Δnp63α Promotes Adhesion of Metastatic Prostate Cancer Cells to the Bone Through Regulation of CD82
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FOXA2 Is a Sensitive and Specific Marker for Small Cell Neuroendocrine Carcinoma of the Prostate Jung Wook Park1, John K Lee2,3, Owen N Witte1,4,5 and Jiaoti Huang6
Modern Pathology (2017) 30, 1262–1272 1262 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate Jung Wook Park1, John K Lee2,3, Owen N Witte1,4,5 and Jiaoti Huang6 1Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA; 2Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA; 3Molecular Biology Institute, David Geffen School of Medicine, University of California— Los Angeles, Los Angeles, CA, USA; 4Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California—Los Angeles, Los Angeles, CA, USA; 5Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA and 6Department of Pathology, Duke University School of Medicine, Durham, NC, USA The median survival of patients with small cell neuroendocrine carcinoma is significantly shorter than that of patients with classic acinar-type adenocarcinoma. Small cell neuroendocrine carcinoma is traditionally diagnosed based on histologic features because expression of current immunohistochemical markers is inconsistent. This is a challenging diagnosis even for expert pathologists and particularly so for pathologists who do not specialize in prostate cancer. New biomarkers to aid in the diagnosis of small cell neuroendocrine carcinoma are therefore urgently needed. We discovered that FOXA2, a pioneer transcription factor, is frequently and specifically expressed in small cell neuroendocrine carcinoma compared with prostate adenocarcinoma from published mRNA-sequencing data of a wide range of human prostate cancers. -
CDK-Independent and PCNA-Dependent Functions of P21 in DNA Replication
G C A T T A C G G C A T genes Review CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication Sabrina Florencia Mansilla , María Belén De La Vega y, Nicolás Luis Calzetta y, Sebastián Omar Siri y and Vanesa Gottifredi * Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina; [email protected] (S.F.M.); [email protected] (M.B.D.L.V.); [email protected] (N.L.C.); [email protected] (S.O.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 9 April 2020; Accepted: 15 May 2020; Published: 28 May 2020 Abstract: p21Waf/CIP1 is a small unstructured protein that binds and inactivates cyclin-dependent kinases (CDKs). To this end, p21 levels increase following the activation of the p53 tumor suppressor. CDK inhibition by p21 triggers cell-cycle arrest in the G1 and G2 phases of the cell cycle. In the absence of exogenous insults causing replication stress, only residual p21 levels are prevalent that are insufficient to inhibit CDKs. However, research from different laboratories has demonstrated that these residual p21 levels in the S phase control DNA replication speed and origin firing to preserve genomic stability. Such an S-phase function of p21 depends fully on its ability to displace partners from chromatin-bound proliferating cell nuclear antigen (PCNA). Vice versa, PCNA also regulates p21 by preventing its upregulation in the S phase, even in the context of robust p21 induction by γ irradiation. -
Cadherin-11 Promotes the Metastasis of Prostate Cancer Cells to Bone
Cadherin-11 Promotes the Metastasis of Prostate Cancer Cells to Bone Khoi Chu,2 Chien-Jui Cheng,6 Xiangcang Ye,1 Yu-Chen Lee,1 Amado J.Zurita, 2 Dung-Tsa Chen,7 Li-Yuan Yu-Lee,5 Sui Zhang,4 Edward T.Yeh, 4 Mickey C-T.Hu, 3 Christopher J.Logothetis, 2 and Sue-Hwa Lin1,2 Departments of 1Molecular Pathology, 2Genitourinary Medical Oncology, 3Molecular and Cellular Oncology, and 4Cardiology, The University of Texas M. D. Anderson Cancer Center; 5Department of Medicine, Baylor College of Medicine, Houston, Texas; 6Department of Pathology, Taipei Medical University and Hospital, Taipei, Taiwan; and 7Biostatistics Division, Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida Abstract Introduction Bone is the most common site of metastases from Prostate cancer is the most common cancer among men. prostate cancer.The mechanism by which prostate The mortality from this disease results mostly from the cancer cells metastasize to bone is not fully understood, metastasis of tumor cells to secondary sites, particularly bone. but interactions between prostate cancer cells and bone Prostate cancer metastasizes to the bone with high frequency, cells are thought to initiate the colonization of metastatic causing significant morbidity and mortality (1). Jacobs (2) cells at that site.Here, we show that cadherin-11 reported that 80% of men with prostate cancer had bone (also known as osteoblast-cadherin) was highly metastases at autopsy. A more recent rapid autopsy study also expressed in prostate cancer cell line derived from bone reported that f80% of patients who die from prostate cancer metastases and had strong homophilic binding to have metastases in bone (3), further confirming the prevalence recombinant cadherin-11 in vitro.Down-regulation of of bone metastasis in prostate cancer. -
P53 and PTEN Expression Contribute to the Inhibition of EGFR Downstream Signaling Pathway by Cetuximab
Cancer Gene Therapy (2009) 16, 498–507 r 2009 Nature Publishing Group All rights reserved 0929-1903/09 $32.00 www.nature.com/cgt ORIGINAL ARTICLE P53 and PTEN expression contribute to the inhibition of EGFR downstream signaling pathway by cetuximab S Bouali1, A-S Chre´tien1, C Ramacci1, M Rouyer1, S Marchal2, T Galenne3, P Juin3, P Becuwe4 and J-L Merlin1 1Centre Alexis Vautrin, Unite´ de Biologie des Tumeurs, EA ‘‘Predicther’’ Nancy Universite´, Vandœuvre-le`s- Nancy cedex, France; 2Centre Alexis Vautrin, CRAN UMR 7039 CNRS-UHP-INPL, Vandœuvre-le`s-Nancy cedex, France; 3INSERM U601, CHU de Nantes, Institut de Biologie, Nantes, France and 4Laboratoire de Biologie Cellulaire, Faculte´ des Sciences, EA ‘‘Predicther’’ Nancy Universite´, Vandœuvre-le`s-Nancy, France Cetuximab (Erbitux) is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody whose activity is related to the inhibition of EGFR downstream signaling pathways. P53 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) have been reported to control the functionality of PI3K/AKT signaling. In this study we evaluated whether reintroducing P53 using non-viral gene transfer enhances PTEN-mediated inhibition of PI3K/AKT signaling by cetuximab in PC3 prostate adenocarcinoma cell line bearing p53 and pten mutations. Signaling phosphoproteins expression was analyzed using Bio-Plex phosphoprotein array and western blot. Apoptosis induction was evaluated from BAX expression, caspase-3 activation and DNA fragmentation analyses. The results presented show that p53 and pten gene transfer additionally mediated cell growth inhibition and apoptosis induction by restoral of signaling functionality, which enabled the control of PI3K/AKT and MAPKinase signaling pathways by cetuximab in PC3 cells. -
P14ARF Inhibits Human Glioblastoma–Induced Angiogenesis by Upregulating the Expression of TIMP3
P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi, … , Daniel J. Brat, Erwin G. Van Meir J Clin Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596. Research Article Oncology Malignant gliomas are the most common and the most lethal primary brain tumors in adults. Among malignant gliomas, 60%–80% show loss of P14ARF tumor suppressor activity due to somatic alterations of the INK4A/ARF genetic locus. The tumor suppressor activity of P14ARF is in part a result of its ability to prevent the degradation of P53 by binding to and sequestering HDM2. However, the subsequent finding of P14ARF loss in conjunction with TP53 gene loss in some tumors suggests the protein may have other P53-independent tumor suppressor functions. Here, we report what we believe to be a novel tumor suppressor function for P14ARF as an inhibitor of tumor-induced angiogenesis. We found that P14ARF mediates antiangiogenic effects by upregulating expression of tissue inhibitor of metalloproteinase–3 (TIMP3) in a P53-independent fashion. Mechanistically, this regulation occurred at the gene transcription level and was controlled by HDM2-SP1 interplay, where P14ARF relieved a dominant negative interaction of HDM2 with SP1. P14ARF-induced expression of TIMP3 inhibited endothelial cell migration and vessel formation in response to angiogenic stimuli produced by cancer cells. The discovery of this angiogenesis regulatory pathway may provide new insights into P53-independent P14ARF tumor-suppressive mechanisms that have implications for the development of novel therapies directed at tumors and other diseases characterized by vascular pathology. Find the latest version: https://jci.me/38596/pdf Research article P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi,1 Beata Pyrzynska,1,2 Maria Febbraio,3 Daniel J. -
Prostate News
Prostate Cancer and Prostatic Diseases (2008) 11, 108–111 & 2008 Nature Publishing Group All rights reserved 1365-7852/08 $30.00 www.nature.com/pcan RESEARCH HIGHLIGHTS Prostate News Prostate Cancer and Prostatic Diseases (2008) 11, 108–111; doi:10.1038/pcan.2008.24 Changing biopsy patterns affect Clinical trial recommendations screening predictive value In 1999, the Prostate-Specific Antigen Working Group A large body of literature establishes the contribution of offered consensus recommendations for the conduct prostate-specific antigen (PSA) screening to the improve- of clinical trials. Their focus was on the development ment of prostate cancer detection. However, much of the of trials for patients with progressive disease who had data derived from the early and mid 1990s, and since undergone castration specifically with regard to the use then prostate biopsy practice patterns have changed of PSA level. A year later, the New Guidelines to significantly. Early on the predictive power of PSA Evaluate the Response to Treatment in Solid Tumors screening depended on the high prevalence of the criteria were introduced from a broader and interna- disease, the higher prevalence of high-grade disease tional group of researchers. Their focus was on standar- and the low likelihood of prostate cancer diagnosis in dizing the criteria used in clinical trials to assess tumor men with low PSA titers. Biopsy factors that affect the response for all solid tumors, whether arising in the changes in value of PSA screening include the increased prostate or elsewhere. However, if trial outcomes were number of biopsy cores obtained routinely and changes based solely on either of these two sets of criteria, none of in how pathologists interpret biopsy samples. -
Transcriptional Regulation of the P16 Tumor Suppressor Gene
ANTICANCER RESEARCH 35: 4397-4402 (2015) Review Transcriptional Regulation of the p16 Tumor Suppressor Gene YOJIRO KOTAKE, MADOKA NAEMURA, CHIHIRO MURASAKI, YASUTOSHI INOUE and HARUNA OKAMOTO Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Fukuoka, Japan Abstract. The p16 tumor suppressor gene encodes a specifically bind to and inhibit the activity of cyclin-CDK specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 complexes, thus preventing G1-to-S progression (4, 5). and is found altered in a wide range of human cancers. p16 Among these CKIs, p16 plays a pivotal role in the regulation plays a pivotal role in tumor suppressor networks through of cellular senescence through inhibition of CDK4/6 activity inducing cellular senescence that acts as a barrier to (6, 7). Cellular senescence acts as a barrier to oncogenic cellular transformation by oncogenic signals. p16 protein is transformation induced by oncogenic signals, such as relatively stable and its expression is primary regulated by activating RAS mutations, and is achieved by accumulation transcriptional control. Polycomb group (PcG) proteins of p16 (Figure 1) (8-10). The loss of p16 function is, associate with the p16 locus in a long non-coding RNA, therefore, thought to lead to carcinogenesis. Indeed, many ANRIL-dependent manner, leading to repression of p16 studies have shown that the p16 gene is frequently mutated transcription. YB1, a transcription factor, also represses the or silenced in various human cancers (11-14). p16 transcription through direct association with its Although many studies have led to a deeper understanding promoter region. -
Clusterin-Mediated Apoptosis Is Regulated by Adenomatous Polyposis Coli and Is P21 Dependent but P53 Independent
[CANCER RESEARCH 64, 7412–7419, October 15, 2004] Clusterin-Mediated Apoptosis Is Regulated by Adenomatous Polyposis Coli and Is p21 Dependent but p53 Independent Tingan Chen,1 Joel Turner,1 Susan McCarthy,1 Maurizio Scaltriti,2 Saverio Bettuzzi,2 and Timothy J. Yeatman1 1Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; and 2Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Biochimica Clinica e Biochimica dell’Esercizio Fisico, Parma, Italy ABSTRACT ptosis (15). Additional data suggest that a secreted form of clusterin acts as a molecular chaperone, scavenging denatured proteins outside Clusterin is a widely expressed glycoprotein that has been paradoxi- cells following specific stress-induced injury such as heat shock. cally observed to have both pro- and antiapoptotic functions. Recent Other data, show that overexpression of a specific nuclear form of reports suggest this apparent dichotomy of function may be related to two different isoforms, one secreted and cytoplasmic, the other nuclear. To clusterin acts as a prodeath signal (16). Furthermore, studies of human clarify the functional role of clusterin in regulating apoptosis, we exam- colon cancer suggest a conversion from the nuclear form of clusterin ined its expression in human colon cancer tissues and in human colon to the cytoplasmic form, which may promote tumor progression (17). cancer cell lines. We additionally explored its expression and activity using Recently, a link between the accumulation of the nuclear form of models of adenomatous polyposis coli (APC)- and chemotherapy-induced clusterin and anoikis induction in prostate epithelial cells was shown apoptosis. Clusterin RNA and protein levels were decreased in colon (18). -
Complete Deletion of Apc Results in Severe Polyposis in Mice
Oncogene (2010) 29, 1857–1864 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc SHORT COMMUNICATION Complete deletion of Apc results in severe polyposis in mice AF Cheung1, AM Carter1, KK Kostova1, JF Woodruff1, D Crowley1,2, RT Bronson3, KM Haigis4 and T Jacks1,2 1Koch Institute and Department of Biology, MIT, Cambridge, MA, USA; 2Howard Hughes Medical Institute, MIT, Cambridge, MA, USA; 3Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, Boston, MA, USA and 4Masschusetts General Hospital Cancer Center, Harvard Medical School Department of Pathology, Charlestown, MA, USA The adenomatous polyposis coli (APC) gene product is region of APC termed the mutation cluster region and mutated in the vast majority of human colorectal cancers. result in retained expression of an N-terminal fragment APC negatively regulates the WNT pathway by aiding in of the APC protein (Kinzler and Vogelstein, 1996). the degradation of b-catenin, which is the transcription Genotype–phenotype correlations involving germline factor activated downstream of WNT signaling. APC APC mutations suggest that different lengths and levels mutations result in b-catenin stabilization and constitutive of APC expression can influence the number of polyps WNT pathway activation, leading to aberrant cellular in the gut, the distribution of polyps and extra-colonic proliferation. APC mutations associated with colorectal manifestations of the disease (Soravia et al., 1998; cancer commonly fall in a region of the gene termed the Nieuwenhuis and Vasen, 2007). Specifically, patients mutation cluster region and result in expression of an that present clinically with attenuated FAP have N-terminal fragment of the APC protein. -
Nanocarrier for Prostate Cancer Orielyz Flores1, 2, Santimukul Santra1, Charalambos Kaittanis3, Rania Bassiouni2, Amr S Khaled4, Annette R
Theranostics 2017, Vol. 7, Issue 9 2477 Ivyspring International Publisher Theranostics 2017; 7(9): 2477-2494. doi: 10.7150/thno.18879 Research Paper PSMA-Targeted Theranostic Nanocarrier for Prostate Cancer Orielyz Flores1, 2, Santimukul Santra1, Charalambos Kaittanis3, Rania Bassiouni2, Amr S Khaled4, Annette R. Khaled2, Jan Grimm3 and J Manuel Perez5 1. Nanoscience Technology Center and Chemistry Department, University of Central Florida, Orlando FL, 32827; 2. Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando FL, 32827; 3. Molecular Pharmacology Program and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065; 4. Orlando VA Medical Center, Orlando, FL 32827; 5. Biomedical Imaging Research Institute, & Samuel Oschin Comprehensive Cancer Institute, Department of Biomedical Sciences and Department of Neurosurgery, Cedar Sinai Medical Center, Los Angeles CA, 90048. Corresponding author: J Manuel Perez, PhD, Professor, Department of Biomedical Sciences & Department of Neurosurgery, Biomedical Imaging Research Institute & Samuel Oschin Comprehensive Cancer Institute, Cedar Sinai Medical Center, 127 S. San Vicente Blvd, Suite A8113, Los Angeles CA, 90048 Email: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2016.12.22; Accepted: 2017.04.12; Published: 2017.06.24 Abstract Herein, we report the use of a theranostic nanocarrier (Folate-HBPE(CT20p)) to deliver a therapeutic peptide to prostate cancer tumors that express PSMA (folate hydrolase 1). The therapeutic peptide (CT20p) targets and inhibits the chaperonin-containing TCP-1 (CCT) protein-folding complex, is selectively cytotoxic to cancer cells, and is non-toxic to normal tissue. -
Indirect Antitumor Effects of Bisphosphonates on Prostatic Lncap Cells Co-Cultured with Bone Cells
ANTICANCER RESEARCH 29: 1089-1094 (2009) Indirect Antitumor Effects of Bisphosphonates on Prostatic LNCaP Cells Co-cultured with Bone Cells TOMOAKI TANAKA, HIDENORI KAWASHIMA, KEIKO OHNISHI, KENTARO MATSUMURA, RIKIO YOSHIMURA, MASAHIDE MATSUYAMA, KATSUYUKI KURATSUKURI and TATSUYA NAKATANI Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan Abstract. Bisphosphonates are strong inhibitors of effectively inhibit bone absorption are available for osteoclastic bone resorption in both benign and malignant reducing the risk of skeletal complications in bone bone diseases. The nitrogen-containing bisphosphonates metastases of prostate cancer as well as those of other solid (N-BPs) have strong cytotoxicity via inhibition of protein tumors characterized by osteoclastic lesions. prenylation in the mevalonate pathway, and also demonstrate Bisphosphonates are potent inhibitors of osteoclast activity direct cytostatic and proapoptotic effects on prostate cancer and survival, thereby reducing osteoclast-mediated bone cells. We confirmed the usefulness of a co-culture system absorption (1, 4-6). The chemical structure of bisphosphonates comprised of prostatic LNCaP cells, ST2 cells (mouse- contributes to their mechanism of action: Non-nitrogen- derived osteoblasts) and MLC-6 cells (mouse-derived containing compounds (e.g. etidronate, clodronate) are osteoclasts) in vitro. N-BPs (pamidronate and zoledronic metabolized to cytotoxic analogues of ATP (7), while newer acid) inhibited both androgen receptor transactivation and nitrogen-containing bisphosphonates (N-BPs; pamidronate, tumor cell proliferation by suppressing the activities of both ibandronate, zoledronic acid) have strong cytotoxic effects on osteoclasts and osteoblasts with low-dose exposure. This cells via inhibition of protein prenylation in the mevalonate indirect inhibition of prostate cancer cells via bone cells pathway (8, 9). -
Prostate Cancer Stromal Cells and Lncap Cells Coordinately Activate
Endocrine-Related Cancer (2009) 16 1139–1155 Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone Atsushi Mizokami, Eitetsu Koh, Kouji Izumi, Kazutaka Narimoto, Masashi Takeda, Seijiro Honma1, Jinlu Dai 2, Evan T Keller 2 and Mikio Namiki Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takaramachi, Kanazawa City 920-8640, Japan 1Teikoku Hormone MFG. Co., 1604 Shimosakunobe, Takatsu-ku, Kawasaki, Kanagawa 213, Japan 2Departments of Urology and Pathology, University of Michigan, Ann Arbor, Michigan, USA (Correspondence should be addressed to A Mizokami; Email: [email protected]) Abstract One of the mechanisms through which advanced prostate cancer (PCa) usually relapses after androgen deprivation therapy (ADT) is the adaptation to residual androgens in PCa tissue. It has been observed that androgen biosynthesis in PCa tissue plays an important role in this adaptation. In the present study, we investigated how stromal cells affect adrenal androgen dehydroepian- drosterone (DHEA) metabolism in androgen-sensitive PCa LNCaP cells. DHEA alone had little effect on prostate-specific antigen (PSA) promoter activity and the proliferation of LNCaP cells. However, the addition of prostate stromal cells or PCa-derived stromal cells (PCaSC) increased DHEA-induced PSA promoter activity via androgen receptor activation in the LNCaP cells. Moreover, PCaSC stimulated the proliferation of LNCaP cells under physiological concentrations of DHEA. Biosynthesis of testosterone or dihydrotestosterone from DHEA in stromal cells and LNCaP cells was involved in this stimulation of LNCaP cell proliferation. Androgen biosynthesis from DHEA depended upon the activity of various steroidogenic enzymes present in stromal cells.