Differentiating Anthropogenic Modification and Precipitation

Total Page:16

File Type:pdf, Size:1020Kb

Differentiating Anthropogenic Modification and Precipitation Landscape Ecol (2016) 31:547–566 DOI 10.1007/s10980-015-0261-x RESEARCH ARTICLE Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau Ranjeet John . Jiquan Chen . Youngwook Kim . Zu-tao Ou-yang . Jingfeng Xiao . Hoguen Park . Changliang Shao . Yaoqi Zhang . Amartuvshin Amarjargal . Ochirbat Batkhshig . Jiaguo Qi Received: 12 February 2015 / Accepted: 17 August 2015 / Published online: 28 August 2015 Ó Springer Science+Business Media Dordrecht 2015 Abstract Objectives This study distinguished between Context The Mongolian Plateau, comprising Inner human-induced and precipitation-driven changes in Mongolia, China (IM) and Mongolia (MG) is under- vegetation cover on the plateau across biome, vege- going consistent warming and accelerated land cover/- tation type and administrative divisions. land use change. Extensive modifications of water- Methods Non-parametric trend tests were applied to limited regions can alter ecosystem function and the time series of vegetation indices (VI) derived from processes; hence, it is important to differentiate the MODIS and AVHRR and precipitation from TRMM impacts of human activities and precipitation dynam- and MERRA reanalysis data. VI residuals adjusted for ics on vegetation productivity. rainfall were obtained from the regression between growing season maximum VI and monthly accumu- lated rainfall (June–August) and were used to detect human-induced trends in vegetation productivity dur- ing 1981–2010. The total livestock and population Electronic supplementary material The online version of this article (doi:10.1007/s10980-015-0261-x) contains supple- mentary material, which is available to authorized users. R. John (&) Á J. Chen Á Z. Ou-yang Á Y. Zhang H. Park Á C. Shao Á J. Qi School of Forestry and Wildlife Sciences, Auburn Center for Global Change and Earth Observations, University, Auburn, AL 36949, USA Michigan State University, East Lansing, MI 48823, USA e-mail: [email protected] A. Amarjargal Department of Economics, University of the Humanities, J. Chen Á Z. Ou-yang Á J. Qi Ulaanbaatar 210620, Mongolia Department of Geography, Michigan State University, East Lansing, MI 48823, USA O. Batkhshig Institute of Geography, Mongolian Academy of Sciences, Y. Kim Sukhbaatar, Ulaanbaatar 210620, Mongolia Numerical Terradynamic Simulation Group (NTSG)/ College of Forestry and Conservation, The University of Montana, Missoula, MT 59812, USA J. Xiao Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA 123 548 Landscape Ecol (2016) 31:547–566 density trends were identified and then used to explain the last 70 years (Liu et al. 2013), and an increasing the VI residual trends. frequency of extreme climatic events in the last three Results The slope of precipitation-adjusted EVI and decades (Groisman et al. 2009; Ferna´ndez-Gime´nez EVI2 residuals were negatively correlated to total et al. 2012; John et al. 2013b; Pederson et al. 2014). livestock density (R2 = 0.59 and 0.16, p \ 0.05) in The plateau consists of Mongolia (MG) and Inner MG and positively correlated with total population Mongolia (IM),—the third largest province-level density (R2 = 0.31, p \ 0.05) in IM. The slope of administrative region in China (Fig. 1). The two precipitation-adjusted EVI and EVI2 residuals were entities (i.e., MG and IM) have similar ecosystem also negatively correlated with goat density types but distinct socio-economic systems, political (R2 = 0.59 and 0.19, p \ 0.05) and sheep density in regimes, ethnic compositions, and divergent land MG (R2 = 0.59 and 0.13, p \ 0.05) but not in IM. cover/use change trajectories (Qi et al. 2012; Chen Conclusions Some administrative subdivisions in et al. 2015b). The major land use on the plateau has IM and MG showed decreasing trends in VI residuals. historically been herding, but cropland use has These trends could be attributed to increasing live- increased in certain areas of IM (Dong et al. 2011; stock or population density and changes in livestock John et al. 2013b) and more recently in north central herd composition. Other subdivisions showed increas- MG (Pederson et al. 2013). Livestock stocking rates ing trends residuals, suggesting that the vegetation increased sharply in MG following the collapse of the cover increase could be attributed to conservation former Soviet Union and the loss of state support, efforts. which drove migration away from cities (Hilker et al. 2014; Chen et al. 2015b). The level of degradation in Keywords Mongolian Plateau Á Semi-arid Á the Mongol Steppe is closely linked with abrupt Vegetation indices Á Precipitation Á RESTREND Á changes in socio-economic policies, leading to a MODIS Á EVI Á EVI2 Á GIMMS3 g NDVI Á Livestock dramatic increase in livestock stocking rates in both density Á Population density MG and IM during the last two decades (Ojima and Chuluun 2008; Li et al. 2012; Liu et al. 2013; Hilker et al. 2014; Chen et al. 2015b). Herders on the plateau have been forced to adapt to extreme weather and Introduction market forces by limiting their traditional frequency of transhumance (otor), becoming sedentary herders The world’s arid/semi-arid biome, which accounts for (more common in IM than MG), and diversifying 41 % of the earth’s land area and where 38 % of the herd composition to minimize risk of livestock human population lives, is vulnerable to ongoing and mortality, all of which has resulted in increased predicted climate change as well as land degradation grazing pressure (Ferna´ndez-Gime´nez 2002; Wang (Reynolds et al. 2007; Li et al. 2012). The grasslands et al. 2013b; Hilker et al. 2014). Extreme climate of the Mongolian Plateau makes up a major portion of events like summer drought and extreme winters or the Eurasian Steppe—the largest, contiguous grass- dzuds, led to the migration of herders to urban areas land ecosystem in the world—and are among the few after record livestock mortality in 2000–2002 (Sankey extant grassland ecosystems with a high diversity of et al. 2009) and again in 2010 (John et al. 2013b; grassland species (Bai et al. 2008; Chen et al. 2013). Hilker et al. 2014). The emergence of a market While there have been many studies that describe the economy and the recent boom in mining partially vegetation, species diversity, and the effects of explain the internal migration in the 2000–2010 environmental stochasticity such as drought and decade, which led to an increase in the urban extreme winters on the Mongolian Plateau, there have population, concentrated mostly in the capital city of been relatively few studies on the vulnerability of the MG, Ulaanbaatar. Similarly, Deng Xiaoping’s reforms Mongolian grasslands to climatic change and anthro- of the 1980s ushered in a market economy in IM, pogenic modification (Hilker et al. 2014; Chen et al. where the agricultural collectives were replaced by 2015a). The temperate steppes of the plateau are under increased privatization of herding and farming (Chen increasing pressure from a 2° rise in average temper- et al. 2015a, b). The last decade saw the introduction of ature, a 7 % reduction in annual precipitation during several grassland conservation measures and green 123 Landscape Ecol (2016) 31:547–566 549 Fig. 1 Land cover map and biome boundaries of the Mongolia are the terrestrial ecoregions (WWF) biome boundaries: desert Plateau. The base map is the MODIS-derived land cover map (I), grassland (II), and forest (III). The heavy, solid line stands with the University of Maryland classification scheme for the political boundary between Mongolia (MG) and Inner (MCD12Q1) for 2010. The polygons delineated by dashed lines Mongolia (IM), China belt schemes to control desertification and to mitigate biomass resulting from anthropogenic modification dust storms originating in IM (Jiang et al. 2006; Liu and large inter-annual precipitation variability are to et al. 2008). study trends in rain use efficiency (RUE) or spatially The identification of various desertification drivers explicit residual trends (RESTRENDS) (Wessels et al. and the separation of anthropogenic drivers from 2007). There are few studies that compared residual climatic effects have long been a topic of contention in analysis results across border regions of large extent semi-arid grassland research. Vegetation dynamics in with similar ecosystem and climate types like the semi-arid grasslands are closely coupled with precip- plateau (Zhao et al. 2014) or linked them with socio- itation variability, which makes it challenging to economic drivers and policy change (Li et al. 2012; distinguish degradation resulting from anthropogenic Chen et al. 2015a). Furthermore, there are no studies modification from vegetation dynamics in water that compared independent RESTREND results limited ecosystems (Wessels et al. 2007). Although obtained from long-term records of VIs derived from several satellite remote sensing methods have been multiple satellite sensors and gridded climate datasets. used to study vegetation degradation using vegetation In this study, we used RESTREND and multiple VI indices (VI) (Kim et al. 2014), the primary methods to and climate datasets to examine the effects of anthro- monitor reduction in grassland canopy cover and pogenic modification and precipitation dynamics on 123 550 Landscape Ecol (2016) 31:547–566 vegetation productivity on the Mongolian Plateau. climate (BSk) in the southwest where potential These state-of-the-art synoptic VI records and evapotranspiration exceeds precipitation and average climate datasets proved to be valuable for facilitat- temperature is less than 18 °C—to a subarctic climate ing cross-validation of the results. This method has in the northeast with cool summers and severe dry a secondary utility in monitoring the growth of winters (Dwc) (Kottek et al. 2006). Mountain ranges irrigation agriculture in water-limited areas as well such as the Altai in the west and the Greater Hingaan as monitoring grassland degradation from increased Mountains in the east isolate the plateau in part from grazing pressure.
Recommended publications
  • Urban Transformation in Transitional Economies: Lessons from the Mongolian Plateau
    URBAN TRANSFORMATION IN TRANSITIONAL ECONOMIES: LESSONS FROM THE MONGOLIAN PLATEAU By Hogeun Park A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Planning, Design, and Construction—Doctor of Philosophy 2018 ABSTRACT URBAN TRANSFORMATION IN TRANSITIONAL ECONOMIES: LESSONS FROM THE MONGOLIAN PLATEAU By Hogeun Park Over the past three decades, transitional economies have experienced dramatic urbanization in response to changes in the human and natural environments, resulting from economic transitions, industrial restructures, institutional reforms, and climate variability. However, our knowledge of the causes and processes of urbanization in transitional economies remains limited. Here, I used the Mongolian Plateau (MGP), including Inner Mongolia in China (IM) and Mongolia (MG), as a testbed for studying the processes and causes of urbanization. I also investigated urban challenges and the policy implications of those issues. The dissertation is set to three research objectives: (1) understanding the processes of urbanization in the MGP, (2) analyzing the driving forces of rural-to-urban migration, and (3) identifying urban challenges and proposing policy solutions. For the first objective, I analyzed the spatial characteristics of urbanization in six cities (Hohhot, Baotou, and Ulanqab in IM, and Ulaanbaatar, Erdenet, and Darkhan in MG) using remote sensing analyses, computed the urban growth rates, population density, and discontiguity (i.e., leap-frogging index) of each city from 1990 through 2015, and applied structural equation models. I found divergent spatial patterns of urbanization in IM and MG and the differential institutional supports and industrial structures contributing to these disparities. For the second objective, I used household surveys to analyze the forces driving rural-to- urban migration, complemented with remote sensing tools to estimate the actual environmental conditions of respondents’ former residences.
    [Show full text]
  • Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China
    sustainability Article Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China Wenfeng Chi 1,2, Jing Jia 1,2, Tao Pan 3,4,5,* , Liang Jin 1,2 and Xiulian Bai 1,2 1 College of resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China; [email protected] (W.C.); [email protected] (J.J.); [email protected] (L.J.); [email protected] (X.B.) 2 Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China 3 College of Geography and Tourism, Qufu Normal University, Shandong, Rizhao 276826, China 4 Department of Geography, Ghent University, 9000 Ghent, Belgium 5 Land Research Center of Qufu Normal University, Shandong, Rizhao 276826, China * Correspondence: [email protected]; Tel.: +86-1834-604-6488 Received: 19 July 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: Green space in intra-urban regions plays a significant role in improving the human habitat environment and regulating the ecosystem service in the Inner Mongolian Plateau of China, the environmental barrier region of North China. However, a lack of multi-scale studies on intra-urban green space limits our knowledge of human settlement environments in this region. In this study, a synergistic methodology, including the main process of linear spectral decomposition, vegetation-soil-impervious surface area model, and artificial digital technology, was established to generate a multi-scale of green space (i.e., 15-m resolution intra-urban green components and 0.5-m resolution park region) and investigate multi-scale green space characteristics as well as its ecological service in 12 central cities of the Inner Mongolian Plateau.
    [Show full text]
  • Of the People's Liberation Army
    Understanding the “People” of the People’s Liberation Army A Study of Marriage, Family, Housing, and Benefits Marcus Clay, Ph.D. Printed in the United States of America by the China Aerospace Studies Institute ISBN-13: 978-1724626929 ISBN-10: 1724626922 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 Cover art is licensed under the Creative Commons Attribution-Share Alike 4.0 International license. E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the US Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal, academic, or governmental use only, as long as it is unaltered and complete however, it is requested that reproductions credit the author and China Aerospace Studies Institute (CASI). Permission is required from the China Aerospace Studies Institute to reproduce, or reuse in another form, any of its research documents for commercial use.
    [Show full text]
  • The Mongolian Local Knowledge on Plants Recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and Its ScientiC Value
    The Mongolian Local Knowledge on Plants Recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and Its Scientic Value Guixi Liu ( [email protected] ) IMNU: Inner Mongolia Normal University https://orcid.org/0000-0003-3354-2714 Wurheng Wurheng IMNU: Inner Mongolia Normal University Khasbagan Khasbagan IMNU: Inner Mongolia Normal University Yanying Zhang IMNU: Inner Mongolia Normal University Shirong Guo IMNU: Inner Mongolia Normal University Research Keywords: P. K. Kozlov, Expedition Record, Local Knowledge on plants, Mongolian Folk, Ethnobotany, Botanical History Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133605/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The Mongolian local knowledge on plants recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and its scientific value Guixi Liu1*, Wurheng2, Khasbagan1,2,3*, Yanying Zhang1 and Shirong Guo1 1 Institute for the History of Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China. E-mail: [email protected], [email protected] 2 College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China. 3 Key Laboratory Breeding Base for Biodiversity Conservation and Sustainable Use of Colleges and Universities in Inner Mongolia Autonomous Region, China. * the corresponding author 1 Abstract Background: There is a plentiful amount of local knowledge on plants hidden in the literature of foreign exploration to China in modern history. Mongolia and Amdo and the Dead City of Khara- Khoto (MAKK) is an expedition record on the sixth scientific expedition to northwestern China (1907-1909) initiated by P.
    [Show full text]
  • Annual Report Annual Report 2020
    2020 Annual Report Annual Report 2020 For further details about information disclosure, please visit the website of Yanzhou Coal Mining Company Limited at Important Notice The Board, Supervisory Committee and the Directors, Supervisors and senior management of the Company warrant the authenticity, accuracy and completeness of the information contained in the annual report and there are no misrepresentations, misleading statements contained in or material omissions from the annual report for which they shall assume joint and several responsibilities. The 2020 Annual Report of Yanzhou Coal Mining Company Limited has been approved by the eleventh meeting of the eighth session of the Board. All ten Directors of quorum attended the meeting. SHINEWING (HK) CPA Limited issued the standard independent auditor report with clean opinion for the Company. Mr. Li Xiyong, Chairman of the Board, Mr. Zhao Qingchun, Chief Financial Officer, and Mr. Xu Jian, head of Finance Management Department, hereby warrant the authenticity, accuracy and completeness of the financial statements contained in this annual report. The Board of the Company proposed to distribute a cash dividend of RMB10.00 per ten shares (tax inclusive) for the year of 2020 based on the number of shares on the record date of the dividend and equity distribution. The forward-looking statements contained in this annual report regarding the Company’s future plans do not constitute any substantive commitment to investors and investors are reminded of the investment risks. There was no appropriation of funds of the Company by the Controlling Shareholder or its related parties for non-operational activities. There were no guarantees granted to external parties by the Company without complying with the prescribed decision-making procedures.
    [Show full text]
  • Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors During 1976–2015
    water Article Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors during 1976–2015 Haidong Li 1 ID , Yuanyun Gao 1,*, Yingkui Li 2 ID , Shouguang Yan 1 and Yuyue Xu 3 1 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; [email protected] (H.L.); [email protected] (S.Y.) 2 Department of Geography, University of Tennessee, Knoxville, TN 37996, USA; [email protected] 3 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210046, China; [email protected] * Correspondence: [email protected]; Tel.: +86-25-8528-7645 Received: 15 August 2017; Accepted: 27 September 2017; Published: 30 September 2017 Abstract: Climate change and increasing human activities have induced lake expansion or shrinkage, posing a serious threat to the ecological security on the Inner Mongolian Plateau, China. However, the pattern of lake changes and how it responds to climate change and revegetation have rarely been reported. We investigated the pattern of lake-area changes in the Dalinor National Nature Reserve (DNR) using Landsat imagery during 1976–2015, and examined its relationship with changes in climate and vegetation factors. The total lake-area in the DNR has decreased by 11.6% from 1976 to 2015 with a rate of −0.55 km2 year−1. The largest Dalinor Lake reduced the most (by 32.7 km2) with a rate of −0.79 km2 year−1. The air temperature has increased significantly since 1976, with a rate of 0.03 ◦C year−1 (p < 0.05), while the precipitation slightly decreased during 1976–2015, with a rate of −0.86 mm year−1.
    [Show full text]
  • Continuing Crackdown in Inner Mongolia
    CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch New York $$$ Washington $$$ Los Angeles $$$ London Copyright 8 March 1992 by Human Rights Watch All rights reserved. Printed in the United States of America. ISBN 1-56432-059-6 Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch/Asia was established in 1985 to monitor and promote the observance of internationally recognized human rights in Asia. Sidney Jones is the executive director; Mike Jendrzejczyk is the Washington director; Robin Munro is the Hong Kong director; Therese Caouette, Patricia Gossman and Jeannine Guthrie are research associates; Cathy Yai-Wen Lee and Grace Oboma-Layat are associates; Mickey Spiegel is a research consultant. Jack Greenberg is the chair of the advisory committee and Orville Schell is vice chair. HUMAN RIGHTS WATCH Human Rights Watch conducts regular, systematic investigations of human rights abuses in some seventy countries around the world. It addresses the human rights practices of governments of all political stripes, of all geopolitical alignments, and of all ethnic and religious persuasions. In internal wars it documents violations by both governments and rebel groups. Human Rights Watch defends freedom of thought and expression, due process and equal protection of the law; it documents and denounces murders, disappearances, torture, arbitrary imprisonment, exile, censorship and other abuses of internationally recognized human rights. Human Rights Watch began in 1978 with the founding of its Helsinki division. Today, it includes five divisions covering Africa, the Americas, Asia, the Middle East, as well as the signatories of the Helsinki accords.
    [Show full text]
  • Forage Crop Introduction in Chifeng Areas, Central East of Inner Mongolia, China
    University of Kentucky UKnowledge XXI International Grassland Congress / VIII International Grassland Congress Proceedings International Rangeland Congress Forage Crop Introduction in Chifeng Areas, Central East of Inner Mongolia, China Qingfeng Li Inner Mongolia Agricultural University, China Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/21/10-1/45 The XXI International Grassland Congress / VIII International Rangeland Congress took place in Hohhot, China from June 29 through July 5, 2008. Proceedings edited by Organizing Committee of 2008 IGC/IRC Conference Published by Guangdong People's Publishing House This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Multifunctional Grasslands in a Changing World Volume Ⅱ 瞯 2 33 瞯 ] Forage crop introduction in Chifeng areas , central east of Inner Mongolia ,China L I Qing f eng College o f Ecology and Env ironmental Science , Inner Mongolia A gricultural University , Hohhot 010019 ; E‐mail : llf f 202@ 126 .com Key words : forage crop ,plant introduction ,evaluation ,yield ,nutritional value Introduction ‐ With traditional animal raising system in Northern Ch3i0n%a grassland areas , animals were winter fed with very poor quality‐forage , and had to consume body fat for survival . Up to of body weight loss was not a rare phenomena during winter spring season . The main purpose of this trial is to evaluate several newly introduced forage crops for their roles in supporting the animal production system in the central east Inner Mongolia , in terms of quality and quality .
    [Show full text]
  • Comparative Analysis on Bairin Left Banner Rural Residence Transformation Scheme
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(7):1352-1358 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Comparative analysis on Bairin left banner rural residence transformation scheme Chenxia Suo 1 and Yong Yang 2 1Beijing Institute of Petrochemical Technology, China 2Zhejiang Gongshang University, China _____________________________________________________________________________________________ ABSTRACT This paper compares and optimizes the effect of rural residence energy saving transformation by means of several important indexes on the basis of analyzing the relation of various transformation measures and amount of energy saving and indoor temperature through the field survey to Inner Mongolia Bairin Left Banner rural residence energy saving transformation. The efficient energy saving transformation schemes are obtained according to the results of comparison and optimization. Key words: Rural residence, energy saving transformation, scheme comparison _____________________________________________________________________________________________ INTRODUCTION China has put forward a strategic decision of constructing resource-saving society after the deep research on domestic and overseas political economy and social development history. ‘12th Five-Year Plan’ clearly presents that we should implement the target of “the transformation area of existing residence architecture of northern area with heating provision increases to 0.58 billion m2 from 0.18 billion m2 within 2010-2015”proposed by 12th Five-Year Plan for Energy Saving and Emission Reduction No. 40 Document in 2012 of the State Council. [1] [2]With the popularization of building energy saving transformation, different regions carry out rural residence energy saving transformation according to the characteristics of natural and architecture of respective region by use of the combination of various transformation items. Such transformation in which some differencesexist is known as transformation scheme.
    [Show full text]
  • Empirical and Model-Based Estimates of Spatial and Temporal Variations in Net Primary Productivity in Semi-Arid Grasslands of Northern China
    RESEARCH ARTICLE Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China Shengwei Zhang1,2, Rui Zhang1, Tingxi Liu1*, Xin Song3, Mark A. Adams4 1 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China, 2 Centre for Carbon, Water and Food, University of Sydney, Sydney, Australia, 3 College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 4 Swinburne University of a1111111111 Technology, Faculty of Science Engineering and Technology, Hawthorn, Victoria, Australia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Spatiotemporal variations in net primary productivity (NPP) reflect the dynamics of water and carbon in the biosphere, and are often closely related to temperature and precipitation. OPEN ACCESS We used the ecosystem model known as the Carnegie-Ames-Stanford Approach (CASA) to Citation: Zhang S, Zhang R, Liu T, Song X, A. Adams M (2017) Empirical and model-based estimate NPP of semiarid grassland in northern China counties between 2001 and 2013. estimates of spatial and temporal variations in net Model estimates were strongly linearly correlated with observed values from different coun- primary productivity in semi-arid grasslands of ties (slope = 0.76 (p < 0.001), intercept = 34.7 (p < 0.01), R2 = 0.67, RMSE = 35 g CÁm-2Á Northern China. PLoS ONE 12(11): e0187678. year-1, bias = -0.11 g CÁm-2Áyear-1). We also quantified inter-annual changes in NPP over https://doi.org/10.1371/journal.pone.0187678 the 13-year study period. NPP varied between 141 and 313 g CÁm-2Áyear-1, with a mean of Editor: Ben Bond-Lamberty, Pacific Northwest 240 g CÁm-2Áyear-1.
    [Show full text]
  • Congressional-Executive Commission on China Annual Report 2019
    CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2019 ONE HUNDRED SIXTEENTH CONGRESS FIRST SESSION NOVEMBER 18, 2019 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: https://www.cecc.gov VerDate Nov 24 2008 13:38 Nov 18, 2019 Jkt 036743 PO 00000 Frm 00001 Fmt 6011 Sfmt 5011 G:\ANNUAL REPORT\ANNUAL REPORT 2019\2019 AR GPO FILES\FRONTMATTER.TXT CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2019 ONE HUNDRED SIXTEENTH CONGRESS FIRST SESSION NOVEMBER 18, 2019 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: https://www.cecc.gov U.S. GOVERNMENT PUBLISHING OFFICE 36–743 PDF WASHINGTON : 2019 VerDate Nov 24 2008 13:38 Nov 18, 2019 Jkt 036743 PO 00000 Frm 00003 Fmt 5011 Sfmt 5011 G:\ANNUAL REPORT\ANNUAL REPORT 2019\2019 AR GPO FILES\FRONTMATTER.TXT CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA LEGISLATIVE BRANCH COMMISSIONERS House Senate JAMES P. MCGOVERN, Massachusetts, MARCO RUBIO, Florida, Co-chair Chair JAMES LANKFORD, Oklahoma MARCY KAPTUR, Ohio TOM COTTON, Arkansas THOMAS SUOZZI, New York STEVE DAINES, Montana TOM MALINOWSKI, New Jersey TODD YOUNG, Indiana BEN MCADAMS, Utah DIANNE FEINSTEIN, California CHRISTOPHER SMITH, New Jersey JEFF MERKLEY, Oregon BRIAN MAST, Florida GARY PETERS, Michigan VICKY HARTZLER, Missouri ANGUS KING, Maine EXECUTIVE BRANCH COMMISSIONERS Department of State, To Be Appointed Department of Labor, To Be Appointed Department of Commerce, To Be Appointed At-Large, To Be Appointed At-Large, To Be Appointed JONATHAN STIVERS, Staff Director PETER MATTIS, Deputy Staff Director (II) VerDate Nov 24 2008 13:38 Nov 18, 2019 Jkt 036743 PO 00000 Frm 00004 Fmt 0486 Sfmt 0486 G:\ANNUAL REPORT\ANNUAL REPORT 2019\2019 AR GPO FILES\FRONTMATTER.TXT C O N T E N T S Page I.
    [Show full text]
  • Chinacoalchem
    ChinaCoalChem Monthly Report Issue May. 2019 Copyright 2019 All Rights Reserved. ChinaCoalChem Issue May. 2019 Table of Contents Insight China ................................................................................................................... 4 To analyze the competitive advantages of various material routes for fuel ethanol from six dimensions .............................................................................................................. 4 Could fuel ethanol meet the demand of 10MT in 2020? 6MTA total capacity is closely promoted ....................................................................................................................... 6 Development of China's polybutene industry ............................................................... 7 Policies & Markets ......................................................................................................... 9 Comprehensive Analysis of the Latest Policy Trends in Fuel Ethanol and Ethanol Gasoline ........................................................................................................................ 9 Companies & Projects ................................................................................................... 9 Baofeng Energy Succeeded in SEC A-Stock Listing ................................................... 9 BG Ordos Started Field Construction of 4bnm3/a SNG Project ................................ 10 Datang Duolun Project Created New Monthly Methanol Output Record in Apr ........ 10 Danhua to Acquire &
    [Show full text]