PRODUCT INFORMATION Bio-Active Lipid I Screening Library (96-Well) Item No

Total Page:16

File Type:pdf, Size:1020Kb

PRODUCT INFORMATION Bio-Active Lipid I Screening Library (96-Well) Item No PRODUCT INFORMATION Bio-Active Lipid I Screening Library (96-Well) Item No. 10506 • Batch No. 0608063 Panels are routinely re-evaluated to include new catalog introductions as the research evolves. Page 1 of 35 Plate Well Contents Item Number 1 A1 Unused 1 A2 Prostaglandin A1 10010 1 A3 1-Arachidonoyl Lysophosphatidic Acid 10019 (ammonium salt) 1 A4 POV-PC 10031 1 A5 N-(α-Linolenoyl) Tyrosine 10032 1 A6 10-Nitrolinoleate 10037 1 A7 PGPC 10044 12,14 1 A8 15-deoxy-Δ -Prostaglandin A1 10065 1 A9 15-epi Prostaglandin A1 10070 1 A10 16,16-dimethyl Prostaglandin A1 10080 1 A11 N-Oleoyl Dopamine 10115 1 A12 Unused 1 B1 Unused 1 B2 Prostaglandin F2α-1-glyceryl ester 10139 1 B3 Prostaglandin E2-1-glyceryl ester 10140 1 B4 N-Arachidonoyl-3-hydroxy-γ-Aminobutyric Acid 10158 1 B5 Arachidonoyl p-Nitroaniline 10168 1 B6 1-Palmitoyl-2-hydroxy-sn-glycero-3-PC 10172 1 B7 Arachidonoyl Ethanolamide Phosphate 10180 1 B8 Prostaglandin D2 serinol amide 10192 1 B9 Prostaglandin E2 serinol amide 10193 1 B10 Prostaglandin F2α serinol amide 10194 1 B11 Prostaglandin A2 10210 1 B12 Unused 1 C1 Unused 1 C2 13,14-dihydro-15-keto Prostaglandin A2 10260 12,14 1 C3 15-deoxy-Δ -Prostaglandin A2 10265 1 C4 16,16-dimethyl Prostaglandin A2 10280 1 C5 16-phenoxy tetranor Prostaglandin A2 10285 1 C6 17-phenyl trinor Prostaglandin A2 10288 1 C7 17-phenyl trinor-13,14-dihydro Prostaglandin A2 10290 1 C8 7-hydroxycoumarinyl-γ-Linolenate 10556 1 C9 CAY10631 10562 1 C10 Heneicosapentaenoic Acid 10670 1 C11 (±)-Jasmonic Acid-Isoleucine 10740 1 C12 Unused WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution. PHONE: [800] 364-9897 WARRANTY AND LIMITATION OF REMEDY [734] 971-3335 Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website. FAX: [734] 971-3640 [email protected] Copyright Cayman Chemical Company, 09/20/2021 WWW.CAYMANCHEM.COM PRODUCT INFORMATION Page 2 of 35 Plate Well Contents Item Number 1 D1 Unused 1 D2 Eicosapentaenoyl Ethanolamide 10964 1 D3 Palmitoleoyl Ethanolamide 10965 1 D4 10-HDA 10976 1 D5 Nocloprost 10988 1 D6 18-methyl Eicosanoic Acid 11009 1 D7 Palmitoyl-DL-carnitine (chloride) 11095 1 D8 25-hydroxy Cholesterol 11097 1 D9 Prostaglandin B1 11110 1 D10 Δ2-trans-Hexadecenoic Acid 11132 1 D11 Δ2-cis-Hexadecenoic Acid 11133 1 D12 Unused 1 E1 Unused 1 E2 Termitomycamide B 11190 1 E3 Termitomycamide E 11191 1 E4 Prostaglandin B2 11210 1 E5 Sulfosuccinimidyl Oleate (sodium salt) 11211 1 E6 Tafluprost ethyl ester 11612 1 E7 11-keto-β-Boswellic Acid 11668 1 E8 3-acetyl-11-keto-β-Boswellic Acid 11672 1 E9 β-Boswellic Acid 11693 1 E10 24α-ethyl Cholesterol 11756 1 E11 L-α-Hydroxyglutaric Acid (sodium salt) 11876 1 E12 Unused 1 F1 Unused 1 F2 2-O-Hexadecyl Glycerol 11924 1 F3 Treprostinil (diethanolamine salt) 11927 1 F4 cis-2-Decenoic Acid 11966 1 F5 Octyl-α-ketoglutarate 11970 1 F6 Prostaglandin D1 12000 1 F7 Prostaglandin D1 Alcohol 12002 1 F8 Prostaglandin D2 12010 1 F9 Prostaglandin D2 Ethanolamide 12012 1 F10 11-deoxy-11-methylene Prostaglandin D2 12410 1 F11 13,14-dihydro-15-keto Prostaglandin D2 12610 1 F12 Unused CAYMAN CHEMICAL 1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897 [734] 971-3335 FAX: [734] 971-3640 [email protected] WWW.CAYMANCHEM.COM PRODUCT INFORMATION Page 3 of 35 Plate Well Contents Item Number 1 G1 Unused 12,14 1 G2 15-deoxy-Δ -Prostaglandin D2 12700 1 G3 15(S)-15-methyl Prostaglandin D2 12730 1 G4 16,16-dimethyl Prostaglandin D2 12750 1 G5 17-phenyl trinor Prostaglandin D2 12810 1 G6 Prostaglandin E1 Ethanolamide 13012 1 G7 2-Hydroxyestradiol 13019 1 G8 Prostaglandin E1 Alcohol 13020 1 G9 2-Methoxyestradiol 13021 1 G10 1a,1b-dihomo Prostaglandin E1 13050 1 G11 N-Oleoyl-L-Serine 13058 1 G12 Unused 1 H1 Unused 1 H2 Anacardic Acid 13144 1 H3 9(Z)-Tricosene 13236 1 H4 Farnesyl Alcohol 13268 1 H5 Myristic Acid 13351 1 H6 Lignoceric Acid 13353 1 H7 Hexacosanoic Acid 13354 1 H8 8-iso Prostaglandin E1 13360 1 H9 11β-Prostaglandin E1 13450 1 H10 11-deoxy Prostaglandin E1 13510 1 H11 1-Deoxysphinganine (m18:0) 13511 1 H12 Unused 2 A1 Unused 2 A2 17-phenyl trinor Prostaglandin E2 ethyl amide 13532 2 A3 13,14-dihydro-16,16-difluoro Prostaglandin F2α 13609 2 A4 13,14-dihydro Prostaglandin E1 13610 2 A5 13,14-dihydro-16,16-difluoro Prostaglandin D2 13612 2 A6 13,14-dihydro-15(R)-Prostaglandin E1 13630 2 A7 13,14-dihydro-16,16-difluoro Prostaglandin J2 13635 2 A8 Oleoyl Serinol 13637 2 A9 13,14-dihydro-15-keto Prostaglandin E1 13650 2 A10 13,14-epoxy Fluprostenol isopropyl ester 13679 2 A11 15-keto Prostaglandin E1 13680 2 A12 Unused CAYMAN CHEMICAL 1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897 [734] 971-3335 FAX: [734] 971-3640 [email protected] WWW.CAYMANCHEM.COM PRODUCT INFORMATION Page 4 of 35 Plate Well Contents Item Number 2 B1 Unused 2 B2 15(S)-15-methyl Prostaglandin E1 13730 2 B3 16,16-dimethyl Prostaglandin E1 13750 2 B4 Misoprostol 13820 2 B5 Nervonic Acid 13940 2 B6 Prostaglandin E2 14010 2 B7 Prostaglandin E2 Ethanolamide 14012 2 B8 (25S)-Δ7-Dafachronic Acid 14101 2 B9 Trilostane 14164 2 B10 8-iso Prostaglandin E2 14350 2 B11 9-deoxy-9-methylene Prostaglandin E2 14410 2 B12 Unused 2 C1 Unused 2 C2 11-deoxy Prostaglandin E2 14520 2 C3 11-deoxy-16,16-dimethyl Prostaglandin E2 14570 2 C4 7-dehydro Cholesterol 14612 2 C5 13,14-dihydro-15-keto Prostaglandin E2 14650 2 C6 1’,4”-Sophorolactone 6’,6”-diacetate 14718 2 C7 15-keto Prostaglandin E2 14720 2 C8 7(Z),10(Z),13(Z),16(Z),19(Z)-N-(2-hydroxyethyl)- 14724 Docosapentaenamide 2 C9 16,16-dimethyl Prostaglandin E2 14750 2 C10 16-phenoxy tetranor Prostaglandin E2 14760 2 C11 25(R)-27-hydroxy Cholesterol 14790 2 C12 Unused 2 D1 Unused 2 D2 25(S)-27-hydroxy Cholesterol 14791 2 D3 3-oxo Stearic Acid 14807 2 D4 17-phenyl trinor Prostaglandin E2 14810 2 D5 Estriol 3-β-D-Glucuronide (sodium salt) 14827 2 D6 19(R)-hydroxy Prostaglandin E2 14910 2 D7 Finasteride 14938 2 D8 20-ethyl Prostaglandin E2 14940 2 D9 Exemestane 15008 2 D10 Prostaglandin F1α 15010 2 D11 Prostaglandin F1α Alcohol 15020 2 D12 Unused CAYMAN CHEMICAL 1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897 [734] 971-3335 FAX: [734] 971-3640 [email protected] WWW.CAYMANCHEM.COM PRODUCT INFORMATION Page 5 of 35 Plate Well Contents Item Number 2 E1 Unused 2 E2 Octanoyl-DL-carnitine (chloride) 15048 2 E3 Cholesterol Sulfate (sodium salt) 15106 2 E4 1-Stearoyl-2-hydroxy-sn-glycero-3-PC 15107 2 E5 Ursodeoxycholic Acid (sodium salt) 15121 2 E6 3-methoxy Prostaglandin F1α 15170 2 E7 Pentacosanoic Acid 15197 2 E8 19-hydroxy Cholesterol 15209 2 E9 6-keto Prostaglandin F1α 15210 2 E10 6,15-diketo-13,14-dihydro Prostaglandin F1α 15270 2 E11 Aldosterone 15273 2 E12 Unused 2 F1 Unused 2 F2 trans-Vaccenic Acid 15301 2 F3 Ginsenoside Rg1 15315 2 F4 Ginsenoside Rb1 15319 2 F5 Ginsenoside Rd 15329 2 F6 Ginsenoside Re 15330 2 F7 Ginsenoside Rg2 15331 2 F8 Ginsenoside Rg3 15332 2 F9 PAF C-16 Carboxylic Acid 15392 2 F10 Prostaglandin F1β 15410 2 F11 11β-Prostaglandin F1β 15450 2 F12 Unused 2 G1 Unused 2 G2 11-deoxy Prostaglandin F1β 15510 2 G3 11-deoxy Prostaglandin F1α 15512 2 G4 Ganglioside GT1b Mixture (sodium salt) 15588 2 G5 13,14-dihydro Prostaglandin F1α 15610 2 G6 13,14-dihydro-15-keto Prostaglandin F1α 15670 2 G7 15-keto Prostaglandin F1α 15710 2 G8 Bufalin 15725 2 G9 Dehydroepiandrosterone 15728 2 G10 17,20-dimethyl Prostaglandin F1α 15790 2 G11 Androsterone 15872 2 G12 Unused CAYMAN CHEMICAL 1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897 [734] 971-3335 FAX: [734] 971-3640 [email protected] WWW.CAYMANCHEM.COM PRODUCT INFORMATION Page 6 of 35 Plate Well Contents Item Number 2 H1 Unused 2 H2 Dehydroepiandrosterone Sulfate (sodium salt) 15873 2 H3 Progesterone 15876 2 H4 17-trifluoromethylphenyl-13,14-dihydro trinor 15895 Prostaglandin F1α 2 H5 Taurodeoxycholic Acid (sodium salt hydrate) 15935 2 H6 Lauroyl-DL-Carnitine (chloride) 16006 2 H7 Prostaglandin F2α 16010 2 H8 Prostaglandin F2α Alcohol 16012 2 H9 Prostaglandin F2α Ethanolamide 16013 2 H10 Prostaglandin F2α ethyl amide 16016 2 H11 Prostaglandin F2α diethyl amide 16023 2 H12 Unused 3 A1 Unused 3 A2 Jacaric Acid 16036 3 A3 Corticosterone 16063 3 A4 20-hydroxy Ecdysone 16145 3 A5 17α,20β-Dihydroxy-4-pregnen-3-one 16146 3 A6 Estradiol 3-(β-D-Glucuronide) (sodium salt) 16155 3 A7 Estradiol 17-(β-D-Glucuronide) (sodium salt hydrate) 16156 3 A8 Taurocholic Acid (sodium salt) 16215 3 A9 7-keto Cholesterol 16339 3 A10 8-iso Prostaglandin F2α 16350 3 A11 8-iso Prostaglandin F2β 16370 3 A12 Unused 3 B1 Unused 3 B2 α-Hydroxyglutaric Acid (sodium salt) 16374 3 B3 Ponasterone A 16386 3 B4 Prostaglandin F2β 16410 3 B5 16,16-dimethyl Prostaglandin F2β 16470 3 B6 11-deoxy Prostaglandin F2α 16500 3 B7 11-deoxy Prostaglandin F2β 16510 3 B8 6-Azidohexanoic Acid 16518 3 B9 11β-Prostaglandin F2α 16520 3 B10 2-Oleoyl Glycerol 16537 3 B11 Norgestimate 16547 3 B12 Unused CAYMAN CHEMICAL 1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897 [734] 971-3335 FAX: [734] 971-3640 [email protected] WWW.CAYMANCHEM.COM PRODUCT
Recommended publications
  • Pepperspray, CS, & Other 'Less-Lethal' Weapons
    CONTENTS: Protective Measures: p.26-27 Pepperspray: p.2-9, 14-15 Chemical Data Table: p.30 CS/CN: p.10-16 Risk Groups: p.14-15 When to do what / Other Gas Types: p. 12 Asthma: p.14 treatment algorithm: p.4 Rubber Bullets: p.19-21 Nightsticks/Batons: p.17 LAW: p.6 Concussion Grenades: p.22 CR: p.12 VOFIBA: p.7 Fear: p.24 CA: p.12 Making Remedies: p.13 Tasers: p.18 DM: p.12 Sample Card for Handing Out: Shamelessly adapted from the Black Cross Radical Health Collective, www.blackcrosscollective.org If your condition is worsening, go to an emergency room. Basic preparations: Stick with your buddy. Pepperspray, CS, & Other Work with an affinity group. Bring water. Vulnerable people like asthmatics may want to “Less-Lethal” Weapons (your logo here) avoid chemical weapons. You must remove small children from the area BEFORE Used by Rioting Police to Suppress Dissent chemical weapons are used. Check out our w h e n P o l i t r i c k s & Te l e v i s i o n f a i l t o d o s o . website <www.---.org> for lots more info on how to prepare. v3.3 Useful Numbers: Serious injuries: If you don’t know how to treat Medical Emergency: 911 an injury, get a medic, or call 911. Don’t treat Copwatch: 123-4560 someone if you don’t know how. If you are Convergence Ctr Aid Station:123-4567 injured by the police, get to a nurse practitioner, Aftercare Clinic: 123-4568 physician’s assistant, or doctor immediately Legal Team: 123-4565 and have your injury documented in case you Public Defenders: 123-4569 decide to sue.
    [Show full text]
  • 615 Neuroscience-Cayman-Bertin
    Thomas G. Brock, Ph.D. Introduction to Neuroscience In our first Biology classes, we learned that lipids form the membranes around cells. For many students, interests quickly moved to the intracellular constituents ‘that really matter’, or to how cells or systems work in health and disease. If there was further thought about lipids, it might have been limited to more personal issues, like an expanding waistline. It was easy to forget about lipids in the complexities of, say, Alzheimer’s Disease, where tau protein is hyperphosphorylated by a host of kinases before forming neurofibrillary tangles and amyloid precursor protein is processed by assorted secretases, ultimately aggregating to form neurodegenerating plaques. What possible role could lipids have in all this? After all, lipids just form the membranes around cells. Fortunately, neuroscientists study complex systems. Whether working at the molecular, cellular, or organismal level, the research focus always returns to the intricately interconnected bigger picture. Perhaps surprisingly, lipids keep emerging as part of the bigger picture. At least, the smaller lipids do. Many of the smaller lipids, including the cannabinoids and eicosanoids, act as paracrine hormones, modulating cell functions in a receptor-mediated fashion. In this sense, they are rather like the peptide hormones in their diversity and actions. In the neurosystem, this means that these signaling lipids determine if synapses fire or not, when cells differentiate or die, and whether tissues remain healthy or become inflamed. Returning to the question posed above about lipids in Alzheimer’s, these mediators have roles at many levels in the course of the disease, as presented in an article on page 42 of this catalog.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,692,728 B2 Weipert Et Al
    USOO6692728B2 (12) United States Patent (10) Patent No.: US 6,692,728 B2 Weipert et al. (45) Date of Patent: Feb. 17, 2004 (54) POLYESTERS BASED ON HYDROXY FATTY (52) U.S. Cl. ......................... 424/59; 424/497; 424/489; ACDS AND LOWER HYDROXY ALKYL 424/70.11; 424/78.37; 424/78.08; 514/785; ACDS AND USES THEREOF 560/171; 560/172; 560/176; 560/183; 525/400 (58) Field of Search .......................... 424/59, 497, 489, (75) Inventors: Paul David Weipert, High Point, NC 424/70.11, 78.37; 514/785; 560/172,176, (US); Bharat B. Desai, Spartanburg, 183; 525/400 SC (US) (73) Assignee: Ethox Chemicals LLC, Greenville, SC ") References Cited (US) U.S. PATENT DOCUMENTS ( c: ) Notice: Subject to any disclaimer, the term of this 5,502,116 A 3/1996 Noda ......................... 525/415 patent is extended or adjusted under 35 5,614,576 A * 3/1997 Rutherford et al. ......... 524/270 U.S.C. 154(b) by 0 days. 5,851,937 A * 12/1998 Wu et al. ................... 442/394 * cited by examiner (21) Appl. No.: 10/388,426 (22) Filed: Mar 17, 2003 Primary Examiner Sabiha Qazi 9 (74) Attorney, Agent, or Firm-Isaac A. Angres (65) Prior Publication Data (57) ABSTRACT US 2003/0175222 A1 Sep. 18, 2003 The present invention provides biodegradable polyesters Related U.S. Application Data based on lower hydroxy acids and hydroxy fatty acids. The resulting polyesters are useful as cosmetic vehicles for (62) Division of application No. 09/805,894, filed on Mar. 15, Sunscreens, skin lotions and by themselves are also useful as 2001, now Pat.
    [Show full text]
  • Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer
    cancers Review Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer Viktoriia Cherkasova, Olga Kovalchuk * and Igor Kovalchuk * Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada; [email protected] * Correspondence: [email protected] (O.K.); [email protected] (I.K.) Simple Summary: In recent years, multiple preclinical studies have shown that changes in endo- cannabinoid system signaling may have various effects on intestinal inflammation and colorectal cancer. However, not all tumors can respond to cannabinoid therapy in the same manner. Given that colorectal cancer is a heterogeneous disease with different genomic landscapes, experiments with cannabinoids should involve different molecular subtypes, emerging mutations, and various stages of the disease. We hope that this review can help researchers form a comprehensive understanding of cannabinoid interactions in colorectal cancer and intestinal bowel diseases. We believe that selecting a particular experimental model based on the disease’s genetic landscape is a crucial step in the drug discovery, which eventually may tremendously benefit patient’s treatment outcomes and bring us one step closer to individualized medicine. Abstract: Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world’s disease and mortality rates. The development of novel therapy is in Citation: Cherkasova, V.; Kovalchuk, critical need, and based on recent experimental data, cannabinoids could become excellent candidates. O.; Kovalchuk, I. Cannabinoids and This review covered known experimental studies regarding the effects of cannabinoids on intestinal Endocannabinoid System Changes in inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous Intestinal Inflammation and disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and Colorectal Cancer.
    [Show full text]
  • TRPM8 Activation by Menthol, Icilin, and Cold Is Differenially Modulated by Intracellular Ph
    5364 • The Journal of Neuroscience, June 9, 2004 • 24(23):5364–5369 Cellular/Molecular TRPM8 Activation by Menthol, Icilin, and Cold Is Differentially Modulated by Intracellular pH David A. Andersson, Henry W. N. Chase, and Stuart Bevan Novartis Institute for Medical Sciences, London WC1E 6BN, United Kingdom TRPM8 is a nonselective cation channel activated by cold and the cooling compounds menthol and icilin (Peier et al., 2002). Here, we have used electrophysiology and the calcium-sensitive dye Fura-2 to study the effect of pH and interactions between temperature, pH, and the two chemical agonists menthol and icilin on TRPM8 expressed in Chinese hamster ovary cells. Menthol, icilin, and cold all evoked 2ϩ ϩ stimulus-dependent [Ca ]i responses in standard physiological solutions of pH 7.3. Increasing the extracellular [H ] from pH 7.3 to approximately pH 6 abolished responses to icilin and cold stimulation but did not affect responses to menthol. Icilin concentration– response curves were significantly shifted to the right when pH was lowered from 7.3 to 6.9, whereas those with menthol were unaltered in solutions of pH 6.1. When cells were exposed to solutions in the range of pH 8.1–6.5, the temperature threshold for activation was elevatedathigherpHanddepressedatlowerpH.Superfusingcellswithalowsubactivatingconcentrationoficilinormentholelevatedthe 2ϩ threshold for cold activation at pH 7.4, but cooling failed to evoke [Ca ]i responses at pH 6 in the presence of either agonist. In voltage-clamp experiments in which the intracellular pH was buffered to different levels, acidification reduced the current amplitude of icilin responses and shifted the threshold for cold activation to lower values with half-maximal inhibition at pH 7.2 and pH 7.6.
    [Show full text]
  • Chemical Composition and Product Quality Control of Turmeric
    Stephen F. Austin State University SFA ScholarWorks Faculty Publications Agriculture 2011 Chemical composition and product quality control of turmeric (Curcuma longa L.) Shiyou Li Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Wei Yuan Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Guangrui Deng Ping Wang Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, [email protected] Peiying Yang See next page for additional authors Follow this and additional works at: http://scholarworks.sfasu.edu/agriculture_facultypubs Part of the Natural Products Chemistry and Pharmacognosy Commons, and the Pharmaceutical Preparations Commons Tell us how this article helped you. Recommended Citation Li, Shiyou; Yuan, Wei; Deng, Guangrui; Wang, Ping; Yang, Peiying; and Aggarwal, Bharat, "Chemical composition and product quality control of turmeric (Curcuma longa L.)" (2011). Faculty Publications. Paper 1. http://scholarworks.sfasu.edu/agriculture_facultypubs/1 This Article is brought to you for free and open access by the Agriculture at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Authors Shiyou Li, Wei Yuan, Guangrui Deng, Ping Wang, Peiying Yang, and Bharat Aggarwal This article is available at SFA ScholarWorks: http://scholarworks.sfasu.edu/agriculture_facultypubs/1 28 Pharmaceutical Crops, 2011, 2, 28-54 Open Access Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.) ,1 1 1 1 2 3 Shiyou Li* , Wei Yuan , Guangrui Deng , Ping Wang , Peiying Yang and Bharat B. Aggarwal 1National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F.
    [Show full text]
  • In Vitro Immunopharmacological Profiling of Ginger (Zingiber Officinale Roscoe)
    Research Collection Doctoral Thesis In vitro immunopharmacological profiling of ginger (Zingiber officinale Roscoe) Author(s): Nievergelt, Andreas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006717482 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 19591 In Vitro Immunopharmacological Profiling of Ginger (Zingiber officinale Roscoe) ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von Andreas Nievergelt Eidg. Dipl. Apotheker, ETH Zürich geboren am 18.12.1978 von Schleitheim, SH Angenommen auf Antrag von Prof. Dr. Karl-Heinz Altmann, Referent Prof. Dr. Jürg Gertsch, Korreferent Prof. Dr. Michael Detmar, Korreferent 2011 Table of Contents Summary 6 Zusammenfassung 7 Acknowledgements 8 List of Abbreviations 9 1. Introduction 13 1.1 Ginger (Zingiber officinale) 13 1.1.1 Origin 14 1.1.2 Description 14 1.1.3 Chemical Constituents 15 1.1.4 Traditional and Modern Pharmaceutical Use of Ginger 17 1.1.5 Reported In Vitro Effects 20 1.2 Immune System and Inflammation 23 1.2.1 Innate and Adaptive Immunity 24 1.2.2 Cytokines in Inflammation 25 1.2.3 Pattern Recognition Receptors 29 1.2.4 Toll-Like Receptors 30 1.2.5 Serotonin 1A and 3 Receptors 32 1.2.6 Phospholipases A2 33 1.2.7 MAP Kinases 36 1.2.8 Fighting Inflammation, An Ongoing Task 36 1.2.9 Inflammation Assays Using Whole Blood 38 1.3 Arabinogalactan-Proteins 39 1.3.1 Origin and Biological Function of AGPs 40 1.3.2 Effects on Animals 41 1.3.3 The ‘Immunostimulation’ Theory 42 1/188 2.
    [Show full text]
  • N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
    Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A.
    [Show full text]
  • Types of Gene Effects Governing the Inheritance of Oleic and Linoleic Acids in Peanut (Arachis Hypogaea L.)
    African Journal of Biotechnology Vol. 11(67), pp. 13147-13152, 21 August, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897/AJB12.1498 ISSN 1684-5315 ©2012 Academic Journals Full Length Research Paper Types of gene effects governing the inheritance of oleic and linoleic acids in peanut (Arachis hypogaea L.) Nattawut Singkham1, Sanun Jogloy1*, Bhalang Suriharn1, Thawan Kesmala1, Prasan Swatsitang2, Prasit Jaisil1, Naveen Puppala3 and Aran Patanothai1 1Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. 2Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. 3Agricultural Science Center at Clovis, New Mexico State University, Clovis, New Mexico, 88101, USA. Accepted 3 August, 2012 Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio of oleic to linoleic acids (O/L ratio) and percentage oil (% oil) in peanut. Georgia- 02C, SunOleic 97R (high-oleic genotypes) and KKU 1 (low-oleic genotypes) were used as parents to generate P1, P2, F2, F3, BC11S and BC12S. The entries were planted in a randomized complete block design with four replications in the rainy season (2008) and the dry season (2008/2009). Gas liquid chromatography (GLC) was used to analyze fatty acid compositions. The data were used in generation means analysis to understand gene effects. The differences in season, generation and generation season interactions were significant for oleic acid in the crosses Georgia-02C KKU 1 and SunOleic 97R KKU 1.
    [Show full text]
  • Use of Gamma-Linolenic Acid and Related Compounds for the Manufacture of a Medicament for the Treatment of Endometriosis
    ~" ' MM II II II II I II Ml Ml Ml I II I II J European Patent Office ooo Ats*% n i © Publication number: 0 222 483 B1 Office_„. europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 18.03.92 © Int. CI.5: A61 K 31/20, A61 K 31/1 6, A61K 31/23 © Application number: 86307533.9 @ Date of filing: 01.10.86 Use of gamma-linolenic acid and related compounds for the manufacture of a medicament for the treatment of endometriosis. © Priority: 02.10.85 GB 8524276 © Proprietor: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows @ Date of publication of application: Guildford Surrey GU1 1BA(GB) 20.05.87 Bulletin 87/21 @ Inventor: Horrobin, David Frederick © Publication of the grant of the patent: c/o Efamol Ltd, Efamol House Woodbridge 18.03.92 Bulletin 92/12 Meadows Guildford, Surrey, GU1 1BA(GB) © Designated Contracting States: Inventor: Casper, Robert AT BE CH DE ES FR GB GR IT LI LU NL SE University Hospital 339 Windermere Road London Ontario N6A 5AS(CA) © References cited: EP-A- 0 003 407 EP-A- 0 115 419 © Representative: Miller, Joseph EP-A- 0 132 089 J. MILLER & CO. Lincoln House 296-302 High EP-A- 0 181 689 Holborn London WC1V 7JH(GB) J. GYNECOL. OBSTET. BIOL. REPROD. vol. 10, no. 5, 1981, pages 465-471 Masson, Paris, FR PH. CALLGARIS et al.: "Endometriose de la paroi abdominale" 00 00 CLINICAL OBSTETRICS AND GYNECOLOGY, 00 vol. 23, no. 3, Sept. 1980, pages 895-900 J.C. WEED: "Prostaglandins as related to en- CM dometriosis" CM CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome
    International Journal of Molecular Sciences Review Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome Stefano Turolo 1,* , Alberto Edefonti 1 , Alessandra Mazzocchi 2, Marie Louise Syren 2, William Morello 1, Carlo Agostoni 2,3 and Giovanni Montini 1,2 1 Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; [email protected] (A.E.); [email protected] (W.M.); [email protected] (G.M.) 2 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; [email protected] (A.M.); [email protected] (M.L.S.); [email protected] (C.A.) 3 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy * Correspondence: [email protected] Abstract: Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, Citation: Turolo, S.; Edefonti, A.; we describe the main fields where they may play a significant role, particularly as it pertains to their Mazzocchi, A.; Syren, M.L.; effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell Morello, W.; Agostoni, C.; Montini, G.
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]