English Sea, the Danish Sea, and the French Sea

Total Page:16

File Type:pdf, Size:1020Kb

English Sea, the Danish Sea, and the French Sea A Case Study on Dual Naming in Old Maps KIM Shin* It is a matter of nationality for the map maker to use any place name on the world map. However, it can be said that the naming that appears on the map should be jointly used and jointly operated by several countries. The place name that appears on the map is a global standard. In particular, sea names are associated with navigation, which can be a fatal hazard to safe navigation. In particular, the sea is operated by a large number of vessels, and strict navigation control is required. Therefore, it can be said that the navigation designation as the guideline is extremely important. Then, how should a sea nomination be determined? The contents of this study are related to the analysis of the published world old map. Now the 20th century has passed and the 21st century is beginning. If the names other than the sea names agreed by the coastal nations such as the North Sea and the Black Sea, Red Sea, Yellow Sea use the agreed names, and if they do not accept them, it would be desirable to use the sea names desired by each country. However, the name of the Japan Sea was published in 1929 by the International Hydrographic Organization as "limits of Oceans and Seas" (S. 23). There has been controversy for decades since then, but the coastal states are still unable to find a name they agree with. The East Sea is the easternmost place on the Eurasian continent, and it seems to be the most reasonable name in the case of the North Sea. Korea currently claims the East Sea and Japan claims the Sea of Japan. If the problem is not resolved, EAST SEA / JAPAN SEA, which is the most universally valid and cannot be owned by a certain country, is considered as a desirable alternative. INTRODUCTION Until now, we have been studying for a long time with the name of the sea surrounded by Korea, North Korea, Japan and Russia. The purpose of the study was to see how the name of the sea surrounded by various countries should be written. It is believed that there was some principle in determining the name of the sea. It would have been possible to make decisions based on direction as shown in the general nomenclature. * President, The Korea Academy of East Sea, Professor Emeritus, Kyung Hee University, Korea KIM Shin 67 Otherwise, it could have been determined by features such as color. In this study, we study the sea which has similar environment to the East Sea. The South Korea has proposed the East Sea / Japan Sea to the International Hydrographic Organization. In this study, we try to analyze the historical basis of naming the sea. In this study, we try to find out the case of naming the seas in the world and analyze what stage of the process has reached the present. For this purpose, this study analyzes sea name from the 17th century to the 20th century and studies the case. DUAL NAMING OF SEA NAME Was there any case of Dual naming sea? Korea has proposed to the International Hydrographic Organization the name of the East Sea as the East Sea and the Sea of Japan. The problem raised here is whether or not there is an international case of marine names. In order to analyze this, we analyzed the sea which is dual named as the sea name among the old maps produced from the 17th century to the 20th century. There are seven cases where the name of the sea are dual naming. Many of them were found in the East Sea (Japan Sea) and the North Sea. And the Black Sea, the Red Sea, the Yellow sea, the White sea and the Baltic sea. ANALYSIS OF THE CASE WHERE THE NAME OF THE SEA IS DUAL NAMED Dual or multiple naming case of the North Sea 1. Environment of the North Sea The North Sea is an example of a typical dual sea name marked. Some typical examples are the German Sea, the English Sea, the Danish Sea, and the French Sea. All are names of countries facing the sea. Among them, the name of the North Sea is considered special except for the names of these countries. From a European point of view, the North Sea is located in the most northern part of the European continent. The latitude is about 48 degrees (IHO, S. 23). For hundreds of years, each of the North Sea coastal nations named their seas at their respective locations, and as a result they were determined to be called the North Sea in before 1928, the 'Limits of oceans and seas' published by the International Hydrographic Organization(S. 23). Of course, there was a lot of struggle and argument among the countries in the process, but the coastal countries seem to have agreed on the common name of the North Sea. 2. Naming of the North Sea Through history various names have been used for the North Sea. One of the earliest recorded names was Septentrionalis Oceanus, or "Northern Ocean," which was cited by Pliny. The name "North Sea" probably came into English, however, via the Dutch "Noordzee", who named it thus either in contrast with the Zuiderzee ("South Sea"), located south of Frisia, or because the sea is generally to the north of the Netherlands. Before the adoption of "North Sea," the names used in English were "German Sea" or "German Ocean", referred to the Latin names "Mare Gemanicum" and "Oceanus 68 SESSION II Germanicus". Other common names in use for long periods were the Latin terms "Mare Frisicum", as well as their English equivalents, "Frisian Sea". 3. The modern names of the sea The modern names of the sea in local languages are: Danish: Nordsøen, Dutch: Noordzee, Dutch Low Saxon: Noordzee, French: Mer du Nord, West Frisian: Noardsee, German: Nordsee, Low German: Noordsee, Northern Frisian: Weestsiie (literally meaning "West Sea"), Norwegian: Nordsjøen, Nynorsk: Nordsjøen, Scots: German Ocean, Swedish: Nordsjön, Scottish Gaelic: An Cuan a Tuath, West Flemish: Nôordzêe and Zeeuws: Noôrdzeê. 4. Countries that border the sea The North Sea (Latin: Mare Germanicum) is a marginal sea of the Atlantic Ocean located between Great Britain, Scandinavia, Germany, the Netherlands, Belgium, and France. An epeiric (or "shelf") sea on the European continental shelf, it connects to the ocean through the English Channel in the south and the Norwegian Sea in the north. It is more than 970 kilometres (600 mi) long and 580 kilometres (360 mi) wide, with an area of around 570,000 square kilometres (220,000 sq mi.) Dual or multiple naming case of the Red Sea 1. Case study of the Red Sea It is analyzed that there is a case where the name is also dual named in Red Sea. A representative example is Sanson's map in 1655. In this map, RED SEA is named MER ROUGE ou GOLFE D'ARABIA. However, it was decided to be RED SEA in before 1928(S.23) issued by the International Hydrographic Organization. 2. Countries that border the sea The Red Sea (also the Erythraean Sea) is a seawater inlet of the Indian Ocean, lying between Africa and Asia. The connection to the ocean is in the south through the Bab el Mandeb strait and the Gulf of Aden. To the north lie the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez (leading to the Suez Canal). The Red Sea is a Global 200 ecoregion. The sea is underlain by the Red Sea Rift which is part of the Great Rift Valley. 3. The International Hydrographic Organization defines The International Hydrographic Organization defines the limits of the Red Sea as follows: On the North. The Southern limits of the Gulfs of Suez [A line running from Ràs Muhammed (27°43'N) to the South point of Shadwan Island (34°02'E) and thence Westward on a parallel (27°27'N) to the coast of Africa] and Aqaba [A line running from Ràs al Fasma Southwesterly to Requin Island (27°57•N 34°36•E) through Tiran Island to the Southwest point thereof and thence Westward on a parallel (27°54'N) to the coast of the Sinai Peninsula].On the South. A line joining Husn Murad (12°40•N 43°30•E) and Ras Siyyan (12°29•N 43°20•E). 4. Names of Red Sea Red Sea is a direct translation of the Greek Erythra Thalassa (Ερυθρ • • • λασσα), KIM Shin 69 Latin Mare Rubrum (alternatively Sinus Arabicus, literally "Arabian Gulf"), Arabic: •• • • • 70 SESSION II Georgian language , IPA: [ʃɑvi z• v•] Laz and Mingrelian languages – , IPA: [utʃɑ zuɣɑ], or simply , IPA: [zuɣɑ], "Sea" Romanian language Marea Neagr•, (pronounced [• KIM Shin 71 antipodal body of water for them. As the name could have only been given by a people that were well aware of both the northern "black/dark" and southern "red" seas, it is therefore considered probable that it was given its name by the Achaemenids (550–330 BC). A map of Asia dating to 1570, entitled "Asiae Nova Descriptio", from Abraham Ortelius's Theatrum Orbis Terrarum, labels the sea Mar Maggior ("Great Sea", cf. Latin mare major). English-language writers of the 18th century often used the name "Euxine Sea" (/•ju•ks•n/ or /•ju•k•sa•n/) to refer to the Black Sea. Edward Gibbon, for instance, calls the sea by this name throughout The History of the Decline and Fall of the Roman Empire. During the Ottoman Empire period, the Black Sea was called either Bahr-e Siyah or Karadeniz, both meaning "the Black Sea" in the Ottoman Turkish.
Recommended publications
  • Shrimp Fishing in Mexico
    235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats.
    [Show full text]
  • The Mark of the Japanese Murrelet (Synthliboramphus Wumizusume): a Study of Song and Stewardship in Japan’S Inland Sea
    Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2019 The aM rk of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde The Mark of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde In partial fulfillment of the Bachelor of Arts Degree in Environmental Analysis, 2018-2019 academic year, Pomona College, Claremont, California Readers: Nina Karnovsky Wallace Meyer Acknowledgements I would first like to thank Professor Nina Karnovsky for introducing me to her work in Kaminoseki and for allowing me to join this incredible project, thereby linking me to a community of activists and scientists around the world. I am also so appreciative for her role as my mentor throughout my years as an undergraduate and for helping me develop my skills and confidence as a scholar and ecologist. Thank you also to my reader Wallace Meyer for his feedback on my writing and structure. I am so thankful for the assistance of Char Miller, who has worked tirelessly to give valuable advice and support to all seniors in the Environmental Analysis Department throughout their thesis journeys. Thank you to Marc Los Huertos for his assistance with R and data analysis, without which I would be hopelessly lost. I want to thank my peers in the Biology and Environmental Analysis departments for commiserating with me during stressful moments and for providing a laugh, hug, or shoulder to cry on, depending on the occasion. Thank you so much to my parents, who have supported me unconditionally throughout my turbulent journey into adulthood and who have never doubted my worth as a person or my abilities as a student.
    [Show full text]
  • Chapter 17 Places of Refuge for Ships: the Danish Approach
    Chapter 17 Places of Refuge for Ships: The Danish Approach John Liljedahl INTRODUCTION Every year, about 60,000 ships pass through Danish waters, and this figure does not include domestic ferry traffic. The majority of the ships will, during a con- siderable part of their passage, be less than five nautical miles from the coast- line and will pass through a strait1 into the Danish territorial sea2 or pass in a 1 Passage by merchant vessels through the Danish Straits (the Little Belt, the Great Belt and the Sound) is regulated by a treaty between Denmark and most of the European States signed at Copenhagen on 14 March 1857, the United Nations Convention on the Law of the Sea, Montego Bay, 10 December 1982, UN/Doc. A/CONF.62/122, 7 October 1982 (hereafter LOS Convention), and customary international law. Denmark became a party to the LOS Convention in 2004. Upon ratification, the Denmark made the follow- ing declaration: 'It is the position of the Government of the Kingdom of Denmark that the exception from the transit passage regime provided for in article 35 (c) of the Convention applies to the specific regime in the Danish straits (the Great Belt, the Little Belt and the Danish part of the Sound), which has developed on the basis of the 455 Aldo Chircop and Olof Linden (Eds.), Places of Refuge for Ships: Emerging Environmental Concerns of a Maritime Custom. 455–469. © 2006 Koninklijke Brill N.V. Printed in the Netherlands. 456 Chapter 17 corridor along the territorial sea of Denmark, Sweden or Germany (see Figure 1).
    [Show full text]
  • Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model
    Journal of Marine Science and Engineering Article Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model Mehmet Ilicak 1,* , Ivan Federico 2 , Ivano Barletta 2,3 , Sabri Mutlu 4 , Haldun Karan 4 , Stefania Angela Ciliberti 2 , Emanuela Clementi 5 , Giovanni Coppini 2 and Nadia Pinardi 3 1 Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul 34469, Turkey 2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Predictions and Applications Division, 73100 Lecce, Italy; [email protected] (I.F.); [email protected] (I.B.); [email protected] (S.A.C.); [email protected] (G.C.) 3 Department of Physics and Astronomy, Universita di Bologna Alma Mater Studiorum, 40126 Bologna, Italy; [email protected] 4 TUBITAK MRC Environment and Cleaner Production Institute, Kocaeli 41470, Turkey; [email protected] (S.M.); [email protected] (H.K.) 5 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Modeling and Data Assimilation Division, 40126 Bologna, Italy; [email protected] * Correspondence: [email protected] Abstract: The Turkish Strait System, which is the only connection between the Black Sea and the Mediterranean Sea, is a challenging region for ocean circulation models due to topographic constraints and water mass structure. We present a newly developed high resolution unstructured finite element grid model to simulate the Turkish Strait System using realistic atmospheric forcing and lateral open boundary conditions. We find that the jet flowing from the Bosphorus Strait into the Marmara creates Citation: Ilicak, M.; Federico, I.; an anticyclonic circulation. The eddy kinetic energy field is high around the jets exiting from the Barletta, I.; Mutlu, S.; Karan, H.; Ciliberti, S.A.; Clementi, E.; Coppini, Bosphorus Strait, Dardanelles Strait, and also the leeward side of the islands in the Marmara Sea.
    [Show full text]
  • The Soviet Doctrine of the Closed Sea
    The Soviet Doctrine of the Closed Sea JOSEPH J. DARBY* The Soviet Union's maritime borders include several enclosed and semi-enclosed seas. In order to strengthen its military defenses, Russian jurists, both Tsarist and Soviet, developed and offered to the community of nations the doctrine of the closed sea. According to this doctrine, which has never become part of customary inter- national law, the warships of all nonlittoral countries of certain designated peripheralseas would have no right to enter and navi- gate on those seas. Professor Darby analyzes the application of the doctrine to one of the most important of the peripheralseas on the borders of the USSR, namely the Black Sea, in light of recent history and contemporary developments in the Law of the Sea. SOVIET PUBLIC INTERNATIONAL LAW Writing in 1959, Gregorii Tunkin, who is generally recognized as the most authoritative spokesman of Soviet international law, stated that the international law position of a country is "determined by the basic principles of its foreign policy."' As far as it goes, this state- ment appears to be an accurate reflection of how the leaders of the Soviet Union perceive the nature and function of international law. International law is a means to be used by legal technicians to ad- vance the foreign policy goals of the Soviet state. Soviet legal schol- ars, whose writings are often obtuse and highly generalized, have al- ways been quite clear on this-no rule of international law is binding on the Soviet Union unless, through an unequivocal sovereign act, the Soviet Union has expressly and formally given its consent to be bound by it.
    [Show full text]
  • 555 the Regime of Passage Through the Danish Straits Alex G. Oude
    The Regime of Passage Through the Danish Straits Alex G. Oude Elferink* Netherlands Institute for the Law of the Sea, Utrecht University, The Netherlands ABSTRACT The Danish Straits are the main connection between the Baltic Sea and the world oceans. The regime of passage through these straits has been the subject of extensiveregulation, raising the question how different applicable instruments interact. Apart from applicable bilateral and multilateral treaties, it is necessaryto take into account the practice of Denmark and Swedenand other interested states, and regulatory activities within the framework of the IMO. The Case ConcerningPassage Through the Great Belt before the ICJ provides insights into the views of Denmark and Finland. The article concludesthat an 1857treaty excludesthe applicabilityof Part III of the LOS Convention to the straits, and that there are a number of difficultiesin assessingthe contents of the regimeof the straits. At the same time, these uncertaintiesdo not seem to have been a complicatingfactor for the adoption of measuresto regulate shipping traffic. Introduction The Danish Straits are the main connection between the Baltic Sea and the world oceans. The straits are of vital importance for the maritime communication of the Baltic states and squarely fall within the legal category of straits used for international navigation For a number of these states the Baltic Sea is the only outlet to the oceans (Estonia, Finland, Latvia, Lithuania and Poland). Although * An earlier version of this article was presented at the international conference, The Passage of Ships Through Straits, sponsored by the Defense Analyses Institute, Athens, 23 October 1999. The author wishes to thank the speakers and participants at that conference for the stimulating discussions, which assisted in preparing the final version of the article.
    [Show full text]
  • Radioactivity in the Arctic Seas
    IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment.
    [Show full text]
  • Tylosaurus and Pteranodon
    Tylosaurus and Pteranodon Estimate size and measure to check estimate. OBJECTIVES Students will: 1. identify the Tylosaurus and Pteranodon as the two state fossils of Kansas, and 2. estimate and check the wingspan of the Pteranodon or the length of the Tylosaurus. MATERIALS FROM THE TRUNK Tylosaurus model Pteranodon model Fossil sample OTHER MATERIALS Ruler or tape measure Masking tape, post-its or something similar to mark measurements on floor TEACHER PREPARATION Decide which of the two fossils you will measure: Pteranodon had a 25-foot wingspan or the Tylosaurus was 49 feet long. Identify a location with 50 linear feet of space that can be used to measure the wingspan of the Pteranodon or the length of the Tylosaurus. Consider using a hallway, playground, or gym. Once a location is identified, use a tape measure to mark the beginning and end of a 25-foot linear space and a 49-foot linear space. This is where the students will measure the two state fossils. HISTORICAL BACKGROUND In 2014 the Kansas Legislature passed a bill making the Tylosaurus and the Pteranodon the state fossils of Kansas. Both of these reptiles lived at the time of dinosaurs, but neither are dinosaurs. Mike Everhart, adjunct curator of paleontology at the Sternberg Museum, geologist Alan Deitrich, and Steven Fisher, a 4-H geology project member, testified in support of the bill. Fossil hunters and natural history museums initiated the adoption of these state fossils. Kansas 4-H geology project members supported the bill. Pteranodon (teh-RAN-oh-don) – “Pteranodon, a great, winged pterosaur with a wingspread of more than 24 feet, which flew the skies of Kansas during the cretaceous period of the mesozoic era, is hereby designated as the official flying fossil of the state Kansas Symbols Traveling Resource Trunk KANSAS HISTORICAL SOCIETY www.kshs.org ©2014 61 of Kansas.” (House Bill 2595) The first Pteranodon specimens discovered in North America were found in western Kansas in 1870 by Othniel Charles Marsh.
    [Show full text]
  • The Place of the Oceans in Norway's Foreign and Development Policy
    Norwegian Ministry of Foreign Affairs Published by: Meld. St. 22 (2016–2017) Report to the Storting (white paper) Norwegian Ministry of Foreign Affairs Public institutions may order additional copies from: Norwegian Government Security and Service Organisation The place of the oceans E-mail: [email protected] Internet: www.publikasjoner.dep.no KET T ER RY Telephone: + 47 222 40 000 M K Ø K J E L R in Norway's foreign and I I Photo: Peter Prokosch / Grid Arendal M 0 Print: 07 PrintMedia AS 7 9 7 P 3 R 0 I 1 N 4 08/2017 – Impression 500 TM 0 EDIA – 2 development policy 2016–2017 Meld. St. 22 (2016–2017) Report to the Storting (white paper) 1 The place of the oceans in Norway’s foreign and development policy Meld. St. 22 (2016–2017) Report to the Storting (white paper) The place of the oceans in Norway’s foreign and development policy Translation from Norwegian. For information only. Contents 1 Introduction................................... 5 Part III Priority areas for Norway ......... 41 2 Summary ....................................... 8 5 Sustainable use and value creation ......................................... 43 Part I Ocean interests ............................ 13 5.1 Oil and gas sector .......................... 43 5.1.1 International cooperation in the 3 Norwegian ocean interests in oil and gas sector ........................... 44 an international context ............ 15 5.2 Maritime industry .......................... 45 3.1 The potential of the oceans ........... 15 5.2.1 International cooperation in 3.2 Forces shaping international shipping .......................................... 45 ocean policy .................................... 16 5.2.2 Shipping in the north ..................... 47 3.3 Need for knowledge ....................... 17 5.3 Seafood industry ...........................
    [Show full text]
  • Physical Geography Research Project
    Name Date Physical Geography Research Project Your small group will be assigned one of the following examples. Use the provided websites to conduct research and answer the questions for your assigned example. Example 1: The North Sea Humans have divided land into governed territories for centuries. But what happens when a body of water needs to be divided up because of a natural resource? That is what happened in the North Sea after oil was discovered in the 1960s. The countries that surround the North Sea include the United Kingdom, France, Belgium, the Netherlands, Germany, Denmark, and Norway. Research how the countries that border the North Sea have divided up the claim. If possible, find information on the United Nations Law of the Sea Treaty and exclusive economic zones (EEZ). 1. Do you think the way the North Sea was split was fair to all countries involved? Why or why not? ____________________________________________________________________________________ ____________________________________________________________________________________ ____________________________________________________________________________________ 2. How do you think dividing up a claim like this affects the relationships between the countries involved? Support your opinion with evidence. __________________________________________ ____________________________________________________________________________________ ____________________________________________________________________________________ 3. Are there other areas of Europe where natural resources
    [Show full text]
  • Fossil Pollen Records Indicate That Patagonian Desertification Was Not Solely a Consequence of Andean Uplift
    ARTICLE Received 25 Oct 2013 | Accepted 4 Mar 2014 | Published 28 Mar 2014 DOI: 10.1038/ncomms4558 Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift L. Palazzesi1,2, V.D. Barreda1, J.I. Cuitin˜o3, M.V. Guler4, M.C. Tellerı´a5 & R. Ventura Santos6 The Patagonian steppe—a massive rain-shadow on the lee side of the southern Andes—is assumed to have evolved B15–12 Myr as a consequence of the southern Andean uplift. However, fossil evidence supporting this assumption is limited. Here we quantitatively estimate climatic conditions and plant richness for the interval B10–6 Myr based on the study and bioclimatic analysis of terrestrially derived spore–pollen assemblages preserved in well-constrained Patagonian marine deposits. Our analyses indicate a mesothermal climate, with mean temperatures of the coldest quarter between 11.4 °C and 16.9 °C (presently B3.5 °C) and annual precipitation rarely below 661 mm (presently B200 mm). Rarefied richness reveals a significantly more diverse flora during the late Miocene than today at the same latitude but comparable with that approximately 2,000 km further northeast at mid-latitudes on the Brazilian coast. We infer that the Patagonian desertification was not solely a consequence of the Andean uplift as previously insinuated. 1 Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470 (C1405DJR), Buenos Aires, Argentina. 2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK. 3 Universidad de Buenos Aires, Departamento de Ciencias Geolo´gicas, Facultad de Ciencias Exactas y Naturales. Intendente Gu¨iraldes 2160 (C1428EHA), Buenos Aires, Argentina.
    [Show full text]
  • MARITIME ACTIVITY in the HIGH NORTH – CURRENT and ESTIMATED LEVEL up to 2025 MARPART Project Report 1
    MARITIME ACTIVITY IN THE HIGH NORTH – CURRENT AND ESTIMATED LEVEL UP TO 2025 MARPART Project Report 1 Authors: Odd Jarl Borch, Natalia Andreassen, Nataly Marchenko, Valur Ingimundarson, Halla Gunnarsdóttir, Iurii Iudin, Sergey Petrov, Uffe Jacobsen and Birita í Dali List of authors Odd Jarl Borch Project Leader, Nord University, Norway Natalia Andreassen Nord University, Norway Nataly Marchenko The University Centre in Svalbard, Norway Valur Ingimundarson University of Iceland Halla Gunnarsdóttir University of Iceland Iurii Iudin Murmansk State Technical University, Russia Sergey Petrov Murmansk State Technical University, Russia Uffe Jakobsen University of Copenhagen, Denmark Birita í Dali University of Greenland 1 Partners MARPART Work Package 1 “Maritime Activity and Risk” 2 THE MARPART RESEARCH CONSORTIUM The management, organization and governance of cross-border collaboration within maritime safety and security operations in the High North The key purpose of this research consortium is to assess the risk of the increased maritime activity in the High North and the challenges this increase may represent for the preparedness institutions in this region. We focus on cross-institutional and cross-country partnerships between preparedness institutions and companies. We elaborate on the operational crisis management of joint emergency operations including several parts of the preparedness system and resources from several countries. The project goals are: • To increase understanding of the future demands for preparedness systems in the High North including both search and rescue, oil spill recovery, fire fighting and salvage, as well as capacities fighting terror or other forms of destructive action. • To study partnerships and coordination challenges related to cross-border, multi-task emergency cooperation • To contribute with organizational tools for crisis management Project characteristics: Financial support: -Norwegian Ministry of Foreign Affairs, -the Nordland county Administration -University partners.
    [Show full text]