryne minima, Clytia kincaidi and Phialucium carolinae. Both hydroids and hydromedusae show an affinity with the Carolinian Zoogeographic Province; 76% of the hydroids and 77% of the hydromedusae occur south of Cape Hatteras, while 59% of the hydroids and 35% of the hydromedusae occur north of Cape Cod. The hydroid of Dipurena strangulata and the older medusae of Bougainvillia rugosa and Lovenella gracilis are described for the first time. Partial life histories are described for four other species. The genus Calyptospadix Clarke, 1882 is placed in synonymy with Bimeria Wright, 185 9. Hydroids are shown to be characteristically seasonal in occurrence due to the annual water temperature range, which varies from approximately 2 C to 28 C. During seasons of inactivity, laboratory-tested species, Ectopleura dumortieri, Bougainvillia rugosa and Eudendrium ramosum, remained in a dormant state in the stems, stolons, or both, until favorable temperatures returned. Field observations on other hydroid species indicated a similar phenomenon. Dormant stages are resistant to unfavorable temperatures and may have important implications on hydrozoan zoogeography. In nature, the temperature at which renewed growth commenced in spring for winter-dormant species was higher than that at which regression occurred in autumn, and the converse was true for summer-dormant species. This may be an adaptive mechanism insuring favorable conditions for growth once development has begun. Of 23 hydroids whose seasonality was studied in detail, 16 were ’’summer” species and 7 were ’’winter” species. Among the hydro­ medusae, seasonality was typically less prolonged, with a maximum diversity in late summer and early autumn and a minimum diversity in winter. Although undescribed species or endemics to the bay were not found, two unidentified hydroids, ’’Campanulina” sp. and
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • Bulletin of the United States Fish Commission
    CONTRIBUTIONS FROM THE BIOLOGICAL LABORATORY OF THE BUREAU OF FISHERIES AT WOODS HOLE, ~ASS. THE MEDUSA: OF THE WOODS HOLE REGION. By CHARLES V\T. HARGITT, Professor ofZoolo;ry, Syracuse University. 21 Blank page retained for pagination CONTRIBUTIONS FROM THE BIOLOGICAL LABORATORY OP THE BUREAU OP P\SHERIES AT WOODS HOLE, MASSACHUSETTS. -THE MEDUSA3 OF THE WOODS HOLE REGION. By CHARLES W. HARGITT, Professor 0./Zoology, Syracuse Unioersity, INTRODUCTION. The present report forms one of ~ series projected by the director of the biological laboratory of the United States Bureau of Fisheries, the primary object being' to afford such a biological survey of the region as will bring within easy reach of students and working naturalists a synopsis of the character and distribution of its fauna. The work whieh forms the basis of this paper was carried on during the summers of 1£101 and 1902, including also a brief collecting reconnaissance during the early spring of the latter year, thus enabling me to complete a record of observations upon the medusoid fauna during every month of the year, with daily records during most of the time. For parts of these records during late fall and winter I am chiefly indebted to Mr. Vinal N. Fdwurds, which it is a pleasure hereby to acknowledge. It is also a pleasure to acknowledge the cordial cooperation of the Commissioner, Hon. George M. Bowers, and of Dr. H. M. Smith, director of 'the laboratory ill HI01 and 1902. Most of the drawings have been made directly from life by the writer or under hili personal direction.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • A Case Study with the Monospecific Genus Aegina
    MARINE BIOLOGY RESEARCH, 2017 https://doi.org/10.1080/17451000.2016.1268261 ORIGINAL ARTICLE The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae) Dhugal John Lindsaya,b, Mary Matilda Grossmannc, Bastian Bentlaged,e, Allen Gilbert Collinsd, Ryo Minemizuf, Russell Ross Hopcroftg, Hiroshi Miyakeb, Mitsuko Hidaka-Umetsua,b and Jun Nishikawah aEnvironmental Impact Assessment Research Group, Research and Development Center for Submarine Resources, Japan Agency for Marine- Earth Science and Technology (JAMSTEC), Yokosuka, Japan; bLaboratory of Aquatic Ecology, School of Marine Bioscience, Kitasato University, Sagamihara, Japan; cMarine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan; dDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; eMarine Laboratory, University of Guam, Mangilao, USA; fRyo Minemizu Photo Office, Shimizu, Japan; gInstitute of Marine Science, University of Alaska Fairbanks, Alaska, USA; hDepartment of Marine Biology, Tokai University, Shizuoka, Japan ABSTRACT ARTICLE HISTORY Online biogeographic databases are increasingly being used as data sources for scientific papers Received 23 May 2016 and reports, for example, to characterize global patterns and predictors of marine biodiversity and Accepted 28 November 2016 to identify areas of ecological significance in the open oceans and deep seas. However, the utility RESPONSIBLE EDITOR of such databases is entirely dependent on the quality of the data they contain. We present a case Stefania Puce study that evaluated online biogeographic information available for a hydrozoan narcomedusan jellyfish, Aegina citrea. This medusa is considered one of the easiest to identify because it is one of KEYWORDS very few species with only four large tentacles protruding from midway up the exumbrella and it Biogeography databases; is the only recognized species in its genus.
    [Show full text]
  • Kelp Forest Monitoring Handbook — Volume 1: Sampling Protocol
    KELP FOREST MONITORING HANDBOOK VOLUME 1: SAMPLING PROTOCOL CHANNEL ISLANDS NATIONAL PARK KELP FOREST MONITORING HANDBOOK VOLUME 1: SAMPLING PROTOCOL Channel Islands National Park Gary E. Davis David J. Kushner Jennifer M. Mondragon Jeff E. Mondragon Derek Lerma Daniel V. Richards National Park Service Channel Islands National Park 1901 Spinnaker Drive Ventura, California 93001 November 1997 TABLE OF CONTENTS INTRODUCTION .....................................................................................................1 MONITORING DESIGN CONSIDERATIONS ......................................................... Species Selection ...........................................................................................2 Site Selection .................................................................................................3 Sampling Technique Selection .......................................................................3 SAMPLING METHOD PROTOCOL......................................................................... General Information .......................................................................................8 1 m Quadrats ..................................................................................................9 5 m Quadrats ..................................................................................................11 Band Transects ...............................................................................................13 Random Point Contacts ..................................................................................15
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Biogeography of Jellyfish in the North Atlantic, by Traditional and Genomic Methods
    Earth Syst. Sci. Data, 7, 173–191, 2015 www.earth-syst-sci-data.net/7/173/2015/ doi:10.5194/essd-7-173-2015 © Author(s) 2015. CC Attribution 3.0 License. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods P. Licandro1, M. Blackett1,2, A. Fischer1, A. Hosia3,4, J. Kennedy5, R. R. Kirby6, K. Raab7,8, R. Stern1, and P. Tranter1 1Sir Alister Hardy Foundation for Ocean Science (SAHFOS), The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3University Museum of Bergen, Department of Natural History, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway 4Institute of Marine Research, P.O. Box 1870, 5817 Nordnes, Bergen, Norway 5Department of Environment, Fisheries and Sealing Division, Box 1000 Station 1390, Iqaluit, Nunavut, XOA OHO, Canada 6Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK 7Institute for Marine Resources and Ecosystem Studies (IMARES), P.O. Box 68, 1970 AB Ijmuiden, the Netherlands 8Wageningen University and Research Centre, P.O. Box 9101, 6700 HB Wageningen, the Netherlands Correspondence to: P. Licandro ([email protected]) Received: 26 February 2014 – Published in Earth Syst. Sci. Data Discuss.: 5 November 2014 Revised: 30 April 2015 – Accepted: 14 May 2015 – Published: 15 July 2015 Abstract. Scientific debate on whether or not the recent increase in reports of jellyfish outbreaks represents a true rise in their abundance has outlined a lack of reliable records of Cnidaria and Ctenophora. Here we describe different jellyfish data sets produced within the EU programme EURO-BASIN.
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2010
    Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Did the Indo-Pacific Leptomedusa Lovenella
    Aquatic Invasions (2016) Volume 11, Issue 1: 21–32 DOI: http://dx.doi.org/10.3391/ai.2016.11.1.03 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Did the Indo-Pacific leptomedusa Lovenella assimilis (Browne, 1905) or Eucheilota menoni Kramp, 1959 invade northern European marine waters? Morphological and genetic approaches 1 1 2,3 4 2 Jean-Michel Brylinski *, Luen-Luen Li , Lies Vansteenbrugge , Elvire Antajan , Stefan Hoffman , 2 1 Karl Van Ginderdeuren and Dorothée Vincent 1Univ. Littoral Cote d’Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France 2Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit, Aquatic Environment and Quality, Ankerstraat 1, 8400 Oostende, Belgium 3Ghent University, Marine Biology Section, Sterre Campus, Krijglaan 281 - S8, 9000 Ghent, Belgium 4IFREMER, 150 quai Gambetta, F-62321 Boulogne-sur-Mer, France *Corresponding author E-mail: [email protected] Received: 21 January 2015 / Accepted: 26 August 2015 / Published online: 7 October 2015 Handling editor: Philippe Goulletquer Abstract Hydromedusae, morphologically resembling the Indo-Pacific leptomedusa Lovenella assimilis (Browne, 1905) (Cnidaria: Hydrozoa: Lovenellidae), are reported for the first time in both the eastern English Channel and the southern bight of the North Sea. Analyses of past zooplankton samples from a long-term monitoring program suggest that this non-indigenous species has been present in the eastern English Channel at least since 2007. Genetic analyses identified specimens as Eucheilota menoni based on nearly identical 18S ribosomal RNA gene, mitochondrial cytochrome oxydase subunit gene I (COI) sequences, and 16S Ribosomal RNA gene.
    [Show full text]