Astroparticle Physics Projects

Total Page:16

File Type:pdf, Size:1020Kb

Astroparticle Physics Projects AstroparticleAstroparticle PhysicsPhysics ProjectsProjects • Gravitational Waves: LIGO/AdvLIGO (GEO, VIRGO, TAMA, 11 countries) • Cosmological Neutrinos: IceCube (NSF-OPP, Germany, Sweden, Belgium) • Underground Physics: DUSEL (DOE-HEP, NP) • Dark Matter: CDMS, XENON, WARP, ZEPLIN, DRIFT, COUPP, LUX (NSF-AST, DOE-HEP, INFN, STFC, Germany, Poland) • Cosmic Rays: AUGER, (HiRes), TA, Veritas, (Milagro) (NSF-AST, DOE-HEP, Japan, Korea, Canada, Ireland, Smithsonian, 17 more countries) • Neutrinos: Borexino, Double Chooz, CUORE, Daya Bay (DOE-NP, DOE-HEP, INFN, France, Germany, Brazil, Japan, Russia, Spain, UK) • Structure of the Universe: ACT (NSF-AST) • B-Mode Polarization of CMB: QUIET (NSF-AST) • Origin of the Elements: NSCL (DOE-NP) Cosmic Questions for DUSEL • Of what is the Universe made? • What is Dark Matter? • What are neutrinos telling us? • Where did the antimatter go? • Are protons unstable? • How did the universe evolve? DUSEL Physics Experiments • The aforementioned questions are addressed at DUSEL via a variety of experimental probes: – Direct Detection of Dark Matter – Neutrino-less Double-Beta Decay – Nuclear Astrophysics • Accelerator-based cross-section measurements – Solar Neutrinos – Long Baseline Experiment, Proton Decay, and Supernovae Remnants (Mega-Detector) DUSEL MREFC funding would support the construction of forefront experiments in nuclear- and astro-physics, and in particle physics using the Fermilab accelerator as a high intensity neutrino source. Aerial View of Homestake Site Water Treatment Plant Open Yates Complex Cut Town of Lead 1km SDSTA Surface Rights Kirk Ross Complex Canyon Access An Illustrative DUSEL Laboratory Concept • Scope is being driven by needs of physics experiments, E&O at/near surface. • Modular design being pursued will facilitate future scope adjustments. TheThe LongLong BaselineBaseline ExperimentExperiment NOvA MINOS (on-axis) (off-axis) 735 km Homestake High Intensity Neutrino Beam DUSEL 1300 km Fermilab -Detector at DUSEL: Mega Proton Decay, CP violation, Supernovae . The configuration of a Mega-Detector at Homestake, that is greater than 1,000opportunity km from a forhighunique transformational intensity in the beam world discoveryfrom Fermilab, that is offers an .
Recommended publications
  • European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
    European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe.
    [Show full text]
  • Realization of the Low Background Neutrino Detector Double Chooz: from the Development of a High-Purity Liquid & Gas Handling Concept to first Neutrino Data
    Realization of the low background neutrino detector Double Chooz: From the development of a high-purity liquid & gas handling concept to first neutrino data Dissertation of Patrick Pfahler TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Physik Department Lehrstuhl f¨urexperimentelle Astroteilchenphysik / E15 Univ.-Prof. Dr. Lothar Oberauer Realization of the low background neutrino detector Double Chooz: From the development of high-purity liquid- & gas handling concept to first neutrino data Dipl. Phys. (Univ.) Patrick Pfahler Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors des Naturwissenschaften (Dr. rer. nat) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Alejandro Ibarra Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. Lothar Oberauer 2. Priv.-Doz. Dr. Andreas Ulrich Die Dissertation wurde am 3.12.2012 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 17.12.2012 angenommen. 2 Contents Contents i Introduction 1 I The Neutrino Disappearance Experiment Double Chooz 5 1 Neutrino Oscillation and Flavor Mixing 6 1.1 PMNS Matrix . 6 1.2 Flavor Mixing and Neutrino Oscillations . 7 1.2.1 Survival Probability of Reactor Neutrinos . 9 1.2.2 Neutrino Masses and Mass Hierarchy . 12 2 Reactor Neutrinos 14 2.1 Neutrino Production in Nuclear Power Cores . 14 2.2 Energy Spectrum of Reactor neutrinos . 15 2.3 Neutrino Flux Approximation . 16 3 The Double Chooz Experiment 19 3.1 The Double Chooz Collaboration . 19 3.2 Experimental Site: Commercial Nuclear Power Plant in Chooz . 20 3.3 Physics Program and Experimental Concept . 21 3.4 Signal . 23 3.4.1 The Inverse Beta Decay (IBD) .
    [Show full text]
  • Results in Neutrino Oscillations from Super-Kamiokande I
    Status of the RENO Reactor Neutrino Experiment RENO = Reactor Experiment for Neutrino Oscillation (For RENO Collaboration) K.K. Joo Chonnam National University February 15, 2011 Research Techniques Seminar @FNAL Outline Experiment Goals of the RENO Exp. - Short introduction - Expected q13 sensitivity - Systematic uncertainty Overview of the RENO Experiment - Experimental Setup of RENO - Schedule - Tunnel excavation - Status of detector construction - DAQ, data analysis tools Summary Brief History of Neutrinos 1930: Pauli postulated neutrino to explain b decay problem 1933: Fermi baptized the neutrino in his weak-interaction theory 1956: First discovery of neutrino by Reines & Cowan from reactor 1957: Neutrinos are left-handed by Glodhaber et al. 1962: Discovery of nm by Lederman et al. (Brookhaven Lab) 1974: Discovery of neutral currents due to neutrinos 1977: Tau lepton discovery by Perl et al. (SLAC) 1998: Atmospheric neutrino oscillation observed by Super-K 2000: nt discovery by DONUT (Fermilab) 2002: Solar neutrino oscillation observed by SNO and confirmed by Kamland What NEXT? Standard Model Neutrinos in SM Neutrino Oscillation . Three types of neutrinos exist & mixing among them Oscillation parameters (q12 , q23 , q13) Not measured yet . Elementary particles with almost no interactions . Almost massless: impossible to measure its mass Neutrino Mixing Parameters Matrix Components: νe Ue1 Ue2 Ue3 ν1 3 Angles (θ ; θ ; θ ) 12 13 23 ν U U U ν 1 CP phase (δ) μ μ1 μ2 μ3 2 2 Mass differences ντ Uτ1 Uτ2 Uτ3 ν3 1 0 0 c 0 s ei c s 0 13 13 12 12 U 0 c23 s23 0 1 0 s12 c12 0 i 0 s23 c23 s13e 0 c13 0 0 1 atmospheric SK, K2K The Next Big Thing? SNO, solar SK, KamLAND ≈ ≈ ° q23 qatm 45 q12 ≈qsol ≈ 32° Large and maximal mixing! Reduction of reactor neutrinos due to oscillations Disappearance Reactor neutrino disappearance Prob.
    [Show full text]
  • ALESSANDRA CORSI Curriculum Vitae Et Studiorum
    ALESSANDRA CORSI Curriculum Vitae et Studiorum Contact information • Post: Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409-1051 • e-mail: [email protected] • Phone: +1-806-834-6931 (Office) Education • 2007: Astronomy Ph.D, University of Rome Sapienza. Thesis title: \Gamma-ray Burst afterglows: fireball physics and clues to the progenitor" - Advisors: Prof. Enrico Massaro and Dr. Luigi Piro. • 2003: Laurea in Physics cum laude, University of Rome Sapienza. Academic positions • 2014 (August) - present: Assistant Professor of Physics, Texas Tech University. • 2012 - 2014 (July): Assistant Professor of Physics, The George Washington University. • 2010 - 2012: Post-doc, California Institute of Technology (Advisors: Prof. Alan J. Weinstein and Prof. Shrinivas R. Kulkarni). • 2008 - 2010: Post-doc, University of Rome Sapienza & Pennsylvania State University (Advisors: Prof. Fulvio Ricci and Prof. Peter Meszaros). • 2007 - 2008: Post-doc, National Institute for Astrophysics (INAF/IASF-Rome) and Rome Univer- sity Sapienza (Advisors: Dr. Luigi Piro and Prof. Fulvio Ricci). Professional Memberships • American Astronomical Society, member since 2013. • American Physical Society, member since 2012. • LIGO Scientific Collaboration, member since 2010. • Palomar Transient Factory Collaboration, member since 2010. • Virgo Collaboration, 2007-2010. Honors, Awards & Scholarships • AAS Bruno Rossi Prize for high-energy astrophysics (as part of the LSC; 2017). • UK Royal Astronomical Society Group Achievement Award in Astronomy (as part of the LSC; 2017). • Honorary Adjunct Assistant Professor, TTU Department of Mathematics and Statistics (2016). • Gruber Cosmology Prize (as part of the LSC; 2016). • Special Breakthrough Prize in Fundamental Physics (as part of the LSC; 2016). • Fellow of the Research Corporation for Science Advancement (Scialog) (TDA, 2015-2016).
    [Show full text]
  • Working Document for the Creation of a Doctorate in Archaeoastronomy and Astrophysics in the UNSAAC of Cusco
    Working Document for the creation of a Doctorate in Archaeoastronomy and Astrophysics in the UNSAAC of Cusco Working Document for the creation of a Doctorate in Archaeoastronomy and Astrophysics in the UNSAAC of Cusco Introduction The First International Congress on Astrophysics and Archeology of the UNSAAC was held on the Auditorium of the Faculty of Science on July 4, 5 and 6, 2019 with the presence of local professors, foreign guests, students and university authorities with the programming in annex . The objective of this event was to discuss and shape a proposal for the creation of a Postgraduate degree in Archaeoastronomy and Astrophysics at the Doctorate level, giving a strong boost to human resources research and training activities at UNSAAC. The initiative of the meeting had the contribution of several teachers of the institution, from the first contacts made by the meeting coordinator (CZV) with Professor Milton Rojas Gamarra, in Ollantaytambo, in 2018, during the IWARA2018 meeting (8th International Workshop on Astronomy and Relativistic Astrophysics), until the later stages that culminated with the writing of this proposal. Among the various professors involved in the different stages of the meeting, we highlight the relevant participation of professors Marco Antonio Zamalloa Jara, Milton Rojas Gamarra, Miriam H. Romero Peña, Pastor Raúl Chura Serrano, Sayri Tupac García Roca and Victor Ayma. We also cite the extremely important contribution of the UNSAAC authorities. The full nominate is: Dr. Gilbert Alagon Huallpa (Vice Chancellor for Research), Dr. Alejandro Ttito Ttica (Dean of the Faculty of Science), Dr. Edilberto Atau Enriquez (Director of the Professional School of Physics), Dr.
    [Show full text]
  • Letter of Interest Forthcoming Science from The
    Snowmass2021 - Letter of Interest Forthcoming Science from the PROSPECT-I Data Set Neutrino Frontier Topical Groups: (NF02) Sterile neutrinos (NF03) Beyond the Standard Model (NF07) Applications (NF09) Artificial neutrino sources Contact Information: Nathaniel Bowden (LLNL) [[email protected]] Karsten Heeger (Yale University) [[email protected]] Pieter Mumm (NIST) [[email protected]] M. Andriamirado,6 A. B. Balantekin,16 H. R. Band,17 C. D. Bass,8 D. E. Bergeron,10 D. Berish,13 N. S. Bowden,7 J. P.Brodsky,7 C. D. Bryan,11 R. Carr,9 T. Classen,7 A. J. Conant,4 G. Deichert,11 M. V.Diwan,2 M. J. Dolinski,3 A. Erickson,4 B. T. Foust,17 J. K. Gaison,17 A. Galindo-Uribarri,12, 14 C. E. Gilbert,12, 14 C. Grant,1 B. T. Hackett,12, 14 S. Hans,2 A. B. Hansell,13 K. M. Heeger,17 D. E. Jaffe,2 X. Ji,2 D. C. Jones,13 O. Kyzylova,3 C. E. Lane,3 T. J. Langford,17 J. LaRosa,10 B. R. Littlejohn,6 X. Lu,12, 14 J. Maricic,5 M. P.Mendenhall,7 A. M. Meyer,5 R. Milincic,5 I. Mitchell,5 P.E. Mueller,12 H. P.Mumm,10 J. Napolitano,13 C. Nave,3 R. Neilson,3 J. A. Nikkel,17 D. Norcini,17 S. Nour,10 J. L. Palomino,6 D. A. Pushin,15 X. Qian,2 E. Romero-Romero,12, 14 R. Rosero,2 P.T. Surukuchi,17 M. A. Tyra,10 R. L. Varner,12 D. Venegas-Vargas,12, 14 P.B.
    [Show full text]
  • 1 Paolo BERNARDINI - Elenco Completo Delle Pubblicazioni (September 2, 2021)
    1 Paolo BERNARDINI - elenco completo delle pubblicazioni (September 2, 2021) PUBBLICAZIONI SU RIVISTA [1] P. Bernardini \La statistica di Einstein e la seconda quantizzazione: quale continuit`a?", Physis 23 (1981) 337 [2] P. Bernardini "Pascual Jordan, interprete coerente dell'ipotesi quantistica", Testi e Contesti 5 (1981) 85 [3] I. Boscolo, J. Gallardo, P. Bernardini \Free Electron Laser Features in Small-Signal Regime with a Gaussian Mode", Nuclear Instruments and Methods A 237 (1985) 69 [4] P. Bernardini, F. Grianti, F. Vetrano \Un sistema idraulico come filtro passa-basso", Studi Urbinati C 27 (1985) 61 [5] I. Boscolo, P. Bernardini, A. Pando, A. Passaseo \A High Power CH3OH Laser System with Long-Term Stability", International Journal of Infrared and Millimeter Waves 7 (1986) 1677 [6] I. Boscolo, P. Bernardini, A. Passaseo \A Powerful and Stable CO2 Laser for CH3OH FIR Laser Optical Pumping", Infrared Physics 26 (1986) 287 [7] P. Bernardini, F. Grianti, F. Vetrano \A Mechanical Ventilator with Programable Flow Waveforms", Rassegna di Bioingegneria 11 (1986) 99 [8] P. Bernardini, F. Vetrano \Esperienza didattica su un sistema idraulico: analisi del sistema e analogie con un circuito elettrico", Giornale di Fisica 28 (1987) 33 [9] P. Bernardini, R. Mantovani, F. Vetrano \Determinazione dell'ordine di grandezza del coefficiente di viscosit`adell'aria", Studi Urbinati C 29 (1987) 97 [10] P. Bernardini, R. Mantovani, F. Vetrano \Dieci Strumenti dell'Antico Laboratorio di Fisica dell'Universit`aUrbinate", Studi Urbinati C 29 (1987) 115 [11] F. Baldetti, P. Bernardini, F. Grianti, F. Vetrano \Analisi dei vincoli imposti ad una particolare discretizzazione della curva di flusso nella ventilazione automatica programmabile", Automazione e Strumentazione 35/12 (1987) 153 [12] I.
    [Show full text]
  • APC Scientific Board 2017 Tech
    2012-2016 APC Laboratory Technical Activities T. Zerguerras on behalf of the Technical Departments 20/11/2017 APC Scientific Board 2017 1 Technical Departments Organisation Equipment, facilities and platform Instrumentation Department (Techniques Expérimentales) Electronics and Microelectronics Department Mechanics Department IT Department Quality Unit R&D: CMB µelectronic, Compton, GAMMACUBE, Liquido Analysis & Prospects 20/11/2017 APC Scientific Board 2017 2 General organisation • 5 technical departments + Quality Unit + the FACe platform • Building an instrument => combining skills 22/09/2017 APC Scientific Board 2017 3 Technical departments organisation Matrix organisation structure: Project/Department (Assignment to a department, participation to projects) One specific skill (Mechanics, Electronics/µelectronics, Instrumentation, IT, QA/PA) Transverse activities of the Quality Unit Supervision : Head of department Project coordination: Project manager Indicator Boards for activities and assignments monitoring Project Monitoring Committee (Comité de Suivi de Projets CSP) This organisation aims to create a bond of trust with funding and tutelage agencies 20/11/2017 APC Scientific Board 2017 4 Organisation: Technical staff evolution On 31/12 Technical departments staff evolution 60 Technical departments staff - Gender 45 50 40 40 35 34 30 30 33 35 38 38 Permanent 25 MEN Fixed-term 20 38 40 39 40 39 20 WOMEN 15 10 10 15 17 13 12 12 5 10 11 9 10 11 0 0 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 Technical departments
    [Show full text]
  • Muon Spallation in Double Chooz
    Muon Spallation in Double Chooz Claire Thomas∗ REU, Columbia University and MIT (Dated: August 10, 2009) This report presents my work for Double Chooz at MIT during the 2009 Summer REU program, funded by Columbia University. Double Chooz is a reactor neutrino experiment that aims to measure the mixing parameter θ13. The experiment detects electron antineutrinos via inverse beta decay. Neutrons and light nuclei made in muon spallation are a major background to the experiment. The delayed neutron emitter 9Li is especially problematic because it mimics the inverse beta decay signal. For this reason I studied muon spallation in Double Chooz, focusing on the production and subsequent decay of 9Li. There are two key differences between 9Li decay and inverse beta decay. The first is that 9Li is a β− decay, so it emits an electron, whereas inverse beta decay emits a positron. The second difference is the energy of the neutrons emitted. In 9Li decay the neutron energy is on the order of MeV, whereas the inverse beta decay neutron has a negligible kinetic energy. Since Double Chooz does not distinguish charge, the positrons and electrons are not easy to distinguish. First, I ran simulations of electrons and positrons in the Double Chooz detector and constructed a late light variable to distinguish them from electrons. This proved insufficient, so I wrote general software to simulate radioactive decays in the Double Chooz detector. In this report I present the deposited energy spectra of a few important decays. 1. INTRODUCTION The consequence of neutrino oscillation is that an ex- periment that is sensitive to only one of the three neu- 1.1.
    [Show full text]
  • Neutrino Oscillation Studies with Reactors
    REVIEW Received 3 Nov 2014 | Accepted 17 Mar 2015 | Published 27 Apr 2015 DOI: 10.1038/ncomms7935 OPEN Neutrino oscillation studies with reactors P. Vogel1, L.J. Wen2 & C. Zhang3 Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well- understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle y13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. eutrinos, the products of radioactive decay among other things, are somewhat enigmatic, since they can travel enormous distances through matter without interacting even once. NUnderstanding their properties in detail is fundamentally important. Notwithstanding that they are so very difficult to observe, great progress in this field has been achieved in recent decades. The study of neutrinos is opening a path for the generalization of the so-called Standard Model that explains most of what we know about elementary particles and their interactions, but in the view of most physicists is incomplete. The Standard Model of electroweak interactions, developed in late 1960s, incorporates À À neutrinos (ne, nm, nt) as left-handed partners of the three families of charged leptons (e , m , t À ). Since weak interactions are the only way neutrinos interact with anything, the un-needed right-handed components of the neutrino field are absent in the Model by definition and neutrinos are assumed to be massless, with the individual lepton number (that is, the number of leptons of a given flavour or family) being strictly conserved.
    [Show full text]
  • Astroparticle Astroparticle Physics
    AstroparticleAstroparticleAstroparticle PhysicsPhysicsPhysics Summerstudent Lecture 2010 Axel Lindner DESY e-mail: [email protected] A. Lindner Summer Student Lecture 2010 Astroparticle Physics AstroparticleAstroparticleAstroparticle Physics:Physics:Physics: HistoryHistoryHistory High energy physics started with discoveries and analysis of particles generated by the cosmic radiation in the atmosphere. • 1932: Positron • 1937: Muons • 1947: Pions, Λ, K • 1952: Ξ-, Σ+ • 1971: Charm (?) • 1998: Neutrino oscillation SK 2005 A. Lindner Summer Student Lecture 2010 Astroparticle Physics AstroparticleAstroparticleAstroparticle Physics:Physics:Physics: CosmicCosmicCosmic LaboratoryLaboratoryLaboratory Really high energies are only provided by the cosmos: • particles beyond 1020eV (107·LHC beam energy) • Access to physics at the Planck scale via indirect observations of the very early universe Really long baselines are only provided by the cosmos: • Oscillation of υ from the sun: 150·109 m • υ from SN 1987A (LMC): 150.000 light-years A. Lindner Summer Student Lecture 2010 Astroparticle Physics AstroparticleAstroparticleAstroparticle Physics:Physics:Physics: PhenomenaPhenomenaPhenomena There are many natural phenomena waiting for explanation: • Cosmic Radiation • Dark Matter • Cosmic Microwave Background Radiation The cosmic connection: • The development (and origin?) of the cosmos can only be addressed with HEP knowledge A. Lindner Summer Student Lecture 2010 Astroparticle Physics A. Lindner Summer Student Lecture 2010 Astroparticle Physics
    [Show full text]
  • PROSPECT Upgrade
    Precision Reactor Upgrade significantly expands oscillation Oscillation and physics reach in unique parameter space ] prospect.yale.edu ] ] 2 2 90% CL 90% CL 2 90% CL SPECTrum Experiment: PROSPECT, 1 yr Sensitivity PROSPECT, 2 yr Optimized Sensitivity PROSPECT, 2 yr Optimized Sensitivity PROSPECT, 2 yr Sensitivity DANSS Exclusion PROSPECT, 2 yr Optimized Sensitivity, σspectrum = 5% [eV [eV PROSPECT, 2 yr Optimized Sensitivity NEOS Exclusion [eV DYB Exclusion KATRIN Exclusion 2 41 PROSPECT, Current Sensitivity 2 41 STEREO, Current Exclusion 2 41 PROSPECT-I demonstrated PROSPECT, Current Exclusion STEREO, Expected Sensitivity LBN CPV Ambiguity Limit m m 10 m SBL + Gallium Anomaly (RAA + Evolution), 95% CL Δ 10 Δ 10 Upgrade & Science Goals Δ excellent performance H. Pieter Mumm for the PROSPECT collaboration 6 Primary Physics Goals Li capture Search for sterile neutrino oscillation 1 1 1 • Nuclear recoil within unique parameter space important for the reactor anomaly and Long Baseline Electronic recoil experiments. 235 • High-resolution U spectrum and flux 10−1 10−1 10−1 measurement addresses observed shape 10−2 10−1 1 10−2 10−1 1 10−2 10−1 1 sin22θ sin22θ sin22 discrepancies 14 14 θ14 Pulse shape discrimination (PSD) PROSPECT measurement strategy capable scintillator with high light yield • Unique 6Li-doped liquid scintillator as inverse Left: Comparison of sterile oscillation sensitivities for current and projected PROSPECT-II datasets. allows for excellent background beta decay target; distinct IBD topology Center: Projected PROSPECT-II sensitivity compared to selected short-baseline reactor experiments. rejection and > 5%/ E resolution. • Highly segmented array for background Right: Overlap of three year PROSPECT-II sensitivity with relevant regions of parameter space rejection and event localization • ~ 7m baseline to very compact highly- PROSPECT-II uniquely addresses a high Δ m2 region between enriched reactor core provides unique 1 eV2 - 15 eV2, and will reach the 5o sin2(2�14) sensitivity over sensitivity at high Δ m2.
    [Show full text]