Table 1 Some of the Drugs That Induce DILI and the Mechanisms Underlying Their Toxicity.54–78

Total Page:16

File Type:pdf, Size:1020Kb

Table 1 Some of the Drugs That Induce DILI and the Mechanisms Underlying Their Toxicity.54–78 Table 1 Some of the drugs that induce DILI and the mechanisms underlying their toxicity.54–78 Drug Use Possible mechanism of liver injury Liver injury type Abacavir Reverse a. Abacavir can cause clinically rare apparent a. Hepatotoxicity is observed due to transcriptase hepatotoxicity. hypersensitivity syndrome and/or allergy inhibitor, used (fever, rash and fatigue). in the therapy b. Within 1 to 3 months of starting abacavir, b. Hypersensitivity is associated with the of HIV usually mild, transient elevations in serum HLA-B*57:01 haplotype. infection aminotransferase levels (>5 times the upper limit) are observed in up to 6% of patients c. The serum enzyme pattern can be c. Few cases of on hypersensitivity hepatocellular or cholestatic. abacavir induced hepatitis with unknown d. Rapid recovery (within 4 weeks) can be mechanism. observed after stopping therapy. Acetaminophe Analgesic and a. Chronic acetaminophen therapy (4 g/day) a. Acetaminophen is largely converted to n antipyretic leads to transient ~3-fold elevations in serum nontoxic glucuronate or sulfate conjugates medication for aminotransferase levels after 3 to 7 in 39% and later secreted in the urine. mild-to- of persons. Both of these syndromes can be moderate pain life threatening and both may be and fever accompanied by evidence of liver injury. b. Direct hepatoxicity is observed usually b. A minor amount of acetaminophen is after an acute overdose ingestion (e.g. metabolized via the CYP450 system to suicide attempt using 7.5-15 g) within 24 to intermediates that can be toxic, 72 hours. Marked elevations in serum ALT particularly N-acetyl-p- and AST (often to >2000 U/L) are observed. benzoquinoneimine reactive intermediate, After 48 to 96 h several clinical symptoms which is rapidly conjugated to GSH. (jaundice, confusion, hepatic failure, renal insufficiency) in some instances death are observed. c. Severe hypersensitivity reactions, i.e. SJS c. If GSH levels are low or the pathway is and TEN may also be observed. interrupted by high acetaminophen doses, this intermediate accumulates and binds to intracellular macromolecules that can lead to cell injury, usually through caspase- independent apoptosis initiated by activation of PARP-1. Aspirin analgesic and a. Long term, moderate to high dose aspirin a. Aspirin is a direct, intrinsic hepatotoxin. antipyretic therapy cause elevations in serum ALT medication levels, mild increases in AP and bilirubin and usually resolve rapidly after discontinuation of aspirin therapy. b. More dramatic examples of aspirin b. Aspirin has been shown to inhibit hepatotoxicity usually occur with 1,800 to mitochondrial function in the case of Reye 3,200 mg/day (>100 mg/kg) doses. syndrome, and the drug induced mitochondrial dysfunction combination with a systemic viral illness is postulated to underlie the pathogenesis of Reye syndrome. The mitochondrial failure is manifested by LASH. c. High doses symptoms of nausea, anorexia c. While liver biopsy generally shows and abdominal pain and even minimal injury despite the height of the encephalopathy with signs of hepatic enzyme elevations, electron microscopy dysfunction (hyperammonemia and may reveal fat and mitochondrial coagulopathy) can occur. abnormalities. Interferon beta commonly to a. Interferon beta is a well-known cause of a. The cause of hepatic injury from (ß-1a and ß- prevent mild hepatic injury mostly in women and interferon beta is not known. 1b) relapses in rarely can result in severe liver injury with multiple jaundice. sclerosis b. Interferon beta causes transient and mild b. The asymptomatic elevations in serum elevations above 3 times the upper limit in enzymes may be dose-related. The cases serum aminotransferase levels (after ~3 -12 with acute jaundice are occasionally months therapy in 20-40% of patients). associated with autoimmune features and may represent a triggering of an underlying autoimmune disease. c. Serum AP levels are usually normal or minimally elevated, and symptoms and jaundice (<1 in1000, after 2-12 months) or to acute liver failure are rare. Persistent ALT elevations suggest chronic hepatitis and may require discontinuation of treatment in up to 20% of patients. d. Autoimmune features can occur, but may relate more to the underlying multiple sclerosis rather than drug-induced liver disease. Dabigatran Antithrombin a. Chronic therapy is associated with a. The cause of liver injury during anticoagulant moderate ALT elevations (> 3 times the dabigatran oral anticoagulant therapy is (for prevention upper limit, in 1.5% to 3% of patients) and likely to be idiosyncratic and perhaps of stroke and very rare apparent liver injury with jaundice. immunologic. venous b. Liver injury with jaundice and a mixed embolism) pattern of serum enzyme elevations can arise ~4 weeks of starting dabigatran and resolved rapidly with its discontinuation. Estrogens oral a. Estrogens and oral contraceptives are a. Estrogens affect the orphan nuclear /Oral contraceptive associated with several liver-related receptors that modulate bile acid and contraceptives and in estrogen complications (i.e. intrahepatic cholestasis, bilirubin metabolism and cholestasis replacement sinusoidal dilatation, peliosis hepatitis, occurs. therapy hepatic adenomas with big liver mass or rupture with hemoperitoneum , hepatocellular carcinoma, hepatic venous thrombosis and an increase risk of gallbladder disease and gallstones), particularly at high doses. b. Estrogens and oral contraceptives can b. Genetically impaired biluribun cause mild inhibition of bilirubin excretion metabolism may be the cause of estrogen- leading to jaundice (especially in patients related hepatic disease. who have genetically impaired bilirubin metabolism, such as the Dubin Johnson syndrome). c. After first few cycles of therapy, estrogens c. Women with cholestasis often have a and oral contraceptives can induce an history of cholestasis of pregnancy (with apparent cholestatic liver injury (with jaundice and/or pruritus) and genetic symptoms like fatigue, pruritus, nausea, dark variations in bile acid transporter genes urine) particularly in women with idiopathic (ABC B4, B11 and C2) are frequent. cholestasis of pregnancy, and rarely after the six months. Serum enzyme elevations are usually mixed or cholestatic, although very early during the injury, ALT levels can be markedly elevated upto 5- to 20-fold. Resolution may be delayed. d. Use of oral contraceptives has also been linked to an increase in venous thrombosis and cases of hepatic venous thrombosis. Portal vein thrombosis has also been reported with oral contraceptive use. Sulfonyl ureas antidiabetic a. These agents are infrequent causes of a. The mechanism of liver injury might be (glyburide agents clinically apparent liver injury. due to hypersensitivity. gliclazide, b. Clinically apparent liver injury from the b. Cross reactivity to reactions to glipizide, and sulfonyl ureas is rare (minor enzyme sulfonamides can occur, however, glimepiride) elevations in less than 1% of patients), sulfonylurea-associated hepatic injury is usually appears after 3 to 12 weeks with not actually quite like the immuno allergic symptoms of fatigue, nausea and abdominal pattern of sulfonamides. discomfort, dark urine and jaundice. Resolution is rapid after medication is stopped. c. Rare instances of hepatic injury arising c. The sulfonyl ureas should be used with after many months or years of therapy have caution in patients with sulfonamide been reported, particularly soon after an hypersensitivity or sulfonamide-related increase in dosage. hepatotoxicity. d. Hepatocellular, cholestatic and mixed injuries have been described with sulfonylurea-induced liver injury. e. As sulfonyl ureas may be given in combination with other hypoglycemic agents, many of which also cause liver injury, it can be difficult to determine which agent is responsible for the injury. Ketoconazole An imidazole a. Ketoconazole-related clinically apparent a. The cause of clinically apparent fungicidal acute DILI (mostly acute hepatitis) is well- hepatotoxicity from ketoconazole is agent with a documented after usually 1 to 6 months of unknown; however, it may correlate with very broad therapy(1:2,000 to 1:15,000 users). Recovery the ability of ketoconazole to inhibit spectrum of takes 1 to 3 months after stopping the mammalian sterol synthesis. activity therapy. b. Mild and transient elevations in liver b. Acute liver injury is clearly enzymes occur in 4% to 20% of patients on idiosyncratic. oral ketaconazole. c. While most cases present with a c. Ketoconazole is a potent inhibitor of hepatocellular injury, cholestatic forms was human CYP 3A4 and can alter the serum also described. levels of many drugs that are metabolized via the P450 system, increasing the toxicity of these agents. d. Rash, fever and eosinophilia are rare as is autoantibody formation. e. Severe cases with acute liver failure (need for emergency liver transplantation) and even death have also been described. Lovastatin commonly a. Lovastatin can cause mild and a. The underlying event of hepatic damage used asymptomatic serum ALT (in 3 to 5% of caused by lovastatin is unknown. cholesterol patients, 3 times above UL) elevations and it lowering agent rarely is the underlying factor of clinically (statin) apparent acute liver injury. b. The onset of clinical injury (usually b. Lovastatin is largely metabolized by cholestatic, but can be hepatocellular) can CYP 3A4 and metabolites are excreted in vary from weeks to years. bile. The mild ALT elevations
Recommended publications
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Biogenesis of Lipid Bodies in Lobosphaera Incisa
    Biogenesis of Lipid Bodies in Lobosphaera incisa Dissertation for the award of the degree “Doctor rerum naturalium” of the Georg-August-Universität Göttingen within the doctoral program GGNB Microbiology and Biochemistry of the Georg-August University School of Science (GAUSS) submitted by Heike Siegler from Münster Göttingen 2016 Members of the Thesis Committee Prof. Dr. Ivo Feußner Department for Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Prof. Dr. Volker Lipka Department of Plant Cell Biology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Prof. Dr. Thomas Friedl Department of Experimental Phycology and Culture Collection of Algae at the University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Members of the Examination Board Prof. Dr. Ivo Feußner (Referee) Department for Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Prof. Dr. Volker Lipka (2nd Referee) Department of Plant Cell Biology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Prof. Dr. Thomas Friedl Department of Experimental Phycology and Culture Collection of Algae at the University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Prof. Dr. Andrea Polle Department of Forest Botany and Tree Physiology, Büsgen Institute, University of Göttingen PD Dr. Thomas Teichmann Department of Plant Cell Biology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Dr. Martin Fulda Department for Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen Date of oral examination: 30.05.2016 Affidavit I hereby declare that I wrote the present dissertation on my own and with no other sources and aids than quoted.
    [Show full text]
  • WO 2015/048577 A2 April 2015 (02.04.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/048577 A2 April 2015 (02.04.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 48/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/057905 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 26 September 2014 (26.09.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/883,925 27 September 2013 (27.09.2013) US (84) Designated States (unless otherwise indicated, for every 61/898,043 31 October 2013 (3 1. 10.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: EDITAS MEDICINE, INC.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub
    US 2003O19897OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub. Date: Oct. 23, 2003 (54) GENOSTICS clinical trials on groups or cohorts of patients. This group data is used to derive a Standardised method of treatment (75) Inventor: Gareth Wyn Roberts, Cambs (GB) which is Subsequently applied on an individual basis. There is considerable evidence that a significant factor underlying Correspondence Address: the individual variability in response to disease, therapy and FINNEGAN, HENDERSON, FARABOW, prognosis lies in a person's genetic make-up. There have GARRETT & DUNNER been numerous examples relating that polymorphisms LLP within a given gene can alter the functionality of the protein 1300 ISTREET, NW encoded by that gene thus leading to a variable physiological WASHINGTON, DC 20005 (US) response. In order to bring about the integration of genomics into medical practice and enable design and building of a (73) Assignee: GENOSTIC PHARMA LIMITED technology platform which will enable the everyday practice (21) Appl. No.: 10/206,568 of molecular medicine a way must be invented for the DNA Sequence data to be aligned with the identification of genes (22) Filed: Jul. 29, 2002 central to the induction, development, progression and out come of disease or physiological States of interest. Accord Related U.S. Application Data ing to the invention, the number of genes and their configu rations (mutations and polymorphisms) needed to be (63) Continuation of application No. 09/325,123, filed on identified in order to provide critical clinical information Jun. 3, 1999, now abandoned. concerning individual prognosis is considerably less than the 100,000 thought to comprise the human genome.
    [Show full text]
  • A Systematic Review on Self-Micro Emulsifying Drug Delivery Systems: a Potential Strategy for Drugs with Poor Oral Bioavailability
    International Journal of Applied Pharmaceutics ISSN- 0975-7058 Vol 11, Issue 1, 2019 Review Article A SYSTEMATIC REVIEW ON SELF-MICRO EMULSIFYING DRUG DELIVERY SYSTEMS: A POTENTIAL STRATEGY FOR DRUGS WITH POOR ORAL BIOAVAILABILITY G. V. RADHA1*, K. TRIDEVA SASTRI1, SADHANA BURADA1, JAMPALA RAJKUMAR1 1GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, Andhra Pradesh State, India Email: [email protected] Received: 26 Sep 2018, Revised and Accepted: 19 Nov 2018 ABSTRACT Currently a marked interest in developing lipid-based formulations to deliver lipophilic compounds. Self-emulsifying system has emerged as a dynamic strategy for delivering poorly water-soluble compounds. These systems can embrace a wide variety of oils, surfactants, and co-solvents. An immediate fine emulsion is obtained on exposure to water/gastro-intestinal fluids. The principal interest is to develop a robust formula for biopharmaceutical challenging drug molecules. Starting with a brief classification system, this review signifies diverse mechanisms concerning lipid- based excipients besides their role in influencing bioavailability, furthermore pertaining to their structured formulation aspects. Consecutive steps are vital in developing lipid-based systems for biopharmaceutical challenging actives. Such a crucial structured development is critical for achieving an optimum formula. Hence lipid excipients are initially scrutinized for their solubility and phase behavior, along with biological effects. Blends are screened by means of simple dilution test and are consequently studied with more advanced biopharmaceutical tests. After discerning of the principle formula, diverse technologies are offered to incorporate the fill-mass either in soft/hard gelatin capsules. There is also feasibility to formulated lipid-system as a solid dosage form.
    [Show full text]
  • Regional Heterogeneity Impacts Gene Expression in the Subarctic Zooplankter Neocalanus flemingeri in the Northern Gulf of Alaska
    ARTICLE https://doi.org/10.1038/s42003-019-0565-5 OPEN Regional heterogeneity impacts gene expression in the subarctic zooplankter Neocalanus flemingeri in the northern Gulf of Alaska Vittoria Roncalli 1,2, Matthew C. Cieslak1, Martina Germano1, Russell R. Hopcroft3 & Petra H. Lenz1 1234567890():,; Marine pelagic species are being increasingly challenged by environmental change. Their ability to persist will depend on their capacity for physiological acclimatization. Little is known about limits of physiological plasticity in key species at the base of the food web. Here we investigate the capacity for acclimatization in the copepod Neocalanus flemingeri, which inhabits the Gulf of Alaska, a heterogeneous and highly seasonal environment. RNA-Seq analysis of field-collected pre-adults identified large regional differences in expression of genes involved in metabolic and developmental processes and response to stressors. We found that lipid synthesis genes were up-regulated in individuals from Prince William Sound and down-regulated in the Gulf of Alaska. Up-regulation of lipid catabolic genes in offshore individuals suggests they are experiencing nutritional deficits. The expression differences demonstrate physiological plasticity in response to a steep gradient in food availability. Our transcriptional analysis reveals mechanisms of acclimatization that likely contribute to the observed resilience of this population. 1 Pacific Biosciences Research Center, University of Hawai’iatMānoa, 1993 East-West Rd., Honolulu, HI 96822, USA. 2 Department of Genetics, Microbiology and Statistics, Facultat de Biologia, IRBio, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain. 3 Institute of Marine Science, University of Alaska, Fairbanks, 120 O’Neill, Fairbanks, AK 99775-7220, USA. Correspondence and requests for materials should be addressed to V.R.
    [Show full text]
  • Implications for the Evaluation of Food Effects on Oral Drug Absorption
    Lipids in the stomach – Implications for the evaluation of food effects on oral drug absorption Mirko Koziolek1,2, Frédéric Carrière3, Christopher J. H. Porter2,4 * Corresponding author: Dr. Mirko Koziolek 1 Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, University of Greifswald, Germany Felix-Hausdorff-Str. 3, D-17487 Greifswald, Germany [email protected] 2 Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Victoria, 3052, Australia 3 Aix-Marseille Université, CNRS, UMR 7282 Enzymologie Interfaciale et de Physiologie de la Lipolyse, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France 4 ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Victoria, 3052, Australia 1 Contents Contents ............................................................................................................................................. 2 Abstract .............................................................................................................................................. 3 Key words .......................................................................................................................................... 3 Abbreviations ..................................................................................................................................... 4 1 Introduction ................................................................................................................................
    [Show full text]
  • Use of Derivatives of Human Bile-Salt Stimulated Lipase
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 535 048 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.e: C07K 14/00, C12N 9/20, of the grant of the patent: C12N 9/16, C12N 15/55, 02.04.1997 Bulletin 1997/14 A61 K 38/46 (21) Application number: 91911030.4 (86) International application number: PCT/SE91/00381 (22) Date of filing: 30.05.1991 (87) International publication number: WO 91/18923 (12.12.1991 Gazette 1991/28) (54) USE OF DERIVATIVES OF HUMAN BILE-SALT STIMULATED LIPASE FOR THE PREPARATION OF MEDICAMENTS VERWENDUNG VON DERIVATEN DURCH MENSCHLICHES GALLENSALZ STIMULIERTER LIPASE ZUR HERSTELLUNG VON MEDIKAMENTEN UTILISATION DES DERIVES DE LA LIPASE STIMULEE PAR LES SELS BILIAIRES DE L'HOMME POUR LA PREPARATION D'UN MEDICAMENT (84) Designated Contracting States: • ENERBACK, Sven AT BE CH DE DK ES FR GB GR IT LI LU NL SE S-431 69 Molndal (SE) • HERNELL, Olle (30) Priority: 01.06.1990 SE 9001985 S-902 40 Ume (SE) • NILSSON, Jeanette (43) Date of publication of application: S-413 14G6teborg (SE) 07.04.1993 Bulletin 1993/14 • OLIVECRONA, Thomas S-902 45 Ume (SE) (73) Proprietor: Astra Aktiebolag 151 85 Sodertalje (SE) (74) Representative: Hjertman, Ivan T. et al AB ASTRA (72) Inventors: Patent and Trade Mark Department • BJURSELL, Gunnar 151 85 Sodertalje (SE) S-433 31 Partille (SE) • BLACKBERG, Lars (56) References cited: S-902 44 Ume (SE) WO-A-85/00381 • CARLSSON, Peter S-414 59G6teborg (SE) • DIALOG INFORMATION SERVICES, File 155, Medline 67-91: J.
    [Show full text]
  • Gastric Digestive Function
    Gastrointestinal Functions, edited by Edgard E. Delvin and Michael J. Lentze. Nestle Nutrition Workshop Series. Pediatric Program, Vol. 46. Nestec Ltd.. Vevey/Lippincott Williams & Wilkins. Philadelphia © 2001. Gastric Digestive Function Daniel Menard and Jean-Rene Basque Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada The gastric epithelium not only has a protective barrier function (against hydro- chloric acid, peptidases, Helicobacter pylori, and so on) and a primary role in epithe- lial restitution (ulcer healing), but it also has specific digestive functions. The gastric mucosa is responsible for the secretion of luminal compounds such as mucus, hydro- chloric acid, pepsinogen, and lipase. One of the main purposes of gastric secretion is the digestion of dietary proteins. This involves the release of different pepsinogens (Pgl-5) by the fundic and antral gastric glands (1). These inactive proenzymes are synthesized and packaged into secretory granules of surface or glandular epithelial cells. Under acidic conditions, these secreted proenzymes are autocatalytically cleaved to generate their active form—pepsins (pepsin, prochymosin, progastricsin)—which are representative members of a group of proteolytic enzymes classified as aspartic proteases (2). In humans, pepsinogen 5 (Pg5), which is specifically synthesized and secreted by zymogenic chief cells, plays a primary role in the initiation of protein digestion and the proteolysis of collagen (the protein component of meat). Although pepsinogen has been a subject of research since the 19th century (3), knowledge acquired over the last decade on the functions of the human stomach has expanded to include a significant role in fat digestion (4). In contrast to pepsin, the presence of a true gastric lipase has been the subject of a long controversy (4).
    [Show full text]
  • Enzymes Involved in Lipid Digestion A
    Enzymes involved in lipid digestion A. Salhi, F. Carriere, Myriam M.-L. Grundy, A. Aloulou To cite this version: A. Salhi, F. Carriere, Myriam M.-L. Grundy, A. Aloulou. Enzymes involved in lipid digestion. Myriam M.-L. Grundy; Peter J. Wilde. Bioaccessibility and digestibility of lipids from food, Springer Interna- tional Publishing, pp.3-28, 2021, 978-3-030-56908-2. 10.1007/978-3-030-56909-9_1. hal-03146298 HAL Id: hal-03146298 https://hal.archives-ouvertes.fr/hal-03146298 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preprint of DOI: 10.1007/978-3-030-56909-9_1 Enzymes involved in lipid digestion Salhi, A. a, b , Carriere, F. b, Grundy, M. M.L c, and Aloulou, A. a a Laboratoire de Biochimie et de Genie Enzymatique des Lipases, ENIS, Universite de Sfax, 3038, Sfax, Tunisia b Aix Marseille Univ, CNRS, BIP, UMR7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 9, France c School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading, RG6 6AR, UK Lipid digestion is a complex process that takes place at the lipid-water interface and involves various lipolytic enzymes present predominantly in the stomach and the small intestine (Carey, Small, & Bliss, 1983).
    [Show full text]
  • Physiological Parameters Governing the Action of Pancreatic Lipase
    Nutrition Research Reviews (2010), 23, 146–154 doi:10.1017/S0954422410000028 q The Authors 2010 Physiological parameters governing the action of pancreatic lipase Iain A. Brownlee1*, Deborah J. Forster1, Matthew D. Wilcox1, Peter W. Dettmar2, Chris J. Seal3 and Jeff P. Pearson1 1Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK 2Technostics Ltd, The Deep Business Centre, Hull HU1 4BG, UK 3Human Nutrition Research Centre, School of Agriculture, Food & Rural Development, Agriculture Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK The most widely used pharmacological therapies for obesity and weight management are based on inhibition of gastrointestinal lipases, resulting in a reduced energy yield of ingested foods by reducing dietary lipid absorption. Colipase-dependent pancreatic lipase is believed to be the major gastrointestinal enzyme involved in catalysis of lipid ester bonds. There is scant literature on the action of pancreatic lipase under the range of physiological conditions that occur within the human small intestine, and the literature that does exist is often contradictory. Due to the importance of pancreatic lipase activity to nutrition and weight management, the present review aims to assess the current body of knowledge with regards to the physiology behind the action of this unique gastrointestinal enzyme system. Existing data would suggest that pancreatic lipase activity is affected by intestinal pH, the presence of colipase and bile salts, but not by the physiological range of Ca ion concentration (as is commonly assumed). The control of secretion of pancreatic lipase and its associated factors appears to be driven by gastrointestinal luminal content, particularly the presence of acid or digested proteins and fats in the duodenal lumen.
    [Show full text]
  • Fat Digestion in the Stomach: Stability of Lingual Lipase in the Gastric Environment
    248 FINK ET AL. 003 1 -3998/84/1803-0248$02.00/0 PEDIATRIC RESEARCH Vol. 18, No. 3, 1984 Copyright O 1984 International Pediatric Research Foundation, Inc. Printed in (I.S. A. Fat Digestion in the Stomach: Stability of Lingual Lipase in the Gastric Environment CAROL S. FINK, PAUL HAMOSH, AND MARGIT HAMOSH'") Department of Pediatrics and Department of Physiology and Biophysics, Georgetown University Medical Center, Washington,D.C., USA Summary the intestinal hydrolysis of fat by pancreatic lipase (6). Recent studies show that the site of action of lingual lipase, an enzyme Digestion of dietary fat starts in the stomach, where lingual with optimal activity at pH 3.0-6.0, is not limited to the stomach, lipase hydrolyzes triglycerides to free fatty acids and partial but continues in the duodenum (1, 12), especially in conditions glycerides at pH 3.0-6.0. Lingual lipase is secreted continuously of physiologic (9, 10, 37, 47, 69) and pathologic (46, 53, 55, 59) from lingual serous glands and accumulates in the stomach pancreatic insufficiency, characterized by low duodenal pH (12- between meals, when gastric pH is ~3.0.We have, therefore, 14, 19). In these cases, the enzyme is probably responsible for examined the resistance of lingual lipase to low pH and its the digestion and absorption of as much as 70% of dietary fat possible protection by dietary components present in the stomach (55, 59). contents. Partially purified rat lingual lipase (7-15 pg enzyme Lingual lipase is secreted from von Ebner glands (67) located protein) was preincubated at 37OC for 10-60 min at pH 1.0-6.0 at the proximal site of the tongue beneath the circumvallate before incubation for assay of lipolytic activity, hydrolysis of tri- papillae (24, 28).
    [Show full text]