Wallis's Product, Brouncker's Continued Fraction, and Leibniz's Series Author(s): Jacques Dutka Source: Archive for History of Exact Sciences, Vol. 26, No. 2 (1982), pp. 115-126 Published by: Springer Stable URL: http://www.jstor.org/stable/41133644 Accessed: 23-10-2017 15:57 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/41133644?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
[email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Archive for History of Exact Sciences This content downloaded from 140.233.2.214 on Mon, 23 Oct 2017 15:57:11 UTC All use subject to http://about.jstor.org/terms Wallis' s Product, Brouncker's Continued Fraction^ and Leibniz s Series Jacques Dutka Communicated by M. Kline Abstract A historical sketch is given of Wallis's infinite product for 4/a, and of the at- tempts which have been made, over more than three centuries, to find the method by which Brouncker obtained his equivalent continued fraction. A derivation of Brouncker's formula is given.