John Von Neumann Theory Prize for Ruth Williams

Total Page:16

File Type:pdf, Size:1020Kb

John Von Neumann Theory Prize for Ruth Williams 280 John von Neumann Theory Prize for Ruth Williams Ruth Williams, who has a long association with Australian mathematics, has been awarded the 2016 John von Neumann Theory Prize, jointly with Marty Reiman of Columbia University. It recognises seminal research contributions they have made, over the past several decades, to the theory and applications of ‘stochastic networks/systems’ and their ‘heavy traffic approximations’. These profound con- tributions have led to further breakthroughs in stochastic operations research in general, and queueing theory in particular. This award is made annually by INFORMS, the Institute for Operations Research and the Management Sciences, to a scholar (or scholars in the case of joint work) who has made fundamental, sustained contributions to theory in operations re- search and the management sciences. Previous winners include such distinguished names as George Dantzig, David Gale, Harold Kuhn, Albert Tucker, Michel Balin- ski, Martin Gr¨otschel, Terry Rockafellar, Samuel Karlin, Lloyd Shapley, John Nash, Kenneth Arrow, Herbert Simon, Harry Markowitz and Robert Aumann. More de- tails can be found at https://www.informs.org/Recognize-Excellence/INFORMS- Prizes-Awards/John-von-Neumann-Theory-Prize. Ruth Williams is a Distinguished Professor in the Department of Mathematics at the University of California, San Diego. Ruth grew up in Bendigo and was dux of Bendigo High School before going on to complete her BSc(Hons) and MSc at the University of Melbourne. She completed her PhD at Stanford University under Kai Lai Chung. Over the years she has been awarded many honours for her research including election to the US National Academy of Sciences and DSc (honoris causa) from La Trobe University. At present Ruth is an Honorary Senior Fellow at La Trobe University, and a member of the advisory board of the research institute MATRIX. She presented an invited lecture at the 59th Annual Meeting of the Australian Mathematical Society in 2015. Our congratulations to Ruth!.
Recommended publications
  • Calibrating Determinacy Strength in Levels of the Borel Hierarchy
    CALIBRATING DETERMINACY STRENGTH IN LEVELS OF THE BOREL HIERARCHY SHERWOOD J. HACHTMAN Abstract. We analyze the set-theoretic strength of determinacy for levels of the Borel 0 hierarchy of the form Σ1+α+3, for α < !1. Well-known results of H. Friedman and D.A. Martin have shown this determinacy to require α+1 iterations of the Power Set Axiom, but we ask what additional ambient set theory is strictly necessary. To this end, we isolate a family of Π1-reflection principles, Π1-RAPα, whose consistency strength corresponds 0 CK exactly to that of Σ1+α+3-Determinacy, for α < !1 . This yields a characterization of the levels of L by or at which winning strategies in these games must be constructed. When α = 0, we have the following concise result: the least θ so that all winning strategies 0 in Σ4 games belong to Lθ+1 is the least so that Lθ j= \P(!) exists + all wellfounded trees are ranked". x1. Introduction. Given a set A ⊆ !! of sequences of natural numbers, consider a game, G(A), where two players, I and II, take turns picking elements of a sequence hx0; x1; x2;::: i of naturals. Player I wins the game if the sequence obtained belongs to A; otherwise, II wins. For a collection Γ of subsets of !!, Γ determinacy, which we abbreviate Γ-DET, is the statement that for every A 2 Γ, one of the players has a winning strategy in G(A). It is a much-studied phenomenon that Γ -DET has mathematical strength: the bigger the pointclass Γ, the stronger the theory required to prove Γ -DET.
    [Show full text]
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Introduction to Computational Social Choice
    1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures.
    [Show full text]
  • Stable Matching: Theory, Evidence, and Practical Design
    THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year’s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed in the 1960s, over empirical work in the 1980s, to ongoing efforts to fnd practical solutions to real-world prob- lems. Examples include the assignment of new doctors to hospitals, students to schools, and human organs for transplant to recipients. Lloyd Shapley made the early theoretical contributions, which were unexpectedly adopted two decades later when Alvin Roth investigated the market for U.S. doctors. His fndings generated further analytical developments, as well as practical design of market institutions. Traditional economic analysis studies markets where prices adjust so that supply equals demand. Both theory and practice show that markets function well in many cases. But in some situations, the standard market mechanism encounters problems, and there are cases where prices cannot be used at all to allocate resources. For example, many schools and universities are prevented from charging tuition fees and, in the case of human organs for transplants, monetary payments are ruled out on ethical grounds. Yet, in these – and many other – cases, an allocation has to be made. How do such processes actually work, and when is the outcome efcient? Matching theory The Gale-Shapley algorithm Analysis of allocation mechanisms relies on a rather abstract idea. If rational people – who know their best interests and behave accordingly – simply engage in unrestricted mutual trade, then the outcome should be efcient. If it is not, some individuals would devise new trades that made them better of.
    [Show full text]
  • The Portfolio Optimization Performance During Malaysia's
    Modern Applied Science; Vol. 14, No. 4; 2020 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Portfolio Optimization Performance during Malaysia’s 2018 General Election by Using Noncooperative and Cooperative Game Theory Approach Muhammad Akram Ramadhan bin Ibrahim1, Pah Chin Hee1, Mohd Aminul Islam1 & Hafizah Bahaludin1 1Department of Computational and Theoretical Sciences Kulliyyah of Science International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia Correspondence: Pah Chin Hee, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia. Received: February 10, 2020 Accepted: February 28, 2020 Online Published: March 4, 2020 doi:10.5539/mas.v14n4p1 URL: https://doi.org/10.5539/mas.v14n4p1 Abstract Game theory approach is used in this study that involves two types of games which are noncooperative and cooperative. Noncooperative game is used to get the equilibrium solutions from each payoff matrix. From the solutions, the values then be used as characteristic functions of Shapley value solution concept in cooperative game. In this paper, the sectors are divided into three groups where each sector will have three different stocks for the game. This study used the companies that listed in Bursa Malaysia and the prices of each stock listed in this research obtained from Datastream. The rate of return of stocks are considered as an input to get the payoff from each stock and its coalition sectors. The value of game for each sector is obtained using Shapley value solution concepts formula to find the optimal increase of the returns. The Shapley optimal portfolio, naive diversification portfolio and market portfolio performances have been calculated by using Sharpe ratio.
    [Show full text]
  • Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D
    Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia To cite this version: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia. Introduction to Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, pp.1-29, 2016, 9781107446984. 10.1017/CBO9781107446984. hal-01493516 HAL Id: hal-01493516 https://hal.archives-ouvertes.fr/hal-01493516 Submitted on 21 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley.
    [Show full text]
  • Bibliography
    129 Bibliography [1] Stathopoulos A. and Levine M. Dorsal gradient networks in the Drosophila embryo. Dev. Bio, 246:57–67, 2002. [2] Khaled A. S. Abdel-Ghaffar. The determinant of random power series matrices over finite fields. Linear Algebra Appl., 315(1-3):139–144, 2000. [3] J. Alappattu and J. Pitman. Coloured loop-erased random walk on the complete graph. Combinatorics, Probability and Computing, 17(06):727–740, 2008. [4] Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. essential cell biology; second edition. Garland Science, New York, 2004. [5] David Aldous. Stopping times and tightness. II. Ann. Probab., 17(2):586–595, 1989. [6] David Aldous. Probability distributions on cladograms. 76:1–18, 1996. [7] L. Ambrosio, A. P. Mahowald, and N. Perrimon. l(1)polehole is required maternally for patter formation in the terminal regions of the embryo. Development, 106:145–158, 1989. [8] George E. Andrews, Richard Askey, and Ranjan Roy. Special functions, volume 71 of Ency- clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999. [9] S. Astigarraga, R. Grossman, J. Diaz-Delfin, C. Caelles, Z. Paroush, and G. Jimenez. A mapk docking site is crtical for downregulation of capicua by torso and egfr rtk signaling. EMBO, 26:668–677, 2007. [10] K.B. Athreya and PE Ney. Branching processes. Dover Publications, 2004. [11] Julien Berestycki. Exchangeable fragmentation-coalescence processes and their equilibrium measures. Electron. J. Probab., 9:no. 25, 770–824 (electronic), 2004. [12] A. M. Berezhkovskii, L. Batsilas, and S. Y. Shvarstman. Ligand trapping in epithelial layers and cell cultures.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Equilmrium and DYNAMICS David Gale, 1991 Equilibrium and Dynamics
    EQUILmRIUM AND DYNAMICS David Gale, 1991 Equilibrium and Dynamics Essays in Honour of David Gale Edited by Mukul Majumdar H. T. Warshow and Robert Irving Warshow Professor ofEconomics Cornell University Palgrave Macmillan ISBN 978-1-349-11698-0 ISBN 978-1-349-11696-6 (eBook) DOI 10.1007/978-1-349-11696-6 © Mukul Majumdar 1992 Softcover reprint of the hardcover 1st edition 1992 All rights reserved. For information, write: Scholarly and Reference Division, St. Martin's Press, Inc., 175 Fifth Avenue, New York, N.Y. 10010 First published in the United States of America in 1992 ISBN 978-0-312-06810-3 Library of Congress Cataloging-in-Publication Data Equilibrium and dynamics: essays in honour of David Gale I edited by Mukul Majumdar. p. em. Includes bibliographical references (p. ). ISBN 978-0-312-06810-3 1. Equilibrium (Economics) 2. Statics and dynamics (Social sciences) I. Gale, David. II. Majumdar, Mukul, 1944- . HB145.E675 1992 339.5-dc20 91-25354 CIP Contents Preface vii Notes on the Contributors ix 1 Equilibrium in a Matching Market with General Preferences Ahmet Alkan 1 2 General Equilibrium with Infinitely Many Goods: The Case of Separable Utilities Aloisio Araujo and Paulo Klinger Monteiro 17 3 Regular Demand with Several, General Budget Constraints Yves Balasko and David Cass 29 4 Arbitrage Opportunities in Financial Markets are not Inconsistent with Competitive Equilibrium Lawrence M. Benveniste and Juan Ketterer 45 5 Fiscal and Monetary Policy in a General Equilibrium Model Truman Bewley 55 6 Equilibrium in Preemption Games with Complete Information Kenneth Hendricks and Charles Wilson 123 7 Allocation of Aggregate and Individual Risks through Financial Markets Michael J.
    [Show full text]
  • Opttek Systems, Inc. President Dr. Fred Glover Elected to Membership in National Academy of Engineering
    OptTek Systems, Inc. President Dr. Fred Glover Elected to Membership In National Academy of Engineering Boulder, CO, February 18, 2002 – Dr. Fred Glover, President of OptTek Systems, Inc., and MediaOne Professor of Systems Science, Leeds School of Business, University of Colorado, Boulder was elected to membership in the National Academy of Engineering. This honor was bestowed to Dr. Glover for contributions to optimization modeling and algorithmic development, and for solving problems in distribution, planning, and design. Election to the National Academy of Engineering is one of the highest professional distinctions that can be accorded an engineer. Academy membership honors those who have made "important contributions to engineering theory and practice" and those who have demonstrated "unusual accomplishment in the pioneering of new and developing fields of technology." OptTek’s software, OptQuest®, which is well known in both the simulation and optimization communities, is based on the contributions of Professor Fred Glover, a founder of OptTek Systems, Inc. and a winner of the von Neumann Theory Prize (the highest and most distinguished award of the INFORMS Society, the John von Neumann Theory Prize is awarded annually to an individual who has made fundamental, sustained contributions to theory in operations research and the management sciences. Past recipients of this prize include Nobel Prize winners Kenneth Arrow, Herbert Simon and Harry Markowitz, and National Medal of Science winners George Dantzig and Richard Karp. Dr. Fred Glover won the award in 1998). “This award is yet another confirmation of the value that Dr. Glover’s methods have brought to the theory and practice of optimization and operations research.
    [Show full text]
  • Sam Karlin 1924—2007
    Sam Karlin 1924—2007 This paper was written by Richard Olshen (Stanford University) and Burton Singer (Princeton University). It is a synthesis of written and oral contributions from seven of Karlin's former PhD students, four close colleagues, all three of his children, his wife, Dorit, and with valuable organizational assistance from Rafe Mazzeo (Chair, Department of Mathematics, Stanford University.) The contributing former PhD students were: Krishna Athreya (Iowa State University) Amir Dembo (Stanford University) Marcus Feldman (Stanford University) Thomas Liggett (UCLA) Charles Micchelli (SUNY, Albany) Yosef Rinott (Hebrew University, Jerusalem) Burton Singer (Princeton University) The contributing close colleagues were: Kenneth Arrow (Stanford University) Douglas Brutlag (Stanford University) Allan Campbell (Stanford University) Richard Olshen (Stanford University) Sam Karlin's children: Kenneth Karlin Manuel Karlin Anna Karlin Sam's wife -- Dorit Professor Samuel Karlin made fundamental contributions to game theory, analysis, mathematical statistics, total positivity, probability and stochastic processes, mathematical economics, inventory theory, population genetics, bioinformatics and biomolecular sequence analysis. He was the author or coauthor of 10 books and over 450 published papers, and received many awards and honors for his work. He was famous for his work ethic and for guiding Ph.D. students, who numbered more than 70. To describe the collection of his students as astonishing in excellence and breadth is to understate the truth of the matter. It is easy to argue—and Sam Karlin participated in many a good argument—that he was the foremost teacher of advanced students in his fields of study in the 20th Century. 1 Karlin was born in Yonova, Poland on June 8, 1924, and died at Stanford, California on December 18, 2007.
    [Show full text]
  • Robert Merton and Myron Scholes, Nobel Laureates in Economic Sciences, Receive 2011 CME Group Fred Arditti Innovation Award
    Robert Merton and Myron Scholes, Nobel Laureates in Economic Sciences, Receive 2011 CME Group Fred Arditti Innovation Award CHICAGO, Sept. 8, 2011 /PRNewswire/ -- The CME Group Center for Innovation (CFI) today announced Robert C. Merton, School of Management Distinguished Professor of Finance at the MIT Sloan School of Management and Myron S. Scholes, chairman of the Board of Economic Advisors of Stamos Partners, are the 2011 CME Group Fred Arditti Innovation Award recipients. Both recipients are recognized for their significant contributions to the financial markets, including the discovery and development of the Black-Scholes options pricing model, used to determine the value of options derivatives. The award will be presented at the fourth annual Global Financial Leadership Conference in Naples, Fla., Monday, October 24. "The Fred Arditti Award honors individuals whose innovative ideas created significant change to the markets," said Leo Melamed, CME Group Chairman Emeritus and Competitive Markets Advisory Council (CMAC) Vice Chairman. "The nexus between the Black-Scholes model and this Award needs no explanation. Their options model forever changed the nature of markets and provided the necessary foundation for the measurement of risk. The CME Group options markets were built on that infrastructure." "The Black-Scholes pricing model is still widely used to minimize risk in the financial markets," said Scholes, who first articulated the model's formula along with economist Fischer Black. "It is thrilling to witness the impact it has had in this industry, and we are honored to receive this recognition for it." "Amid uncertainty in the financial markets, we are pleased the Black-Scholes pricing model still plays an important role in determining pricing and managing risk," said Merton, who worked with Scholes and Black to further mathematically prove the model.
    [Show full text]