The Transition to Calculus - Part II !
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Discovery of the Series Formula for Π by Leibniz, Gregory and Nilakantha Author(S): Ranjan Roy Source: Mathematics Magazine, Vol
The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha Author(s): Ranjan Roy Source: Mathematics Magazine, Vol. 63, No. 5 (Dec., 1990), pp. 291-306 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2690896 Accessed: 27-02-2017 22:02 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to Mathematics Magazine This content downloaded from 195.251.161.31 on Mon, 27 Feb 2017 22:02:42 UTC All use subject to http://about.jstor.org/terms ARTICLES The Discovery of the Series Formula for 7r by Leibniz, Gregory and Nilakantha RANJAN ROY Beloit College Beloit, WI 53511 1. Introduction The formula for -r mentioned in the title of this article is 4 3 57 . (1) One simple and well-known moderm proof goes as follows: x I arctan x = | 1 +2 dt x3 +5 - +2n + 1 x t2n+2 + -w3 - +(-I)rl2n+1 +(-I)l?lf dt. The last integral tends to zero if Ix < 1, for 'o t+2dt < jt dt - iX2n+3 20 as n oo. -
J. Wallis the Arithmetic of Infinitesimals Series: Sources and Studies in the History of Mathematics and Physical Sciences
J. Wallis The Arithmetic of Infinitesimals Series: Sources and Studies in the History of Mathematics and Physical Sciences John Wallis was appointed Savilian Professor of Geometry at Oxford University in 1649. He was then a relative newcomer to mathematics, and largely self-taught, but in his first few years at Oxford he produced his two most significant works: De sectionibus conicis and Arithmetica infinitorum. In both books, Wallis drew on ideas originally developed in France, Italy, and the Netherlands: analytic geometry and the method of indivisibles. He handled them in his own way, and the resulting method of quadrature, based on the summation of indivisible or infinitesimal quantities, was a crucial step towards the development of a fully fledged integral calculus some ten years later. To the modern reader, the Arithmetica Infinitorum reveals much that is of historical and mathematical interest, not least the mid seventeenth-century tension between classical geometry on the one hand, and arithmetic and algebra on the other. Newton was to take up Wallis’s work and transform it into mathematics that has become part of the mainstream, but in Wallis’s text we see what we think of as modern mathematics still 2004, XXXIV, 192 p. struggling to emerge. It is this sense of watching new and significant ideas force their way slowly and sometimes painfully into existence that makes the Arithmetica Infinitorum such a relevant text even now for students and historians of mathematics alike. Printed book Dr J.A. Stedall is a Junior Research Fellow at Queen's University. She has written a number Hardcover of papers exploring the history of algebra, particularly the algebra of the sixteenth and 159,99 € | £139.99 | $199.99 ▶ seventeenth centuries. -
Who Invented the Calculus? - and Other 17Th Century Topics Transcript
Who invented the calculus? - and other 17th century topics Transcript Date: Wednesday, 16 November 2005 - 12:00AM Location: Barnard's Inn Hall WHO INVENTED THE CALCULUS? Professor Robin Wilson Introduction We’ve now covered two-thirds of our journey ‘From Caliphs to Cambridge’, and in this lecture I want to try to survey the mathematical achievements of the seventeenth century – a monumental task. I’ve divided my talk into four parts – first, the movement towards the practical sciences, as exemplified by the founding of Gresham College and the Royal Society. Next, we’ll gravitate towards astronomy, from Copernicus to Newton. Thirdly, we visit France and the gradual movement from geometry to algebra (with a brief excursion into some new approaches to pi) – and finally, the development of the calculus. So first, let’s make an excursion to Gresham College. Practical science The Gresham professorships arose from the will of Sir Thomas Gresham, which provided for £50 per year for each of seven professors to read lectures in Divinity, Astronomy, Music, Geometry, Law, Physic and Rhetoric. As the Ballad of Gresham College later described it: If to be rich and to be learn’d Be every Nation’s cheifest glory, How much are English men concern’d, Gresham to celebrate thy story Who built th’Exchange t’enrich the Citty And a Colledge founded for the witty. From its beginning, Gresham College encouraged the practical sciences, rather than the Aristotelian studies still pursued at the ancient universities: Thy Colledg, Gresham, shall hereafter Be the whole world’s Universitie, Oxford and Cambridge are our laughter; Their learning is but Pedantry. -
Reconciling Aesthetic Philosophy and the Cartesian Paradigm Taryn Sweeney IDVSA
Maine State Library Digital Maine Academic Research and Dissertations Maine State Library Special Collections 2018 Aesthesis Universalis: Reconciling Aesthetic Philosophy and the Cartesian Paradigm Taryn Sweeney IDVSA Follow this and additional works at: https://digitalmaine.com/academic Recommended Citation Sweeney, Taryn, "Aesthesis Universalis: Reconciling Aesthetic Philosophy and the Cartesian Paradigm" (2018). Academic Research and Dissertations. 21. https://digitalmaine.com/academic/21 This Text is brought to you for free and open access by the Maine State Library Special Collections at Digital Maine. It has been accepted for inclusion in Academic Research and Dissertations by an authorized administrator of Digital Maine. For more information, please contact [email protected]. AESTHESIS UNIVERSALIS: RECONCILING AESTHETIC PHILOSOPHY AND THE CARTESIAN PARADIGM Taryn M Sweeney Submitted to the faculty of The Institute for Doctoral Studies in the Visual Arts in partial fulfillment of the requirements for the degree Doctor of Philosophy November, 2018 ii Accepted by the faculty of the Institute for Doctoral Studies in the Visual Arts in partial fulfillment of the degree of Doctor of Philosophy. COMMITTEE MEMBERS Committee Chair: Don Wehrs, Ph.D. Hargis Professor of English Literature Auburn University, Auburn Committee Member: Merle Williams, Ph.D. Personal Professor of English University of Witwatersrand, Johannesburg Committee Member: Kathe Hicks Albrecht, Ph.D. Independent Studies Director Institute for Doctoral Studies in the Visual Arts, Portland iii © 2018 Taryn M Sweeney ALL RIGHTS RESERVED iv ACKNOWLEDGEMENTS I owe a profound gratitude to my advisor, Don Wehrs, for his tremendous patience, sympathy, and acceptance of my completely un-academic self as I approached this most ambitious and academic of undertakings. -
A Probabilistic Proof of Wallis's Formula for Π
A PROBABILISTIC PROOF OF WALLIS’S FORMULA FOR ¼ STEVEN J. MILLER There are many beautiful formulas for ¼ (see for example [4]). The purpose of this note is to introduce an alternate derivation of Wallis’s product formula, equation (1), which could be covered in a first course on probability, statistics, or number theory. We quickly review other famous formulas for ¼, recall some needed facts from probability, and then derive Wallis’s formula. We conclude by combining some of the other famous formulas with Wallis’s formula to derive an interesting expression for log(¼=2) (equation (5)). Often in a first-year calculus course students encounter the Gregory-Leibniz for- mula, ¼ 1 1 1 X1 (¡1)n = 1 ¡ + ¡ + ¢ ¢ ¢ = : 4 3 5 7 2n + 1 n=0 The proof uses the fact that the derivative of arctan x is 1=(1 + x2), so ¼=4 = R 1 2 0 dx=(1 + x ). To complete the proof, expand the integrand with the geometric series formula and then justify interchanging the order of integration and summa- tion. Another interesting formula involves Bernoulli numbers and the Riemann zeta function. The Bernoulli numbers Bk are the coefficients in the Taylor series t t X1 B tk = 1 ¡ + k ; et ¡ 1 2 k! k=2 P1 ¡s each Bk is rational. The Riemann zeta function is ³(s) = n=1 n , which converges for real part of s greater than 1. Using complex analysis one finds (see for instance [10, p. 365] or [18, pp. 179–180]) that (¡4)kB ³(2k) = ¡ 2k ¢ ¼2k; 2 ¢ 2k! 1 2 P ¡2 yielding formulas for ¼ to any even power. -
SWEDENBORG's PHILOSOPHY of CAUSALITY William Ross Woofenden
SWEDENBORG'S PHILOSOPHY OF CAUSALITY William Ross Woofenden CHAPTER II SWEDENBORG DEVELOPS HIS OWN THEORY It was noted earlier1 that with the publication of his Principia (1734), Swedenborg's reputation as a scientist and natural philosopher was established in Europe. The work is a lengthy one, and the writing style leans toward the ornate. The first chapter, which runs to some fifty pages in English translation, is titled, perhaps a bit pompously, "The Means Leading to True Philosophy, and the True Philosopher." As might be expected, however, the chapter does state in full detail the presuppositions concerning causality held by the author at this time. For example, early in the chapter he states: The sign that we desire to be wise, is the wish to know the causes of things...Now the principal means which lead to truly philosophical knowledge are three in number—experience, geometry, and the power of reasoning...By philosophy we here mean the knowledge of the mechanism of our world, or of whatever in the world is subject to the laws of geometry; or which it is possible to unfold to view by experience, assisted by geometry and reason.2 The thought pattern of the British Empiricists is clearly echoed when, for example, Swedenborg writes: 1 Cf. p. 239 (supra). 2 Principia, Vol. I, p. 2 [1912 ed.]. 285 THE NEW PHILOSOPHY, April-June 1990 By experience we mean the knowledge of everything in the world of nature which is capable of being received by the senses.3 His second means to philosophical knowledge just as clearly reflects the impact of the Continental Rationalists. -
Gregory's Sixth Operation
Found Sci (2018) 23:133–144 https://doi.org/10.1007/s10699-016-9512-9 Gregory’s Sixth Operation 1 2 3,4 Tiziana Bascelli • Piotr Błaszczyk • Vladimir Kanovei • 5 5 6 Karin U. Katz • Mikhail G. Katz • Semen S. Kutateladze • 5 7 8 Tahl Nowik • David M. Schaps • David Sherry Published online: 20 December 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathe- matics under scrutiny. Following Ian Hacking, we point out that in the history of mathe- matics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of p. Here Gregory referred to the last or & Mikhail G. Katz [email protected] Tiziana Bascelli [email protected] Piotr Błaszczyk [email protected] Vladimir Kanovei [email protected] Karin U. Katz [email protected] Semen S. Kutateladze [email protected] Tahl Nowik [email protected] David M. Schaps [email protected] David Sherry [email protected] 1 Lyceum Gymnasium ‘‘F. Corradini’’, Thiene, Italy 2 Institute of Mathematics, Pedagogical University of Cracow, Cracow, Poland 3 IPPI, Moscow, Russia 4 MIIT, Moscow, Russia 123 134 T. Bascelli et al. ultimate terms of a series. More broadly, we analyze the following questions: which modern framework is more appropriate for interpreting the procedures at work in texts from the early history of infinitesimal analysis? As well as the related question: what is a logical theory that is close to something early modern mathematicians could have used when studying infinite series and quadrature problems? We argue that what has been routinely viewed from the viewpoint of classical analysis as an example of an ‘‘unrigor- ous’’ practice, in fact finds close procedural proxies in modern infinitesimal theories. -
Algebra and Geometry in Pietro Mengoli (1625–1686) ✩
Historia Mathematica 33 (2006) 82–112 www.elsevier.com/locate/yhmat Algebra and geometry in Pietro Mengoli (1625–1686) ✩ Ma. Rosa Massa Esteve Centre per a la recerca d’Història de la Tècnica, Universitat Politècnica de Catalunya, Spain Centre d’Estudis d’Història de les Ciències, Universitat Autònoma de Barcelona, Spain Available online 3 March 2005 Abstract An important step in 17th-century research on quadratures involved the use of algebraic procedures. Pietro Men- goli (1625–1686), probably the most original student of Bonaventura Cavalieri (1598–1647), was one of several scholars who developed such procedures. Algebra and geometry are closely related in his works, particularly in Geometriae Speciosae Elementa [Bologna, 1659]. Mengoli considered curves determined by equations that are now represented by y = K · xm · (t − x)n. This paper analyzes the interrelation between algebra and geometry in this work, showing the complementary nature of the two disciplines and how their combination allowed Mengoli to calculate quadratures in a new way. 2005 Elsevier Inc. All rights reserved. Résumé L’un des plus grands pas en avant, au XVIIe siècle, dans la recherche de nouvelles méthodes de quadrature fut l’introduction des procédures algébriques. Pietro Mengoli (1625–1686), probablement le plus intéressant des élèves de Bonaventura Cavalieri (1598–1647), fut l’un de ceux qui développa ce type de procédures dans ses travaux mathématiques. Algèbre et géométrie sont étroitement liées dans les ouvrages de Mengoli, en particulier dans les Geometriae Speciosae Elementa [Bologna, 1659]. Mengoli emploie des procédures algébriques pour résoudre des problèmes de quadrature de curves déterminées par des ordonnées que nous noterions par y = K · xm · (t − x)n.Le but de cet article est d’analyser les rapports entre algèbre et géométrie dans l’ouvrage ci-dessus, de montrer leur complémentarité et d’indiquer comment celle-ci a permis à Mengoli de mettre en oeuvre une nouvelle méthode dans le calcul des quadratures. -
Wallis's Product, Brouncker's Continued Fraction, and Leibniz's Series Author(S): Jacques Dutka Source: Archive for History of Exact Sciences, Vol
Wallis's Product, Brouncker's Continued Fraction, and Leibniz's Series Author(s): Jacques Dutka Source: Archive for History of Exact Sciences, Vol. 26, No. 2 (1982), pp. 115-126 Published by: Springer Stable URL: http://www.jstor.org/stable/41133644 Accessed: 23-10-2017 15:57 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/41133644?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Archive for History of Exact Sciences This content downloaded from 140.233.2.214 on Mon, 23 Oct 2017 15:57:11 UTC All use subject to http://about.jstor.org/terms Wallis' s Product, Brouncker's Continued Fraction^ and Leibniz s Series Jacques Dutka Communicated by M. Kline Abstract A historical sketch is given of Wallis's infinite product for 4/a, and of the at- tempts which have been made, over more than three centuries, to find the method by which Brouncker obtained his equivalent continued fraction. A derivation of Brouncker's formula is given. -
Galileo, Ignoramus: Mathematics Versus Philosophy in the Scientific Revolution
Galileo, Ignoramus: Mathematics versus Philosophy in the Scientific Revolution Viktor Blåsjö Abstract I offer a revisionist interpretation of Galileo’s role in the history of science. My overarching thesis is that Galileo lacked technical ability in mathematics, and that this can be seen as directly explaining numerous aspects of his life’s work. I suggest that it is precisely because he was bad at mathematics that Galileo was keen on experiment and empiricism, and eagerly adopted the telescope. His reliance on these hands-on modes of research was not a pioneering contribution to scientific method, but a last resort of a mind ill equipped to make a contribution on mathematical grounds. Likewise, it is precisely because he was bad at mathematics that Galileo expounded at length about basic principles of scientific method. “Those who can’t do, teach.” The vision of science articulated by Galileo was less original than is commonly assumed. It had long been taken for granted by mathematicians, who, however, did not stop to pontificate about such things in philosophical prose because they were too busy doing advanced scientific work. Contents 4 Astronomy 38 4.1 Adoption of Copernicanism . 38 1 Introduction 2 4.2 Pre-telescopic heliocentrism . 40 4.3 Tycho Brahe’s system . 42 2 Mathematics 2 4.4 Against Tycho . 45 2.1 Cycloid . .2 4.5 The telescope . 46 2.2 Mathematicians versus philosophers . .4 4.6 Optics . 48 2.3 Professor . .7 4.7 Mountains on the moon . 49 2.4 Sector . .8 4.8 Double-star parallax . 50 2.5 Book of nature . -
Gottfried Wilhelm Leibniz, Three Hundred Years Later
Quaderns d’Història de l’Enginyeria volum xvi 2018 GOTTFRIED WILHELM LEIBNIZ, THREE HUNDRED YEARS LATER Mª Rosa Massa-Esteve, Antoni Roca Rosell This paper presents the contributions of the present issue of Quaderns in the framework of the homage to Leibniz, three hundred years after his death. Leibniz was a multifaceted figure, devoted to study and analysis of Nature and society. His contributions are studied in this issue mostly from the pers- pective of mathematics, but we should be aware that, for Leibniz, mathema- tics was a powerful way to understand and to change the world. Mathematics was also a relevant component of technology. * * * LEIBNIZ AND THE INFINITE Eberhard Knobloch How did Leibniz handle the infinite in mathematics? Above all one has to study his Arithmetical quadrature of the circle etc. in order to answer to this question. Its last, still available version was written between June and September 1676. A new, bilingual, annotated Latin-German edition has just appeared. The paper mainly deals with theorems, thoughts, and explana- tions of this treatise putting them into the historical context (Kepler, Galileo, Grégoire de St. Vincent, Mengoli, Pardies, Johann Bernoulli, Euler). Four issues will be especially discussed: 1. Leibniz’s notions of infinitely small and infinite emphasizing his crucial distinction between the unbounded and bounded infinite. It sheds new light on the meaning of the fictionality of these fictitious quantities. 2. How did Leibniz demonstrate that a certain quantity is infinitely small or infinite? Three possibilities will be explained (definition, third proportional, trichotomy law). 3. Asymptotic spaces: What happens in the neighbourhood of the asymptote? Finite spaces are equated with infini- tely long spaces. -
Leibniz: His Philosophy and His Calculi Eric Ditwiler Harvey Mudd College
Humanistic Mathematics Network Journal Issue 19 Article 20 3-1-1999 Leibniz: His Philosophy and His Calculi Eric Ditwiler Harvey Mudd College Follow this and additional works at: http://scholarship.claremont.edu/hmnj Part of the Intellectual History Commons, Logic and Foundations Commons, and the Logic and Foundations of Mathematics Commons Recommended Citation Ditwiler, Eric (1999) "Leibniz: His Philosophy and His Calculi," Humanistic Mathematics Network Journal: Iss. 19, Article 20. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss19/20 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Leibniz: His Philosophy and His Calculi Eric Ditwiler Harvey Mudd College Claremont, CA 91711 This paper is about the last person to be known as a Anyone who has tried to calculate simple interest us- great Rationalist before Kant’s Transcendental Philoso- ing Roman Numerals knows well the importance of phy forever blurred the distinction between that tra- an elegant notation. dition and that of the Empiricists. Gottfried Wilhelm von Leibniz is well known both for the Law which In the preface to his translations of The Early Math- bears his name and states that “if two things are ex- ematical Manuscripts of Leibniz, J.M. Child maintains actly the same, they are not two things, but one” and that “the main ideas of [Leibniz’s] philosophy are to for his co-invention of the Differential Calculus.