Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors During 1976–2015

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors During 1976–2015 water Article Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors during 1976–2015 Haidong Li 1 ID , Yuanyun Gao 1,*, Yingkui Li 2 ID , Shouguang Yan 1 and Yuyue Xu 3 1 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; [email protected] (H.L.); [email protected] (S.Y.) 2 Department of Geography, University of Tennessee, Knoxville, TN 37996, USA; [email protected] 3 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210046, China; [email protected] * Correspondence: [email protected]; Tel.: +86-25-8528-7645 Received: 15 August 2017; Accepted: 27 September 2017; Published: 30 September 2017 Abstract: Climate change and increasing human activities have induced lake expansion or shrinkage, posing a serious threat to the ecological security on the Inner Mongolian Plateau, China. However, the pattern of lake changes and how it responds to climate change and revegetation have rarely been reported. We investigated the pattern of lake-area changes in the Dalinor National Nature Reserve (DNR) using Landsat imagery during 1976–2015, and examined its relationship with changes in climate and vegetation factors. The total lake-area in the DNR has decreased by 11.6% from 1976 to 2015 with a rate of −0.55 km2 year−1. The largest Dalinor Lake reduced the most (by 32.7 km2) with a rate of −0.79 km2 year−1. The air temperature has increased significantly since 1976, with a rate of 0.03 ◦C year−1 (p < 0.05), while the precipitation slightly decreased during 1976–2015, with a rate of −0.86 mm year−1. The Normalized Difference Vegetation Index (NDVI) increased by 27.7% from 1976 to 2015, especially after 2001 when vegetation has been promoted greatly as a result of the successful ecological protection and restoration in the Dalinor basin. The decrease in lake-areas for the DNR exhibited a negative correlation with NDVI (r = −0.397, p < 0.05) during 1976–2015. It seems that decreasing precipitation drives the reduction in lake-area, while rising temperature and vegetation greenness accelerated this decreasing trend by increasing evapotranspiration. The continuous lake shrinkage increases the ecological risks to the habitat of birds, causing a challenge to the management in the DNR. Keywords: lake-area change; water resources; vegetation greenness; climate change adaptation; ecological protection and restoration; Inner Mongolia 1. Introduction Climate change, especially continuously rising temperature and changes in precipitation, has induced significant environmental changes around the world, including the changes in water resources that are of critical importance to human society and ecosystems [1–3]. Many areas of the world, including China, are currently facing water shortage issues, and will face higher risks of water shortages by the middle of this century due to global warming [4,5]. Water availability in China is already limited, especially in the northern and western part, and demand will continue to rise with population increase and economic growth. Lakes are one of the most direct and sensitive water bodies affected by climate change [6,7]. In general, closed lakes (endorheic lakes), especially, small ones, are more sensitive to changing climate or human interventions than open lakes (exorheic lakes). Under some extremely climatic conditions, small lakes may disappear entirely [4,8]. Studies reported that rising temperature and variations in precipitation have caused dramatic changes in the lakes on the Qinghai-Tibetan and Mongolian Water 2017, 9, 749; doi:10.3390/w9100749 www.mdpi.com/journal/water Water 2017, 9, 749 2 of 13 Water 2017, 9, 749 2 of 13 plateaus and and resulted resulted in in many many ecol ecologicalogical hazards hazards since since the the1970s 1970s [9–11]. [9– For11]. example, For example, in recent in recentyears, theyears, lake the expansion lake expansion on the onQinghai-Tibet the Qinghai-Tibet Plateau Plateau flooded flooded pastures pastures and farmland, and farmland, affecting affecting the safety the ofsafety roads of roadsand infrastructure and infrastructure [11]. [The11]. TheMongolian Mongolian Plateau Plateau is located is located in inthe the hinterland hinterland of of Eurasia, Eurasia, includingincluding Mongolia Mongolia and and the the Inner Inner Mongolia Mongolia Autonomo Autonomousus Region Region of of China. China. In In contrast contrast to to the the trend 2 ofof lake lake expansion expansion on on the the Qinghai-Tibetan Qinghai-Tibetan Platea Plateau,u, the the number number of oflakes lakes with with areas areas of >1.0 of >1.0 km2 km on theon Mongolianthe Mongolian Plateau Plateau dropped dropped from from 785 to 785 577 to and 577 the and to thetal totallake area lake in area Inner in InnerMongolia Mongolia reduced reduced from 2 2 4160from km 41602 to km 2901to 2901km2 kmduringduring 1987–2010. 1987–2010. The The remarkable remarkable lake lake shrinkage shrinkage has has resulted resulted in in water shortagesshortages to to local residents, causing desertificat desertificationion and and grassland degradation [9,10]. [9,10]. In In Mongolia, Mongolia, precipitation was was considered considered as as the the dominant dominant driver driver for for the the lake lake changes, changes, while while in in Inner Inner Mongolia, Mongolia, coalcoal mining mining was was suggested suggested as as the the most most important important factor factor in in the the grassland grassland area, area, and and irrigation irrigation was was the the leadingleading factor factor in in the the cultivated area for lake shrinkage [[10].10]. TheThe Dalinor National Nature Nature Reserve (DNR) is is located within the Hunshandake sandy sandy land land in thethe Inner Inner Mongolia Mongolia Autonomous Autonomous Region. The The Hunshand Hunshandakeake sandy land is one one of of the the 25 25 National National Key Key EcologicalEcological Function Areas in China and one of the the main main sources sources of of sandstorm sandstorm to to Beijing Beijing and and northern northern China.China. It It is is also also one one of of the the key key implementation implementation areas areas of of the the Beijing-Tianjin Wind Wind and Sandstorm SourceSource Control ProjectProject [12[12].]. InIn recent recent years, years, water wate flowingr flowing into into these these lakes lakes decreased decreased significantly, significantly, and andboth both lake-area lake-area and waterand water quality quality have changed have changed greatly. greatly. The lives The of locallives herdsmenof local herdsmen and fishermen and fishermenhave been have affected been (Figure affected1). It(Figure is of critical 1). It is importance of critical importance to understand to understand the ecological the risks ecological of the risks lake ofchanges the lake to changes the biodiversity to the biodiversity and local community. and local community. (a) (b) (c) (d) FigureFigure 1. SignsSigns of: of: lake lake shrinkage shrinkage ( (aa);); and and land land salinization salinization ( (bb)) in in the the DNR DNR in in 2014; and lake-based ecosystemecosystem on on lake lake coastal coastal zone zone (c ();c); and and vegetation vegetation coverage coverage on on sandy sandy land land (d) ( din) inthe the Dalinor Dalinor basin basin in 2016.in 2016. Water 2017, 9, 749 3 of 13 In this paper, we investigate the pattern of lake-area changes in the DNR, and examine how climatic factors affect this pattern. We also examine the potential impact of vegetation change on lake changing pattern using NDVI (normalized difference vegetation index) as an indicator of vegetation greenness. We aim to address three research questions: (1) Does the temporal lake changing trend depend on climate changes? (2) What is the potential role of revegetation of sandy land on the hydrological cycle in the Dalinor basin? (3) What is the best strategy to prevent and adapt climate change risks in this ecologically fragile environment? This study provides useful information for environmental protection and promotes a better understanding of climate change adaptation for this lake-based ecosystem and community. 2. Methods 2.1. Study Area The Dalinor basin is located in the topographic junction of the eastern Mongolian Plateau, the southern end of Greater Khingan Mountains, and Hunshandake sandy land (Figure2). It covers an area of 5550.54 km2, and is a typical inland lake basin, containing three major lakes (Dalinor Lake, Gangnor Lake, and Duolunor Lake with areas of 191 km2, 21.1 km2, and 2.2 km2 in 2015, respectively) and four rivers (Gonggel River, Liangzi River, Shari River, and Haolai River). The total discharge of the four rivers is about 0.61 million m3 year−1. Gonggel River is the largest river, accounting for about 75% of the total discharge. Among the lakes, Dalinor Lake (116◦290–116◦450 E, 43◦130–43◦230 N) is the largest. It belongs to Hexigten County and Chifeng City in Inner Mongolia. It is a brackish-water lake with elevation ranging from 1226 to 1228 m above sea level (a.s.l.). The average depth is 7.5 m, and the maximum depth is 13 m. The other two lakes flow into Dalinor Lake. The DNR lies within the Dalinor Basin (Figure2c), covering an area of 1194.14 km 2. The main protected targets of the DNR are rare birds and their habitats, including lakes, wetlands, grasslands, and forests. The DNR is the largest bird-migration corridor in northern China. It is also one of the gathering places of migratory birds in northeast Asia. Many birds take a short stay when they fly between Siberia and south China, Korea, Japan in spring and autumn. Eight species belong to the national protected birds in the first class (such as Ciconia ciconia, Grus Japonensis, Ciconia nigra, Grus vipio, etc.) and 18 species belong to the second class (such as Cygnus cygnus, Anthropoides virgo, Grus grus, etc.) [13].
Recommended publications
  • The Mongolian Local Knowledge on Plants Recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and Its ScientiC Value
    The Mongolian Local Knowledge on Plants Recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and Its Scientic Value Guixi Liu ( [email protected] ) IMNU: Inner Mongolia Normal University https://orcid.org/0000-0003-3354-2714 Wurheng Wurheng IMNU: Inner Mongolia Normal University Khasbagan Khasbagan IMNU: Inner Mongolia Normal University Yanying Zhang IMNU: Inner Mongolia Normal University Shirong Guo IMNU: Inner Mongolia Normal University Research Keywords: P. K. Kozlov, Expedition Record, Local Knowledge on plants, Mongolian Folk, Ethnobotany, Botanical History Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133605/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The Mongolian local knowledge on plants recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and its scientific value Guixi Liu1*, Wurheng2, Khasbagan1,2,3*, Yanying Zhang1 and Shirong Guo1 1 Institute for the History of Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China. E-mail: [email protected], [email protected] 2 College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China. 3 Key Laboratory Breeding Base for Biodiversity Conservation and Sustainable Use of Colleges and Universities in Inner Mongolia Autonomous Region, China. * the corresponding author 1 Abstract Background: There is a plentiful amount of local knowledge on plants hidden in the literature of foreign exploration to China in modern history. Mongolia and Amdo and the Dead City of Khara- Khoto (MAKK) is an expedition record on the sixth scientific expedition to northwestern China (1907-1909) initiated by P.
    [Show full text]
  • Continuing Crackdown in Inner Mongolia
    CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch New York $$$ Washington $$$ Los Angeles $$$ London Copyright 8 March 1992 by Human Rights Watch All rights reserved. Printed in the United States of America. ISBN 1-56432-059-6 Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch/Asia was established in 1985 to monitor and promote the observance of internationally recognized human rights in Asia. Sidney Jones is the executive director; Mike Jendrzejczyk is the Washington director; Robin Munro is the Hong Kong director; Therese Caouette, Patricia Gossman and Jeannine Guthrie are research associates; Cathy Yai-Wen Lee and Grace Oboma-Layat are associates; Mickey Spiegel is a research consultant. Jack Greenberg is the chair of the advisory committee and Orville Schell is vice chair. HUMAN RIGHTS WATCH Human Rights Watch conducts regular, systematic investigations of human rights abuses in some seventy countries around the world. It addresses the human rights practices of governments of all political stripes, of all geopolitical alignments, and of all ethnic and religious persuasions. In internal wars it documents violations by both governments and rebel groups. Human Rights Watch defends freedom of thought and expression, due process and equal protection of the law; it documents and denounces murders, disappearances, torture, arbitrary imprisonment, exile, censorship and other abuses of internationally recognized human rights. Human Rights Watch began in 1978 with the founding of its Helsinki division. Today, it includes five divisions covering Africa, the Americas, Asia, the Middle East, as well as the signatories of the Helsinki accords.
    [Show full text]
  • Empirical and Model-Based Estimates of Spatial and Temporal Variations in Net Primary Productivity in Semi-Arid Grasslands of Northern China
    RESEARCH ARTICLE Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China Shengwei Zhang1,2, Rui Zhang1, Tingxi Liu1*, Xin Song3, Mark A. Adams4 1 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China, 2 Centre for Carbon, Water and Food, University of Sydney, Sydney, Australia, 3 College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 4 Swinburne University of a1111111111 Technology, Faculty of Science Engineering and Technology, Hawthorn, Victoria, Australia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Spatiotemporal variations in net primary productivity (NPP) reflect the dynamics of water and carbon in the biosphere, and are often closely related to temperature and precipitation. OPEN ACCESS We used the ecosystem model known as the Carnegie-Ames-Stanford Approach (CASA) to Citation: Zhang S, Zhang R, Liu T, Song X, A. Adams M (2017) Empirical and model-based estimate NPP of semiarid grassland in northern China counties between 2001 and 2013. estimates of spatial and temporal variations in net Model estimates were strongly linearly correlated with observed values from different coun- primary productivity in semi-arid grasslands of ties (slope = 0.76 (p < 0.001), intercept = 34.7 (p < 0.01), R2 = 0.67, RMSE = 35 g CÁm-2Á Northern China. PLoS ONE 12(11): e0187678. year-1, bias = -0.11 g CÁm-2Áyear-1). We also quantified inter-annual changes in NPP over https://doi.org/10.1371/journal.pone.0187678 the 13-year study period. NPP varied between 141 and 313 g CÁm-2Áyear-1, with a mean of Editor: Ben Bond-Lamberty, Pacific Northwest 240 g CÁm-2Áyear-1.
    [Show full text]
  • Congressional-Executive Commission on China Annual Report 2019
    CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2019 ONE HUNDRED SIXTEENTH CONGRESS FIRST SESSION NOVEMBER 18, 2019 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: https://www.cecc.gov VerDate Nov 24 2008 13:38 Nov 18, 2019 Jkt 036743 PO 00000 Frm 00001 Fmt 6011 Sfmt 5011 G:\ANNUAL REPORT\ANNUAL REPORT 2019\2019 AR GPO FILES\FRONTMATTER.TXT CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2019 ONE HUNDRED SIXTEENTH CONGRESS FIRST SESSION NOVEMBER 18, 2019 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: https://www.cecc.gov U.S. GOVERNMENT PUBLISHING OFFICE 36–743 PDF WASHINGTON : 2019 VerDate Nov 24 2008 13:38 Nov 18, 2019 Jkt 036743 PO 00000 Frm 00003 Fmt 5011 Sfmt 5011 G:\ANNUAL REPORT\ANNUAL REPORT 2019\2019 AR GPO FILES\FRONTMATTER.TXT CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA LEGISLATIVE BRANCH COMMISSIONERS House Senate JAMES P. MCGOVERN, Massachusetts, MARCO RUBIO, Florida, Co-chair Chair JAMES LANKFORD, Oklahoma MARCY KAPTUR, Ohio TOM COTTON, Arkansas THOMAS SUOZZI, New York STEVE DAINES, Montana TOM MALINOWSKI, New Jersey TODD YOUNG, Indiana BEN MCADAMS, Utah DIANNE FEINSTEIN, California CHRISTOPHER SMITH, New Jersey JEFF MERKLEY, Oregon BRIAN MAST, Florida GARY PETERS, Michigan VICKY HARTZLER, Missouri ANGUS KING, Maine EXECUTIVE BRANCH COMMISSIONERS Department of State, To Be Appointed Department of Labor, To Be Appointed Department of Commerce, To Be Appointed At-Large, To Be Appointed At-Large, To Be Appointed JONATHAN STIVERS, Staff Director PETER MATTIS, Deputy Staff Director (II) VerDate Nov 24 2008 13:38 Nov 18, 2019 Jkt 036743 PO 00000 Frm 00004 Fmt 0486 Sfmt 0486 G:\ANNUAL REPORT\ANNUAL REPORT 2019\2019 AR GPO FILES\FRONTMATTER.TXT C O N T E N T S Page I.
    [Show full text]
  • The Great Empires of Asia the Great Empires of Asia
    The Great Empires of Asia The Great Empires of Asia EDITED BY JIM MASSELOS FOREWORD BY JONATHAN FENBY WITH 27 ILLUSTRATIONS Note on spellings and transliterations There is no single agreed system for transliterating into the Western CONTENTS alphabet names, titles and terms from the different cultures and languages represented in this book. Each culture has separate traditions FOREWORD 8 for the most ‘correct’ way in which words should be transliterated from The Legacy of Empire Arabic and other scripts. However, to avoid any potential confusion JONATHAN FENBY to the non-specialist reader, in this volume we have adopted a single system of spellings and have generally used the versions of names and titles that will be most familiar to Western readers. INTRODUCTION 14 The Distinctiveness of Asian Empires JIM MASSELOS Elements of Empire Emperors and Empires Maintaining Empire Advancing Empire CHAPTER ONE 27 Central Asia: The Mongols 1206–1405 On the cover: Map of Unidentified Islands off the Southern Anatolian Coast, by Ottoman admiral and geographer Piri Reis (1465–1555). TIMOTHY MAY Photo: The Walters Art Museum, Baltimore. The Rise of Chinggis Khan The Empire after Chinggis Khan First published in the United Kingdom in 2010 by Thames & Hudson Ltd, 181A High Holborn, London WC1V 7QX The Army of the Empire Civil Government This compact paperback edition first published in 2018 The Rule of Law The Great Empires of Asia © 2010 and 2018 Decline and Dissolution Thames & Hudson Ltd, London The Greatness of the Mongol Empire Foreword © 2018 Jonathan Fenby All Rights Reserved. No part of this publication may be reproduced CHAPTER TWO 53 or transmitted in any form or by any means, electronic or mechanical, China: The Ming 1368–1644 including photocopy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher.
    [Show full text]
  • Humanity Space Issn 2226-0773
    HUMANITY SPACE ISSN 2226-0773 INTERNATIONAL ALMANAC HUMANITY SPACE MIKHAIL L. DANILEVSKY AND MEI-YING LIN A contribution to the study of China Dorcadionini (Coleoptera, Cerambycidae) Parts 1-2 Volume 1, Supplement 4 MOSCOW 2012 Humanity space International almanac VOL. 1, Supplement 4, 2012: 4-19 A contribution to the study of China Dorcadionini (Coleoptera, Cerambycidae). Part 1. Mikhail L. Danilevsky1 and Mei-Ying Lin2 1A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect 33, Moscow 119071 Russia. E-mail: [email protected], [email protected] 2Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 # Beichen West Road, Chaoyang, Beijing, 100101, China. E-mail: [email protected] Key words: Cerambycidae, Lamiinae, Eodorcadion, taxonomy, China, Mongolia. Summary. The species rank E. rubrosuturale (Breuning, 1943) is restored. Several local populations of E. chinganicum (Suvorov, 1909) and E. rubrosuturale are partly described. Most of localities were never published before, so new distributional records are proposed for several taxa. Specimens from about all new localities are figured. Two names are downgraded to subspecies rank: E. chinganicum mandschukuoense (Breuning, 1944), stat. nov. and E. chinganicum darigangense Heyrovský, 1967, stat. nov. The taxon described as E. chinganicum kerulenum Danilevsky, 2007 is regarded as E. rubrosuturale kerulenum Danilevsky, 2007. INTRODUCTION A complete revision of the genus was published not long ago (Danilevsky, 2007) on the base of materials from Russian and West European Museums and collectors. Several specimens were also studied in National Museum of Natural History, Washington, USA. Unfortunately no materials were available from Chinese Museums, neither from Mongolian.
    [Show full text]
  • Desertification Information Extraction Based on Feature Space
    remote sensing Article Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau Haishuo Wei 1,2 , Juanle Wang 1,3,4,* , Kai Cheng 1,5, Ge Li 1,2, Altansukh Ochir 6 , Davaadorj Davaasuren 7 and Sonomdagva Chonokhuu 6 1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (H.W.); [email protected] (K.C.); [email protected] (G.L.) 2 School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China 3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China 4 Visiting professor at the School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar City 14201, Mongolia 5 University of Chinese Academy of Sciences, Beijing 100049, China 6 Department of Environment and Forest Engineering, National University of Mongolia, Ulaanbaatar City 210646, Mongolia; [email protected] (A.O.); [email protected] (S.C.) 7 Department of Geography, National University of Mongolia, Ulaanbaatar City 14201, Mongolia; [email protected] * Correspondence: [email protected]; Tel.: +86-139-1107-1839 Received: 22 August 2018; Accepted: 9 October 2018; Published: 11 October 2018 Abstract: The Mongolian plateau is a hotspot of global desertification because it is heavily affected by climate change, and has a large diversity of vegetation cover across various regions and seasons. Within this arid region, it is difficult to distinguish desertified land from other land cover types using low-quality vegetation information.
    [Show full text]
  • Études Mongoles Et Sibériennes, Centrasiatiques Et Tibétaines, 47 | 2016 Were the Historical Oirats “Western Mongols”? an Examination of Their Uniquen
    Études mongoles et sibériennes, centrasiatiques et tibétaines 47 | 2016 Everyday religion among pastoralists of High and Inner Asia, suivi de Varia Were the historical Oirats “Western Mongols”? An examination of their uniqueness in relation to the Mongols Les Oïrats historiques étaient-ils des “Mongols occidentaux”? Un examen de leur singularité par rapport aux Mongols Joo-Yup Lee Electronic version URL: https://journals.openedition.org/emscat/2820 DOI: 10.4000/emscat.2820 ISSN: 2101-0013 Publisher Centre d'Etudes Mongoles & Sibériennes / École Pratique des Hautes Études Electronic reference Joo-Yup Lee, “Were the historical Oirats “Western Mongols”? An examination of their uniqueness in relation to the Mongols”, Études mongoles et sibériennes, centrasiatiques et tibétaines [Online], 47 | 2016, Online since 21 December 2016, connection on 20 September 2021. URL: http:// journals.openedition.org/emscat/2820 ; DOI: https://doi.org/10.4000/emscat.2820 This text was automatically generated on 20 September 2021. © Tous droits réservés Were the historical Oirats “Western Mongols”? An examination of their uniquen... 1 Were the historical Oirats “Western Mongols”? An examination of their uniqueness in relation to the Mongols Les Oïrats historiques étaient-ils des “Mongols occidentaux”? Un examen de leur singularité par rapport aux Mongols Joo-Yup Lee I would like to express my sincere gratitude to my friends Metin Bezikoğlu and Shuntu Kuang for helping me obtain and read relevant texts in the Başbakanlık arşivi Name-i hümâyûn defteri and the Qing Shilu, respectively. Introduction 1 The Kalmyks, a Buddhist Mongolic people residing in the Republic of Kalmykia (Khalmg Tangch), a constituent republic of the Russian Federation 1, the Torghud (Cl.
    [Show full text]
  • Rapid Loss of Lakes on the Mongolian Plateau
    Rapid loss of lakes on the Mongolian Plateau Shengli Taoa, Jingyun Fanga,b,1, Xia Zhaob, Shuqing Zhaoa, Haihua Shenb, Huifeng Hub, Zhiyao Tanga, Zhiheng Wanga, and Qinghua Guob aCollege of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China 100871; and bState Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China 100093 Edited by B. L. Turner, Arizona State University, Tempe, AZ, and approved December 24, 2014 (received for review June 23, 2014) Lakes are widely distributed on the Mongolian Plateau and, as the entire plateau (for details see Materials and Methods and SI critical water sources, have sustained Mongolian pastures for Appendix, Text S2 and Table S1). Using this database, we ex- hundreds of years. However, the plateau has experienced signif- plored the changes in the lakes over the past three decades and icant lake shrinkage and grassland degradation during the past investigated their possible driving forces. several decades. To quantify the changes in all of the lakes on the plateau and the associated driving factors, we performed a satel- Results and Discussion lite-based survey using multitemporal Landsat images from the Changes in Lakes >1km2 Between the late 1980s and 2010. We first 1970s to 2000s, combined with ground-based censuses. Our results investigated the changes in lakes with surface area >1km2 be- document a rapid loss of lakes on the plateau in the past decades: tween the late 1980s and around 2010 using TM and ETM+ the number of lakes with a water surface area >1km2 decreased images.
    [Show full text]
  • Urbanization on the Mongolian Plateau After Economic Reform: Changes and Causes
    Applied Geography 86 (2017) 118e127 Contents lists available at ScienceDirect Applied Geography journal homepage: www.elsevier.com/locate/apgeog Urbanization on the Mongolian Plateau after economic reform: Changes and causes Hogeun Park a, c, *, Peilei Fan a, c, Ranjeet John c, Jiquan Chen b, c a School of Planning, Design, and Construction, Michigan State University, East Lansing, MI 48823, USA b Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA c Center for Global Changes and Earth Observation, Michigan State University, East Lansing, MI 48823, USA article info abstract Article history: In response to changes in human and natural environments over the past three decades, transitional Received 18 January 2017 countries have experienced dramatic urbanization. In the context of socioeconomic and biophysical Received in revised form changes, our knowledge on these urbanization processes remains limited. Here, we used the Mongolian 14 June 2017 Plateau (i.e., Inner Mongolia (IM) and Mongolia (MG)) as a testbed and applied the coupled natural and Accepted 21 June 2017 human (CNH) concept to understand the processes and causes of urbanization. We selected six cities on the Mongolian Plateau, classified their urban built-up areas using Geographic Object-Based Image Analysis (GEOBIA) from 1990 through 2015, and examined the driving forces of urbanization (i.e., Keywords: Transitional economy economy, social goods, and environmental variables) through Partial Least Squares Structural Equation Urbanization Modeling (PLS-SEM). We found that the spatial characteristics of urbanization in IM and MG have both Mongolian Plateau similarities and differences. The cities in IM and MG have experienced rapid urban expansion, with urban Coupled natural and human system (CNH) areas increasing by 4.36 times and 3.12 times, respectively, since 1990.
    [Show full text]
  • Satellite-Indicated Long-Term Vegetation Changes and Their Drivers on the Mongolian Plateau
    Landscape Ecol DOI 10.1007/s10980-014-0095-y RESEARCH ARTICLE Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau Xia Zhao • Huifeng Hu • Haihua Shen • Daojing Zhou • Liming Zhou • Ranga B. Myneni • Jingyun Fang Received: 14 October 2013 / Accepted: 15 September 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract The Mongolian Plateau, comprising the using the normalized difference vegetation index nation of Mongolia and the Inner Mongolia Autono- (NDVI). Across the Plateau, a significantly positive mous Region of China, has been influenced by trend in the growing season (May–September) NDVI significant climatic changes and intensive human was observed from 1982 to 1998, but since that time, activities. Previous satellite-based analyses have sug- the NDVI has not shown a persistent increase, thus gested an increasing tendency in the vegetation cover causing an insignificant trend over the entire study over recent decades. However, several ground-based period. For the steppe vegetation (a major vegetation observations have indicated a decline in vegetation type on the Plateau), the NDVI increased significantly production. This study aimed to explore long-term in spring but decreased in summer. Precipitation was changes in vegetation greenness and land surface the dominant factor related to changes in steppe phenology in relation to changes in temperature and vegetation. Warming in spring contributed to earlier precipitation on the Plateau between 1982 and 2011 vegetation green-up only in meadow steppe vegeta- tion, implying that water deficiency in typical and desert steppe vegetation may eliminate the effect of X. Zhao (&) Á H. Hu Á H.
    [Show full text]
  • Ethnic Minority Rights
    ETHNIC MINORITY RIGHTS Findings • During the Commission’s 2019 reporting year, the Chinese Communist Party’s United Front Work Department continued to promote ethnic affairs work at all levels of Party and state governance that emphasized the importance of ‘‘sinicizing’’ eth- nic and religious minorities. Officials emphasized the need to ‘‘sinicize’’ the country’s religions, including Islam. Official ‘‘sinicization’’ efforts contributed to the increasing marginalization of ethnic minorities and their cultures and lan- guages. • Reports indicate that official efforts to repress Islamic prac- tices in the Xinjiang Uyghur Autonomous Region (XUAR) have spread beyond the XUAR to Hui communities living in other locations. Developments suggest officials may be starting to carry out religious repression in areas outside of the XUAR that are modeled on restrictions already implemented within the XUAR. In November 2018, official media reported that Zhang Yunsheng, Communist Party official of the Ningxia Hui Autonomous Region, had signed a counterterrorism agreement with XUAR officials during a trip to the XUAR to learn about its efforts to fight terrorism, maintain ‘‘social stability,’’ and manage religious affairs. • During the reporting year, authorities carried out the phys- ical destruction and alteration of Hui Muslim spaces and struc- tures, continuing a recent trend away from relative toleration of Hui Muslim faith communities. Officials demolished a mosque in a Hui community in Gansu province, raided and closed several mosques in Hui areas in Yunnan province, closed an Arabic-language school serving Hui students in Gansu, and carried out changes such as removing Arabic sign- age in Hui areas. These changes narrowed the space for Hui Muslim believers to assert an ethnic and religious identity dis- tinct from that of the dominant Han Chinese population.
    [Show full text]