Bgjournalvolume 4 • Number 1 • January 2007

Total Page:16

File Type:pdf, Size:1020Kb

Bgjournalvolume 4 • Number 1 • January 2007 Journal of Botanic Gardens Conservation International BGjournalVolume 4 • Number 1 • January 2007 Special 2007 anniversary issue Taxonomy and plant conservation the tercentenary of the birth of Carl Linnaeus (1707-1778) 20 YEARS 1987-2007 Contents 02 Editorial Editors: Etelka Leadlay and Sara Oldfield Co-editors: Suzanne Sharrock and Fiona Wild 04 The legacy of Linnaeus Cover Photo: Sarracenia flava L. a species described by Linnaeus in Species Plantarum 1:510 (1753) in Linnaean names and their types: a permanent reference point cultivation at the Royal Botanic Gardens, Kew 08 (Photo: BGCI) Design: John Morgan, Seascape 12 Taxonomy and plant conservation E-mail: [email protected] Submissions for the next issue should reach the editor 16 Botanical buffet – the importance of living collections for plant before 20th March, 2007. The theme of this issue will be climate change. We would welcome contributions. systematics Please send text on diskette or via e-mail, as well as a hard copy. Please send photographs as original slides or prints unless scanned to a very high resolution (300 21 Taxonomy is the tool that measures plant diversity – and our pixels/inch and 100mm in width); digital images need to level of knowledge be of a high resolution for printing. If you would like further information, please request Notes for authors. BGjournal is published by Botanic Gardens Conservation 24 The Catalogue of Life: indexing the world’s species International (BGCI). It is published twice a year and is sent to all BGCI members. Membership is open to all interested individuals, institutions and organisations that 30 Book notices and taxonomic support the aims of BGCI (see page 32 for Membership resources application form). Further details available from: • Botanic Gardens Conservation International, Descanso 31 Linnaean Celebrations 2007 House, 199 Kew Road, Richmond, Surrey TW9 3BW UK. Tel: +44 (0)20 8332 5953, Fax: +44 (0)20 8332 5956 E-mail: [email protected], www.bgci.org 32 Registration Form for the • BGCI-Russia, c/o Main Botanical Gardens, Botanicheskaya st., 4, Moscow 127276, Russia. International Agenda for Botanic Tel: +7 (095) 219 6160 / 5377, Fax: +7 (095) 218 0525, Gardens in Conservation E-mail: [email protected], www.bgci.ru • BGCI (U.S.) Inc., c/o Brooklyn Botanic Garden, 1000 Washington Avenue, Brooklyn, New York How to join Botanic Gardens 11225-1099, U.S.A. Tel: +1 718 623 7200, Fax: +1 718 857 2430, E-mail: [email protected] Conservation International www.bgci.org/us • BGCI-Netherlands, c/o Utrecht University Botanic Gardens, P.O. Box 80162, NL-3508 TD, Netherlands. Tel: +31 30 253 2876, Fax: +31 30 253 5177, E-mail: [email protected], www.bi.uu.nl/botgard 08 12 • BGCI-Canarias, c/o Jardín Botánico Canario Viera y Clavijo, Apartado de Correos 14, Tafira Alta 35017, Las Palmas de Gran Canaria, Gran Canaria, Spain. Tel: +34 928 21 95 80/82/83, Fax: +34 928 21 95 81, E-mail: [email protected] • BGCI – China and South East Asia, c/o Registry, Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569. E-mail: Bian.Tan @bgci.org, [email protected], www.bgci.org/china • BGCI-Colombia , c/o Jardín Botánico de Bogotá, Jose Celestino Mutis, Av. No. 61-13 – A.A. 59887, Santa Fe de Bogotá, D.C., Colombia. Tel: +57 630 0949, Fax: +57 630 5075, E-mail: [email protected], www.humboldt.org.co/jardinesdecolombia/ html/la_red.htm • BGCI-Deutschland, c/o Botanischer Gärten der Universität Bonn, Meckenheimer Allee 171, 53115 Bonn, Germany. Tel: +49 2 2873 9055, Fax: +49 2 28731690, E-mail: [email protected] 04 BGCI is a worldwide membership organization established in 1987. Its mission is to build a global network for plant conservation. BGCI is an independent organization registered in the United Kingdom as a charity (Charity Reg No 1098834) and a company limited by guarantee, No 4673175. BGCI is a tax-exempt (501(c)(3) non-profit organization in the USA and in Russia. Opinions expressed in this publication do not necessarily reflect the views of the Boards or staff of BGCI or of its members BGjournal replaces BGCNews and is published twice a year. BGjournal has been given a new name as the news section of BGCNews and Roots (Botanic Gardens Conservation International Education Review) is now contained in Cuttings which is published quarterly. There are 31 issues of BGCNews published twice yearly from 1987-2003. 16 21 24 BGjournal • Vol 4 (1) 01 Editorial Right: Dracaena The diversity of plant species is a draco is under fascination to all botanists, an threat in the inspiration to gardeners and, although wild (IUCN generally taken for granted, provides Category: the basis for all life on earth. Species Vulnerable). The diversity represents millions of years of Botanic Garden evolution and is the most important ‘Viera y Clavijo’, visible expression of biodiversity, giving within the conservation debate. plant species. He believed that this Las Palmas, character to ecosystems and shape to The ecosystem approach dominates represented roughly half the world’s Spain has genetic diversity. Understanding and discussion of biodiversity conservation flora. Now we know that closer to undertaken a recording plant diversity depends on whereas mammals and birds are used 300,000 vascular plant species exist. successful naming species. In this issue of as indicators of biodiversity status and programme to BGjournal we mark the 300th health. The Convention on Biological Target 2 of the GSPC depends on the restore the anniversary of Linnaeus, the founder of Diversity (CBD) Global Strategy for classification and naming of plants. It island’s last modern species nomenclature and Plant Conservation (GSPC) was calls for A preliminary assessment of laurel forests variously described as “the Prince of developed to address both the relative the conservation status of all known and reintroduce Flowers” or “the Father of Botany”. invisibility of plants in international plant species, at national, regional and the Dragon Tree conservation fora and, more critically, international levels. At present, to the wild. Botanic gardens have an extremely the actual loss of plant species. progress towards meeting Target 2 is (Photo: BGCI) important role to play in studying, slow at an international level, not naming, cataloguing and displaying plant The GSPC is currently the subject of because of the lack of data but diversity. All these roles are clearly an in-depth review and the progress because of lack of organization of the important as a basis for plant towards meeting its ambitious targets information on conservation status. conservation. As pointed out by Tim will be highlighted within CBD over the This is an issue of concern, resulting in Entwisle in this issue, having a focussed next two years. The contribution that the invisibility of plants in global collections policy is a basic requirement botanic gardens are making to the species assessments and conservation for each botanic garden to manage its GSPC is remarkable, individually and planning. Botanic gardens, however, plant resources to maximum effect. collectively through BGCI and the are playing a major role in assessing Managing information on plants in the Global Partnership for Plant the conservation status of plant collections is also an important Conservation. Target 1 of the GSPC, as species and recording this information, requirement recognized by botanic highlighted by Vernon Heywood, Karen for example in the TROPICOS gardens around the world. Collection Wilson and Frank Bisby in this issue, database maintained by Missouri policies and management of collections calls for A widely accessible working Botanical Garden and the taxonomic depend on taxonomy and plant list of known plant species, as a step publications produced by the Royal nomenclature, the often invisible towards a complete world flora. There Botanic Gardens, Kew. sciences that determine the nature of is a good likelihood of this target being botanic gardens. met and this achievement in itself will Targets 1 and 2 underpin the other 16 validate the importance of the GSPC. targets of the GSPC and are In the wider scheme of things, plant Linnaeus described and catalogued fundamentally important for botanic species are being lost both literally with around 9,000 plant species, laying the gardens to do their work. BGCI is the increasing pace of extinctions and basis for a global working list of known taking a lead role in facilitating Targets 02 BGjournal • Vol 4 (1) 8 and 14 of the GSPC, reflecting the data. At present there are over 150,000 and Genera of 1992 and eliminated key responsibilities of botanic gardens taxa recorded in PlantSearch provided misspellings, synonyms and misplaced in ex situ plant conservation and by 637 gardens, of which over 11,000 names. Currently BGCI screens all education. Target 8 calls for 60 per cent species are recorded as globally plant names in PlantSearch against the of threatened plant species in threatened. International Plant Names Index (IPNI) accessible ex situ collections, preferably (www.ipni.org) as a means of in the country of origin, and 10 per cent Managing the PlantSearch database is eliminating invalidly published names. of them included in recovery and a major challenge for BGCI and I would Looking ahead, do we need to promote restoration programmes. A major tool like to begin a dialogue about the a standard naming system for gardens, for monitoring Target 8 at a global level priorities for developing the database to allow for easy collaboration both
Recommended publications
  • Bignoniaceae Por
    fascículo 24 Flora de Veracruz Bignoniaceae por A.H. Gentry Xalapa Ver. septiembre 1982 CO!l/SEJO EDITORIAL Editar Responsable: Arturo Gómez Pompa Editor Ejecutivo: Victoria Sosa Lorin l. Nevling Jr. Nancy P. Moreno Michael Nee Beatriz Ludlow-Wiechers The Flora of Veracruz is an international collaborative project on the parts of investigators at the In,tituto de Investigaciones sobre Recursos Bióticos, at the Field Mu,eum of Natural History and at the Instituto de Biologia, Universidad Nacional Autónoma de México. We acknowledge support in México from the Programa Nacional Indicativo de Ecologia, Consejo Nacional de Ciencia y Tecnologia and the government of the State of Veracruz; and in the Unites States from the National Science Foundation (through grant I!l/T 78-01075) and Harvard University. Flora de Veracruz es un proyecto conjunto del Instituto de Investigaciones sobre Recursos Bióticos, del Field ~Iu,eum of Natural History y del In,tituto de Biologia de la Universidad Nacional Autónoma de México. Agradecem", el apoyo del Programa !l/acional Indicativo de Ecologia del Consejo Nacional de Ciencia y Tecnologia, del Gobierno del Estado de Veracruz de México, de la National Science Foundation (INT 78-01075) Y de Harvard University de lo.' Estados Unidos. INlREB 82-01-004 ©1982 In,tituto Nacional de Investigaciones sobre Recursos Bióticos. Apdo. Postal 63, Xalapa Veracmz. FLORA DE VERACRUZ Publicada por el Instituto Nacianal de Investigacianes sobre Recursos Bióticos Xalapa, Veracruz, México. FasCÍculo 24 Septiembre 1982 BIGNONIACEAE Por Alwyn H. Gentry Missouri Botanical Garden Arboles, arbustos o trepadoras leñosas, raras veces herbáceas; escamas externas de las yemas axilares frecuentemente pseudoestipulares o algu.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Bignoniaceae)
    Systematic Botany (2007), 32(3): pp. 660–670 # Copyright 2007 by the American Society of Plant Taxonomists Taxonomic Revisions in the Polyphyletic Genus Tabebuia s. l. (Bignoniaceae) SUSAN O. GROSE1 and R. G. OLMSTEAD Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195 U.S.A. 1Author for correspondence ([email protected]) Communicating Editor: James F. Smith ABSTRACT. Recent molecular studies have shown Tabebuia to be polyphyletic, thus necessitating taxonomic revision. These revisions are made here by resurrecting two genera to contain segregate clades of Tabebuia. Roseodendron Miranda consists of the two species with spathaceous calices of similar texture to the corolla. Handroanthus Mattos comprises the principally yellow flowered species with an indumentum of hairs covering the leaves and calyx. The species of Handroanthus are also characterized by having extremely dense wood containing copious quantities of lapachol. Tabebuia is restricted to those species with white to red or rarely yellow flowers and having an indumentum of stalked or sessile lepidote scales. The following new combinations are published: Handroanthus arianeae (A. H. Gentry) S. Grose, H. billbergii (Bur. & K. Schum). S. Grose subsp. billbergii, H. billbergii subsp. ampla (A. H. Gentry) S. Grose, H. botelhensis (A. H. Gentry) S. Grose, H. bureavii (Sandwith) S. Grose, H. catarinensis (A. H. Gentry) S. Grose, H. chrysanthus (Jacq.) S. Grose subsp. chrysanthus, H. chrysanthus subsp. meridionalis (A. H. Gentry) S. Grose, H. chrysanthus subsp. pluvicolus (A. H. Gentry) S. Grose, H. coralibe (Standl.) S. Grose, H. cristatus (A. H. Gentry) S. Grose, H. guayacan (Seemann) S. Grose, H. incanus (A. H.
    [Show full text]
  • Sir Arthur Hill, KCMG
    No. 3760, NovEMBER 22, 1941' NATURE 619 OBITUARIES Sir Arthur Hill, K.C.M.G., F.R.S. the time of his death an entirely new revision of the HE tragic death of Sir Arthur Hill, director of genus Nototriche to be illustrated by an elaborate T the Royal Botanic Gardens, Kew, in a riding series of drawings. accident on November 3, is not only a disaster for the The appointment to Kew as assistant director Gardens, but also a great loss to the many societies, 1mder Sir David Prain we,s made in 1907. Hill was institutions and Government departments of which allotted a number of routine duties including the he was the chief representative of official botany for editorship of the Kew Bulletin, but in spite of these Great Britain. The twenty-odd years during which he was able to continue research and he published he was director saw a tremendous advance in the several taxonomic revisions and other papers. He progress of botanical science in all its branches, and took a share in the preparation of the great African it was ·natural that Kew should play a prominent part Floras published from Kew, namely "The Flora in many of the activities characteristic of this period. Capensis" and "The Flora of Tropical Africa". For Arthur William Hill was born on October ll, both of these he elaborated the difficult family 187 5, and was the only son of Daniel Hill, of Watford. Santalacere, which entailed careful dissection of small H e was educated at Marlborough and at King's and inconspicuous flowers, and for "The Flora College, Cambridge, where h e obtained a first class Capensis" he prepared (in collaboration with Pra.in) in both Part I and Part II of the Natural Sciences the article on the Gentiana.cere.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • They Come in Teams
    GBE Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams Thanh Van Nguyen1, Daniel Wibberg2, Theoden Vigil-Stenman1,FedeBerckx1, Kai Battenberg3, Kirill N. Demchenko4,5, Jochen Blom6, Maria P. Fernandez7, Takashi Yamanaka8, Alison M. Berry3, Jo¨ rn Kalinowski2, Andreas Brachmann9, and Katharina Pawlowski 1,* 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden 2Center for Biotechnology (CeBiTec), Bielefeld University, Germany 3Department of Plant Sciences, University of California, Davis 4Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia 5Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia 6Bioinformatics and Systems Biology, Justus Liebig University, Gießen, Germany 7Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Universite Lyon I, Villeurbanne Cedex, France 8Forest and Forestry Products Research Institute, Ibaraki, Japan 9Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany *Corresponding author: E-mail: [email protected]. Accepted: July 10, 2019 Data deposition: This project has been deposited at EMBL/GenBank/DDBJ under the accession PRJEB19438 - PRJEB19449. Abstract Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched meta- genomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures.
    [Show full text]
  • High-Elevation Limits and the Ecology of High-Elevation Vascular Plants: Legacies from Alexander Von Humboldt1
    a Frontiers of Biogeography 2021, 13.3, e53226 Frontiers of Biogeography REVIEW the scientific journal of the International Biogeography Society High-elevation limits and the ecology of high-elevation vascular plants: legacies from Alexander von Humboldt1 H. John B. Birks1,2* 1 Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, Bergen, Norway; 2 Ecological Change Research Centre, University College London, Gower Street, London, WC1 6BT, UK. *Correspondence: H.J.B. Birks, [email protected] 1 This paper is part of an Elevational Gradients and Mountain Biodiversity Special Issue Abstract Highlights Alexander von Humboldt and Aimé Bonpland in their • The known uppermost elevation limits of vascular ‘Essay on the Geography of Plants’ discuss what was plants in 22 regions from northernmost Greenland known in 1807 about the elevational limits of vascular to Antarctica through the European Alps, North plants in the Andes, North America, and the European American Rockies, Andes, East and southern Africa, Alps and suggest what factors might influence these upper and South Island, New Zealand are collated to provide elevational limits. Here, in light of current knowledge a global view of high-elevation limits. and techniques, I consider which species are thought to be the highest vascular plants in twenty mountain • The relationships between potential climatic treeline, areas and two polar regions on Earth. I review how one upper limit of closed vegetation in tropical (Andes, can try to
    [Show full text]
  • Examination of Interactions Between Endangered Sida Hermaphrodita and Invasive Phragmites Australis
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2019 Competition or facilitation: Examination of interactions between endangered Sida hermaphrodita and invasive Phragmites australis Samantha N. Mulholland Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Botany Commons, Integrative Biology Commons, Other Ecology and Evolutionary Biology Commons, and the Plant Biology Commons Recommended Citation Mulholland, Samantha N., "Competition or facilitation: Examination of interactions between endangered Sida hermaphrodita and invasive Phragmites australis" (2019). Theses and Dissertations (Comprehensive). 2223. https://scholars.wlu.ca/etd/2223 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Competition or facilitation: Examination of interactions between endangered Sida hermaphrodita and invasive Phragmites australis by Samantha Nicole Mulholland Bachelor of Art, Honours Biology, Wilfrid Laurier University, 2016 THESIS Submitted to the Department of Biology In partial fulfilment of the requirements for the Master of Science in Integrative Biology Wilfrid Laurier University 2019 Samantha Mulholland 2019 © Abstract Virginia Mallow (Sida hermaphrodita) is a perennial herb of the Malvaceae family that is native to riparian habitats in northeastern North America. Throughout most of its geographical distribution however, it is considered threatened and only two populations are known from Canada. The biology and ecology of S. hermaphrodita are still poorly understood and although few studies have been performed to determine the factors that contribute to the species rarity, it is considered threatened potentially due to the loss of habitat caused by exotic European Common reed (Phragmites australis subsp.
    [Show full text]
  • A New Species of Amphitecna (Bignoniaceae) Endemic To
    A peer-reviewed open-access journal PhytoKeys 65: 15–23A new (2016) species of Amphitecna (Bignoniaceae) endemic to Chiapas, Mexico 15 doi: 10.3897/phytokeys.65.8454 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A new species of Amphitecna (Bignoniaceae) endemic to Chiapas, Mexico Andres Ernesto Ortiz-Rodriguez1, Carlos Manuel Burelo Ramos2, Héctor Gomez-Dominguez3 1 Instituto de Ecología, A.C., Departamento de Biología Evolutiva, Xalapa, Veracruz, México 2 Herbario UJAT, División Académica de Ciencias Biológicas, Universidad Juárez, Autónoma de Tabasco, Villahermosa Tabasco, México 3 Herbario Eizi Matuda (HEM) Facultad de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México Corresponding author: Andres Ernesto Ortiz-Rodriguez ([email protected]) Academic editor: Alan Paton | Received 12 March 2016 | Accepted 27 May 2016 | Published 15 June 2016 Citation: Ortiz-Rodriguez AE, Ramos CMB, Gomez-Dominguez H (2016) A new species of Amphitecna (Bignoniaceae) endemic to Chiapas, Mexico. PhytoKeys 65: 15–23. doi: 10.3897/phytokeys.65.8454 Abstract Amphitecna loreae Ortiz-Rodr. & Burelo, sp. nov. (Bignoniaceae), a new species endemic to the karst rainforest in southern Mexico, is described and illustrated. The new species differs from the other species of Amphitecna by the combination of cauliflorous inflorescences, larger flowers, buds rounded at apex, and globose-ellipsoid rather than acuminate fruits. A key to the Mexican species of Amphitecna is presented. Keywords Crescentieae, karst forest, zona sujeta a protección ecológica “La Pera” Introduction Bignoniaceae (calabash tree family) includes about 82 genera and approximately 900 species of trees, shrubs and woody vines distributed mainly in tropical areas around the world (Lohmann and Ulloa 2006).
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • Raulerson, L. 2006
    Vascular Plant Distribution in the Mariana Islands. X = present; indigenous; O = present, introduced, as of 1995; ? = presence uncertain; + = fossil. Guam Rota Aguihan Tinian Saipan Marpi Anatahan Sarigan Guguan Alamagan Pagan Agrihan Asuncion Maug Uracas PTERIDOPHYTA PSILOTACEAE Psilotum complanatum Sw. X X X Psilotum nudum (L.)Beauv. X X X X X X X LYCOPODIACEAE Lycopodium cernuum L. X X X X X X Lycopodium phlegmaria var. longifolium Spring X X Lycopodium squarrosum Forst.f. X SELAGINELLACEAE Selaginella ciliaris (Retz.) Spring X X X X X Selaginella erythropus O OPHIOGLOSSACEAE Helminthostachys zeylanica (L.) Hook. X Ophioglossum nudicaule L.f. X X X Ophioglossum pendulum L. X X X Ophioglossum reticulatum L. X MARATTIACEAE Angiopteris evecta (Forst.f.) Hoffm. X X X X X X HYMENOPHYLLACEAE Trichomanes brevipes (Presl) Baker X X Trichomanes javanicum var. boryanum (Kunze) X X Fosb. Trichomanes minutum Bl. X X PARKERIACEAE Ceratopteris gaudichaudii Brongn. X OSMUNDACEAE Osmunda japonica Thunb. X X GLEICHENIACEAE Guam Rota Aguihan Tinian Saipan Marpi Anatahan Sarigan Guguan Alamagan Pagan Agrihan Asuncion Maug Uracas Gleichenia linearis (Burm.f.) C.B.Cl. X X X X X SCHIZAEACEAE Lygodium auriculatum (Willd.) Alston X Lygodium microphyllum (Cav.) R.Br. X X X Schizaea dichotoma var. sellingii Fosb. X X CYATHEACEAE Alsophila australis R.Br. O Cyathea aramaganensis Kaneh X X X X X X Cyathea lunulata (Forst.f.) Copeland X DICKSONIACEAE Cibotium chamissoi Kaulf. O POLYPODIACEAE Acrostichum aureum L. X X X X X X Acrostichum speciosum Willd. ? ? Adiantum philippense L. X Adiantum tenerum L. O Adiantum trapeziforme O Antrophyum plantagineum (Cav.) Kaulf. X X X Arachniodes aristata (Forst.f.) Tindale X Asplenium laserpitifolium Lam.
    [Show full text]
  • The Rare Plants of Samoa JANUARY 2011
    The Rare Plants of Samoa JANUARY 2011 BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 2 BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 2 The Rare Plants of Samoa Biodiversity Conservation Lessons Learned Technical Series is published by: Critical Ecosystem Partnership Fund (CEPF) and Conservation International Pacific Islands Program (CI-Pacific) PO Box 2035, Apia, Samoa T: + 685 21593 E: [email protected] W: www.conservation.org Conservation International Pacific Islands Program. 2011. Biodiversity Conservation Lessons Learned Technical Series 2: The Rare Plants of Samoa. Conservation International, Apia, Samoa Author: Art Whistler, Isle Botanica, Honolulu, Hawai’i Design/Production: Joanne Aitken, The Little Design Company, www.thelittledesigncompany.com Series Editors: James Atherton and Leilani Duffy, Conservation International Pacific Islands Program Conservation International is a private, non-profit organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code. ISBN 978-982-9130-02-0 © 2011 Conservation International All rights reserved. OUR MISSION Building upon a strong foundation of science, partnership and field demonstration, CI empowers societies to responsibly and sustainably care for nature for the well-being of humanity This publication is available electronically from Conservation International’s website: www.conservation.org ABOUT THE BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES This document is part of a technical report series on conservation projects funded by the Critical Ecosystem Partnership Fund (CEPF) and the Conservation International Pacific Islands Program (CI-Pacific). The main purpose of this series is to disseminate project findings and successes to a broader audience of conservation professionals in the Pacific, along with interested members of the public and students.
    [Show full text]