THE CONCEPT of BONE TISSUE in OSTEICHTHYES by FRANCOIS J

Total Page:16

File Type:pdf, Size:1020Kb

THE CONCEPT of BONE TISSUE in OSTEICHTHYES by FRANCOIS J THE CONCEPT OF BONE TISSUE IN OSTEICHTHYES by FRANCOIS J. MEUNIER1 and ANN HUYSSEUNE2 (1 Laboratoired'Ichtyologie, Muséum National d'HistoireNaturelle, 43 rue Cuvier,75231 Paris Cédex 05, France, and Equipe de Recherche'Formations Squelettiques, URA CNRS 1134, UniversitéParis 7, 2 placeJussieu, 75251 Paris Cédex05, France. 2 Seniorresearch assistant, Institut voorDierkunde, Ledeganckstraat 35, B-9000 Gent,Belgium) ABSTRACT The purpose of this paper is to highlight the difficulties encountered when attempting to give a histological definition of bone tissue in Osteichthyes. Although the three basic components of bone tissue can be present (i.e. osteocytes, an organic matrix, and a mineral phase), it has long been known that bony tissues in Osteichthyes can lack trapped cells and/or mineral. This phenomenon has blurred the classical distinction between the generally adopted categories of connective tissues in a way that the osteichthyan skeleton should be described rather in terms of a continuum of structures. This paper illustrates this by discussing the evolutionary trends, within the Osteichthyes, of acellularization (i.e. the acquisition of acellular bone within the various osteichthyan lineages) and of loss of capacity of mineralization (e.g. in the case of isopedine of the basal plate of elasmoid scales). A further example of the difficulty of classifying skeletal tissues within bony fishes is provided by chondroid bone, a tissue with characteristics intermediate between cartilage and bone and found mostly in articular areas in the head of Teleostei. Each of the bone and bone-derived tissues of the aforementioned continuum represents the outcome of developmental and functional constraints, which appear to be more diverse in Osteichthyes than in Tetrapoda. KEY WORDS: Osteichthyes, bone, isopedine, chrondroid bone, acellularization, mineralization. INTRODUCTION The term 'bone' can denote different concepts (such as an anatomical organ, a tissue or even chemical components), depending on the level of integration of the skeletal structures 1. PETERSEN (1930) has defined four successive levels of integration of bone, and our aim is to consider the second- and third-order structures; they deal respectively with the fine anatomical and histological level of organization on the one hand, and with cells, extracellular matrix and minerals on the other hand (FRANCILLON-VIEILLOT et al., 1990). The two other levels of integra- tion (the first- and fourth-order structures, respectively describ- ing the anatomical and molecular arrangement of skeletal tissues) are 1 In this paper we have used the up-to-date nomenclature of FRANC ILLON-VIEILLOT et al. ( 1990);see also Ricc2,LESet al. ( 1991 and) ZYLBERBERG al.et ( 1991 ). 446 irrelevant for the purpose of the present topic and will not be consid- ered here (but see FRANCILLON-VIEILLOT et al., 1990 and RICQLES et al., 1991 for more information). We will essentially discuss the prob- lems posed by osteichthyan bone when studying its histological organi- zation as revealed by the light microscope, and by transmission and scanning electron microscopy. The histological definition of bone as given in standard textbooks has been founded on studies of mammalian bone and more precisely of biomedical material (human, rat, dog ...) (see RICQLES et al., 1991). The very peculiar characteristics of human bone tissue (notably the Haversian system) have led to numerous generalizations, frequently resulting in many fundamental problems when looking at the skeleton of lower vertebrates. For example, the human Haversian organization of bone is very specialized, even amongst mammals (FRAN- CILLON-VIEILLOT et al., 1990), and is practically never encountered in lower vertebrates, especially bony fishes, although it is known in sev- eral dinosaurian reptiles (RICQLES, 1975). On the other hand, the majority of living fishes (and so perhaps of vertebrates) have bone without osteocytes (see below). So, an overview of bone tissues in vertebrates allows us to consider hard tissue as being clearly adaptive in most circumstances, rather than imposed by 'phylogenetic con- straints' more or less independent of functional demands (FRAN- CILLON-VIEILLOT et al., 1990). Bone typically is made up of three components: 1) bone cells: the osteogenic cells or osteoblasts, the trophic cells or osteocytes, and the clastic cells or osteoclasts; 2) extracellular organic material or organic matrix, i.e. the predominant network of collagenous fibres and the proteoglycans; 3) extracellular mineral material, essentially crystals of hydroxyapatite. Moreover, bone is frequently vascularized and is sub- mitted to resorption and reconstruction processes, e.l. remodelling (FRANCILLON-VIEILLOT et al., 1990; RICQLES et al., 1991). In the Osteichthyes, we can find bone with these typical basal components. However, the histological features of the bony tissues can vary according to the species and the bones considered, sometimes according to a particular part of the bone (MEUNIER, 1983; RICQLES et al., 1991). Since the middle of the 19th Century, studies on fish bone have shown that bone tissue displays a great variety of types, allowing authors to consider it as a wide continuum of structures. This is certainly the case when comparing e.g. bone with cartilage or with the so-called isopedine of the scale basal plate (basal plate composed of several superimposed plies of thick collagen fibrils organized in various plywood-like arrangements: twisted, orthogonal, ...; see MEUNIER, .
Recommended publications
  • Fishes Scales & Tails Scale Types 1
    Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die.
    [Show full text]
  • Class Wars: Chondrichthyes and Osteichthyes Dominance in Chesapeake Bay, 2002-2012
    Class Wars: Chondrichthyes and Osteichthyes dominance in Chesapeake Bay, 2002-2012. 01 July 2013 Introduction The objective of this analysis was to demonstrate a possible changing relationship between two Classes of fishes, Osteichthyes (the bony fishes) and Chondrichthyes (the cartilaginous fishes) in Chesapeake Bay based on 11 years of monitoring. If any changes between the two Classes appeared to be significant, either statistically or anecdotally, the data were explored further in an attempt to explain the variation. The Class Osteichthyes is characterized by having a skeleton made of bone and is comprised of the majority of fish species worldwide, while the Chondrichthyes skeleton is made of cartilage and is represented by the sharks, skates, and rays (the elasmobranch fishes) and chimaeras1. Many shark species are generally categorized as apex predators, while skates and rays and some smaller sharks can be placed into the mesopredator functional group (Myers et al., 2007). By definition, mesopredators prey upon a significant array of lower trophic groups, but also serve as the prey base for apex predators. Global demand for shark and consequential shark fishing mortality, estimated at 97 million sharks in 2010 (Worm et al., 2013), is hypothesized to have contributed to the decline of these apex predators in recent years (Baum et al., 2003 and Fowler et al., 2005), which in turn is suggested to have had a cascading effect on lower trophic levels—an increase in mesopredators and subsequent decrease in the prey base (Myers et al., 2007). According to 10 years of trawl survey monitoring of Chesapeake Bay, fish species composition of catches has shown a marked change over the years (Buchheister et al., 2013).
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • The Absence of Sharks from Abyssal Regions of the World's Oceans
    Proc. R. Soc. B (2006) 273, 1435–1441 doi:10.1098/rspb.2005.3461 Published online 21 February 2006 The absence of sharks from abyssal regions of the world’s oceans Imants G. Priede1,*, Rainer Froese2, David M. Bailey3, Odd Aksel Bergstad4, Martin A. Collins5, Jan Erik Dyb6, Camila Henriques1, Emma G. Jones7 and Nicola King1 1University of Aberdeen, Oceanlab, Newburgh, Aberdeen AB41 6AA, UK 2Leibniz-Institut fu¨r Meereswissenschaften, IfM-GEOMAR, Du¨sternbrooker Weg 20, 24105 Kiel, Germany 3Marine Biology Research Division, Scripps Institution of Oceanography, UCSD 9500 Gilman Drive, La Jolla, CA 92093-0202, USA 4Institute of Marine Research, Flødevigen Marine Research Station, 4817 His, Norway 5British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 6Møre Research, Section of Fisheries, PO Box 5075, 6021 Aalesund, Norway 7FRS Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales.
    [Show full text]
  • Axial Endoskeleton of a Bony Fish
    Fish Form & Funcon Heyer Axial endoskeleton of a bony fish Fish Axial skeleton: Cranium & vertebral column • Fishes — aquatic vertebrates; axial skeleton only – Closed, single-circuit circulatory system • Class- Aganatha — jawless fishes • Class- Chondrichthyes — cartilaginous fishes Vertebra • Class- Osteichthyes — bony fishes Figure 3.02 Locomoon with an axial skeleton Fishes Class- Aganatha — jawless fishes • ~120 extant species (lampreys; hagfish) • Inner layer of mesoderm bloc becomes skeletal • Cartilaginous skeleton vertebrae • Jawless, suctorial mouth with many teeth • Outer layer becomes & protrusible toothed tongue myomere (muscle band) • Medial fin fold; No lateral (paired) fins • Proximal edge of myomere aaches to vertebrae • Distal edge of myomere projects posterio-laterally to insert into connecve ssue of skin • ... Contracon of muscle → lateral flexing body Fishes Fishes Class- Chondrichthyes — cartilaginous fishes Class- Chondrichthyes — cartilaginous fishes • Cartilaginous skeleton, but unique bone tissue present • Cartilaginous skeleton, but unique bone tissue present • Semi-rigid paired lateral fins connected across ventral body wall Subclass- Holocephali — ~ 40 spp. (chimeras) Subclass- Elasmobranchii — ~1,000 spp. (sharks; rays) • 5–7 gill slits [elasmo-branch: “strap gills”] • Protrusible upper jaw not fused to skull • Thick skin with dermal denticles Fins supprted by cartilagenous rods 1 Fish Form & Funcon Heyer Fishes Fishes Class- Chondrichthyes — cartilaginous fishes Class- Chondrichthyes — cartilaginous fishes • Cartilaginous skeleton, but unique bone tissue present Subclass- Elasmobranchii — ~1,000 spp. (sharks; rays) • Semi-rigid paired lateral fins connected across ventral body wall • Protrusible upper jaw not fused to skull CAT scan of a great white shark Lateral fins 1. Jaw opens (pectorals & pelvics) 2. Hyoid arch located ventrally springs jaw forward 3. Jaw protrudes Pelvic fins located near vent & closes 4.
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]
  • Adaptive Radiation and Evolution: Fishes
    ADAPTIVE RADIATION AND EVOLUTION: FISHES Purpose The purpose of this exercise is to illustrate some of the adaptive radiation and subsequent evolution of fishes. We will make direct observations of living fishes at the Stephen Birch Aquarium- museum, located at the Scripps campus of UCSD. We will look at two of the three classes of fishes, the cartilaginous fishes (Chondrichthyes) and the bony fishes (Osteichthyes). The ocean is a stable place to live. The ocean's temperatures are generally uniform over a long period. Water offers support to fish's bodies, so that strong skeletons are not necessary, although the high viscosity of water creates a problem to their locomotion. The fish’s solution, in response to this problem, is to achieve some degree of streamlining. As a result, fishes from the same habitat look very much alike. It is not that these fishes are closely related because of their similar look, but the solution to the locomotion through the water is a common one. We will first explore the cartilaginous fishes such as sharks, skates, guitarfishes and rays. We will see how they solved the problem presented by their high body density (heavier than water) and underwent adaptative radiation that lead most of them to the bottom habitat. Next, we will look at the bony fishes. These bony fishes, with their specially evolved "swim bladder" solved their body density problem. This allowed the bony fishes to exploit new environments and niches (occupations) not available to the cartilaginous fishes. Locomotion In Water Fishes swim by special longitudinal muscles that are attached along the spine and branch out diagonally up and back over the lateral surface.
    [Show full text]
  • A Rare Occurrence of Matched Otoliths And
    A RARE OCCURRENCE OF MATCHED OTOLITHS AND ASSOCIATED SKELETAL REMAINS OF APOGON TOWNSENDI (OSTEICHTHYES) FROM THE CALOOSAHATCHEE FORMATION (LOWER PLEISTOCENE) OF FLORIDA Gary L. Stringer1, Richard C. Hulbert Jr.2, Dirk Nolf3, Paul Roth4, and Roger W. Portell4 ABSTRACT A matched pair of otoliths (right and left saccular otoliths) and associated skeletal remains (n = 107) of Apogon townsendi (belted cardinalfish) were obtained in unconsolidated sediment from inside the valves of an articulated scallop Carolinapecten eboreus. The scallop specimen was collected in Hendry County, Florida, from the lower Pleistocene Caloosahatchee Formation, approximately 1.7 to 2.1 Ma. The recov- ery of this vertebrate material is highly significant because no skeletal remains of bony fish with in situ or associated otoliths are known from the Gulf or Atlantic coasts of the United States. Furthermore, the specimen represents the first fossil record of the family Apogonidae and the genus Apogon from Florida and the first report of the species Apogon townsendi in the fossil record. The length of the fossil Apogon townsendi was determined to be 4.7 cm based on the linear relationship between fish length and otolith length and utilizing modern specimens of the species for comparison and analysis. The length of the fossil Apogon townsendi indicated that it was an adult fish upon death (> 2.1 cm). Although several taphonomic scenarios are considered, including commensalism, it is believed that the apogonid died in close proximity to the empty scallop shell, which was followed by fairly rapid washing in of sediment with the fish into the valves of the scallop (i.e., sediment trapping).
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Agnatha, Chondrichthyes and Osteichthyes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311861377 Agnatha, Chondrichthyes and Osteichthyes Chapter · November 2016 CITATIONS READS 0 1,531 2 authors: Antonis Petrou Charitos Zapitis AP Marine Env.Consultancy Ltd & Enalia Physis Environmental Research Centre University of Derby 29 PUBLICATIONS 131 CITATIONS 1 PUBLICATION 0 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Lionfish in the Mediterranean View project PCY1 - Investigating the effects of recreational diving on the macroalgal communities of the 'Zenobia' shipwreck (Cyprus) View project All content following this page was uploaded by Charitos Zapitis on 24 December 2016. The user has requested enhancement of the downloaded file. Chapter 26 - Agnatha CHAPTER 26: AGNATHA, CHONDRICHTHYES AND OSTEICHTHYES FISHES Antonis Petrou and Charitos Zapitis 1. INTRODUCTION The classification of fishes is not straightforward since they do not form a natural scientific grouping like the other vertebrate classes, i.e. the amphibians, reptiles, birds and mammals. Indeed, fishes can be considered by exclusion to be vertebrates that are not tetrapods (see Chapter 25: Introduction to Vertebrates). They are aquatic, gill- bearing, ectothermic ('cold-blooded') animals with a distinguishable head and, when present, digit-less limbs. Traditionally, fish have been arranged into three groups: ➵ Agnatha 1, the jawless fish (Myxini [hagfishes] and Hyperoartia [lampreys]); ➵ Chondrichthyes, the cartilaginous fish (sharks, skates and rays); ➵ Osteichthyes, the bony fish (Actinopterygii [ray-finned fishes] and Sarcopterygii [lobe-finned fishes]). This classification is adequate for general purposes, although Agnatha is paraphyletic and includes several groups of extinct jawless fishes.
    [Show full text]
  • PHYLUM CHORDATA Subphylum VERTEBRATA FISHES
    Natural Sciences 360 Legacy of Life Lecture 10 Dr. Stuart Sumida PHYLUM CHORDATA Subphylum VERTEBRATA FISHES So, then what’s a vertebrate…? Phylogenetic Context for Vertebrata: Vertebrates are chordates Echinodermata Hemichordata Urochordata Cephalochordata Chordata Vertebrata All vertebrates possess an embryological material known as NEURAL CREST. Neural crest gives rise to particular structures found in all vertebrates, and only in vertebrates. Phylogenetic Context for Vertebrata Echinodermata Hemichordata Urochordata Cephalochordata Vertebrata (Posess neural crest and its derivatives) EVERYONE will be able to demonstrate a cross-sectional view of a vertebrate… Remember the basic chordate features: •Dorsal Hollow Nerve Cord •Notochord •Pharyngeal Gill Slits •Post Anal Tail So what exactly is a fish…? Jawless fish Conodonts Placodermi Chondrichthyes Gnathostomata Acanthodii Actinopterygii Osteichthyes (“Bony Fish”) Sarcopterygii THE ORIGINAL CONDITION Jawless fish OF VEWRTEBRATES WAS WITHOUT JAWS Conodonts Placodermi Chondrichthyes Gnathostomata Acanthodii Actinopterygii Osteichthyes (“Bony Fish”) Sarcopterygii Jawless fish Conodonts Placodermi Chondrichthyes Gnathostomata Acanthodii Actinopterygii Osteichthyes (“Bony Fish”) Sarcopterygii CONDONTS: Originally thought not to be vertebrates, but their best known components made of same material as teeth and bones (probably from neural crest material) CONDONTS: Originally thought not to be vertebrates, but their best known components made of same material as teeth and bones (probably from
    [Show full text]
  • 604 Evolution & Ontology Symposium, Grand Ballroom I, Saturday 25 July 2009 Paula Mabee University of South Dakota, Vermilli
    604 Evolution & Ontology Symposium, Grand Ballroom I, Saturday 25 July 2009 Paula Mabee University of South Dakota, Vermillion, SD, United States Phenoscape: Using Ontologies to Link Comparative Morphology to Genes Decades of comparative anatomical studies in ichthyology and herpetology have resulted in a rich body of ‘free-text’ data. As these data grow, they are increasingly hard to align and synthesize across taxonomic groups, and synthetic questions concerning the developmental and genetic basis of evolutionary changes in morphology cannot be easily or efficiently addressed. In order for this volume of comparative anatomical data to be analyzed in a developmental genetic context, it must first be rendered computable. One way to achieve this is to use ontologies. Using ostariophysan fishes as a prototype, the Phenoscape project has developed a system that includes ontologies representing expert knowledge of anatomy and taxonomy (the Teleost Anatomy Ontology and the Teleost Taxonomy Ontology), software for data curation (Phenex), and a knowledgebase that supports ontology-based reasoning about evolutionary phenotype data (PhenoscapeKB, http://phenoscape.org/kb). To date, over 5,000 characters from the phylogenetic literature have been annotated for 8,300 species, resulting in over eight million annotated phenotypes. PhenoscapeKB combines these evolutionary phenotypes with information about genetically characterized phenotype from ZFIN, the zebrafish community database. Through ontology-based reasoning over expert knowledge in taxonomy,
    [Show full text]