Radial Tunnel Syndrome by Tim Bertelsman & Brandon Steele

Total Page:16

File Type:pdf, Size:1020Kb

Radial Tunnel Syndrome by Tim Bertelsman & Brandon Steele Radial Tunnel Syndrome by Tim Bertelsman & Brandon Steele. © ChiroUp 2018 Radial Tunnel Syndrome Evaluation The radial tunnel is defined as the space surrounding the radial nerve as it traverses the posterior forearm from the radiocapitellar joint thru the supinator • Radial Nerve Test muscle. (1) “Radial tunnel syndrome” describes symptoms generated from irrita- • Radial Tunnel Compression tion or compression of the radial nerve within this 2” tunnel. • Resisted Forearm Supination Test • Resisted Long Finger Extension There are multiple potential sites of compression in the radial tunnel that may Test affect the sensory branch of the radial nerve, the motor branch- also called the Management Soft Tissue posterior interosseous nerve, or both. (2) Compression of the superficial sensory branch results in purely sensory symptoms while compression of the posterior • Nerve Floss- Radial interosseous nerve produces motor weakness of the finger, hand and wrist • Nerve Release- Radial Nerve at the extensors. Elbow • STM- Brachioradialis • STM- Supinator • STM- Wrist Extensors Phase I exercises • Radial Nerve Floss • Clasp Stretch • Wrist Extensor Stretch- Table • Brachioradialis Stretch • Supinator Stretch Clinical Pearls • Radial nerve compression oc- curs most commonly (70%) beneath the proximal edge of the supinator muscle at the Arcade of Froshe. • 10% of patients with lateral epicondylitis have co-existent radial tunnel syndrome. • 70% of patients with lateral elbow pain demonstrate symptoms or posi- tive clinical findings in the cervical or upper thoracic regions. • Use of a tennis elbow counterforce The most common site of compression within the radial tunnel is beneath a brace is contraindicated for radial thickened, fibrous proximal edge of the supinator muscle, also called the arcade tunnel patients. of Froshe. This thickening is thought to be developmental as a result of repeti- • Nocturnal pain is common in radial tive strain and is present in 30-80% of the population. (3,4) Compression of tunnel syndrome but not in lateral the posterior interosseous nerve beneath the arcade of Froshe is sometimes epicondylitis. referred to as “Supinator syndrome” and accounts for almost 70% of all radial tunnel presentations. (3) Other sites of entrapment include the distal border of the supinator muscle and beneath the origin of the extensor carpi radialis brevis muscle. (5,6) Radial tunnel syndrome occurs less frequently than its more common upper extremity cousins- carpal tunnel syndrome and cubital tunnel syndrome. (7,8) Radial tunnel syndrome frequently accompanies these and other co-morbities including: pro- nator syndrome, Guyons syndrome, medial epicondylitis, de Quervain’s tenosynovitis, trigger finger and lateral epicondylitis. (9) Research suggests that up to 10% of patients with lateral epicondylitis have co-existent radial tunnel syndrome. (10) Radial tunnel syndrome is thought to result from overuse, especially excessive wrist extension, pronation or supination. (27) Radial Tunnel Syndrome (Continued) Presenting symptoms depend on whether irritation affects the sensory branch, motor branch or both. Compression or ir- ritation of the superficial sensory branch results in pain, paresthesia or diminished sensitivity along the dorsal aspect of the forearm sometimes radiating to the hand, including the first web space and back of the thumb and index finger. (11) These symptoms are often described as deep, aching and diffuse, sometimes mimicking lateral epicondylitis. (12) Compression of the posterior interosseous nerve (motor branch) manifests as weakness of metacarpophalangeal joint extension and thumb extension, also called “finger drop”. (2) Wrist extension is generally not affected as noticeably because of cross-innervation. Deeply palpating and rolling your fingers over the radial nerve four finger breaths distal to the lateral epicondyle should pro- voke symptoms (Radial tunnel compression test). (13) Symptoms are generally intensified by resisted wrist extension, supina- tion and pronation. Resisted muscle testing can help localize the site of compression. (14) Reproduction of symptoms upon resisted supination, when the arm and wrist are in extension, suggests compression at the arcade of Froshe. (Resisted supina- tion test) Reproduction of symptoms during resisted extension of the middle finger suggests compression of the posterior interosseous nerve beneath the extensor carpi radialis brevis (Resisted long finger extension, aka, Middle finger sign). (13) Tinel sign or reproduction of symptoms by percussion of the radial nerve is infrequently present. Seventy percent of patients with lateral elbow pain demonstrate symptoms or positive clinical findings in the cervical or upper thoracic regions. Positive findings include limited range of motion in flexion and extension and positive provocation testing. (15) Neurodynamic testing/ tensioning of the radial nerve may provoke symptoms. Palpation elicits tenderness over the radial nerve and sometimes over the lateral epicondyle making differentiation of the two conditions challenging. The pain of radial tunnel syndrome should be more acute distally. (16) Nocturnal pain is more com- mon in radial tunnel patients than those with lateral epicondylitis. (17) Other differential diagnostic considerations for radial tunnel syndrome include: Wartenberg’s syndrome/ cheiralgia paresthetica (aka “handcuff neuropathy” from compression of the distal radial nerve) brachial plexus injury, cervical radiculopathy, de Quervain’s tenosynovitis, bone pathology, elbow bursitis, elbow sprain/strain/tendinopathy, peripheral neuropathy and thoracic outlet syndrome. Radiographs are seldom indicated unless needed to rule out osseous pathology. Ultra- sound and MRI may be used to detect space occupying lesions and to localize the spe- cific site of nerve involvement. (18,19) EMG/ NCS studies are typically negative but may highlight muscle innervation deficits in cases with significant posterior interosseous nerve involvement. (20,21) Conservative management of radial tunnel syndrome is generally successful. (22) Initial management of radial tunnel syndrome includes anti-inflammatory measures, rest and avoidance of aggravating activities. Ice, ice massage and electrotherapy may provide benefit. Pulsed ultrasound has been shown to be effective in the management of other upper extremity compressive neuropathies. The suggested settings are: frequency – 1 MHz; intensity – 1 watt/cm squared; duty cycle – 25%. (23) Patients should limit excessive or repetitive wrist extension, forearm pronation, and supination. Splinting may be used in more severe cases. (24) Sources of external compression should be identified and removed. A tennis elbow counter-force brace, commonly used in the treatment of lateral epicondylitis, will likely aggravate the symptoms of radial tunnel syndrome. (25) Radial Tunnel Syndrome (Continued) Soft tissue manipulation and nerve flossing are useful tools in the management of radial tunnel syndrome. Good clinical judg- ment is required to assess the point at which benefits of soft tissue mobilization outweigh the risks of symptom exacerbation. When the symptoms are no longer acute, stretching and myofascial release techniques should be directed at the supinator, brachioradialis and wrist extensors, including the extensor carpi radialis brevis. Nerve flossing is thought to enhance the neu- rodynamic flexibility of a nerve by releasing adhesions. Nerve flossing should not provoke symptoms. Radial nerve flossing is performed with the patient standing, shoulder blade pressed down, and wrist flexed with the fingers pointing backwards, i.e., Butler tip position, while bending the head in the contralateral direction and reaching back with the arm. Since cervical and up- per thoracic involvement is common, clinicians should assess for and manipulate any spinal restrictions. (15) Surgery may be indicated for patients who fail 12 weeks of conservative care or in those with significant motor deficit. (26) References 1. Rosenbaum R: Disputed radial tunnel syndrome. Muscle Nerve 1990, 22:960-967 2. Kirici Y, Irmak MK: Investigation of two possible compression sites of the deep branch of the radial nerve and nerve supply of the extensor carpi radialis brevis muscle. Neurol Med Chir (Tokyo) 2004, 44:14-18. 3. Ferdinand, B.D., Rosenberg, Z.S., Schweitzer, M.E., Stuchin, S.A., Jazrawi, L.M., Lenzo, S.R., Jul 2006. MR imaging features of radial tunnel syndrome: initial experience. Radiology 240 (1), 161e168 4. Clavert P, Lutz JC, Adam P, Wolfram-Gabel R, Liverneaux P, Kahn JL. Frohse’s arcade is not the exclusive compression site of the radial nerve in its tunnel. Orthop Traumatol Surg Res 2009; 95:114 –118 5. Portilla Molina AE, Bour C, Oberlin C, et al. The posterior interosseous nerve and the radial tunnel syndrome: an anatomical study. Int Orthop.1998 ;22:102–106. 6. Roles NC, Maudsley KH. Radial tunnel syndrome: resistant tennis elbow as nerve entrapment. J Bone Joint Surg Br.1972 ;54:499–508. 7. Loh YC, Lam WL, Stanley JK, Soames RW: A new clinical test for radial tunnel syndrome - the Rule-of-Nine test: a cadaveric study. J Orthop Surg (Hong Kong) 2004, 12:83-86 8. Latinovic R, Gulliford MC, Hughes RA. Incidence of common compressive neuropathies in primary care. J Neurol Neurosurg Psy- chiatry 2006;77:263–265 9. John Houle , Matthew J Concannon , Michael Neumeister , Richard Brown , Bradon Wilhelmi. Upper Extremity Co-Morbidities in Patients with Radial Tunnel Syndrome. J reconstr Microsurg 2005;
Recommended publications
  • Level Diagnosis of Cervical Compressive Myelopathy: Signs, Symptoms, and Lesions Levels
    Elmer Press Original Article J Neurol Res • 2013;3(5):135-141 Level Diagnosis of Cervical Compressive Myelopathy: Signs, Symptoms, and Lesions Levels Naoki Kasahata ficult to accurately localize the lesion before radiographic Abstract diagnosis. However, neurological level diagnosis of spinal cord is important for accurate lesion-specific level diagnosis, Background: To elucidate signs and symptoms corresponding to patients’ treatment, avoiding diagnostic error, differential di- each vertebral level for level-specific diagnoses. agnosis, and especially for accurate level diagnosis of other nonsurgical myelopathies. Moreover, level diagnosis should Methods: We studied 106 patients with cervical compressive my- be considered from multiple viewpoints. Therefore, we in- elopathy. Patients who showed a single compressive site on mag- tend to make level diagnosis of myelopathy more accurate. netic resonance imaging (MRI) were selected, and signs, symp- Previously, lesion-specific level diagnoses by determin- toms, and the levels of the MRI lesions were studied. ing a sensory disturbance area or location of numbness in Results: Five of 12 patients (41.7%) with C4-5 intervertebral level the hands had the highest accuracy [1, 2]. Previous stud- lesions showed decreased or absent biceps and brachioradialis re- ies reported that C3-4 intervertebral level lesions showed flexes, while 4 of these patients (33.3%) showed generalized hyper- increased or decreased biceps reflexes, deltoid weakness, reflexia. In comparison, 5 of 24 patients (20.8%) with C5-6 inter- and sensory disturbance of arms or forearms [1, 3, 4], while vertebral level lesions showed decreased or absent triceps reflexes; C4-5 intervertebral level lesions showed decreased biceps however, 9 of these patients (37.5%) showed decreased or absent reflexes, biceps weakness, and sensory disturbance of hands biceps and brachioradialis reflexes.
    [Show full text]
  • Morphology of Extensor Indicis Proprius Muscle in the North Indian Region: an Anatomy Section Anatomic Study with Ontogenic and Phylogenetic Perspective
    DOI: 10.7860/IJARS/2019/41047:2477 Original Article Morphology of Extensor Indicis Proprius Muscle in the North Indian Region: An Anatomy Section Anatomic Study with Ontogenic and Phylogenetic Perspective MEENAKSHI KHULLAR1, SHERRY SHARMA2 ABSTRACT to the index finger were noted and appropriate photographs Introduction: Variants on muscles and tendons of the forearm were taken. or hand occur frequently in human beings. They are often Results: In two limbs, the EIP muscle was altogether absent. discovered during routine educational cadaveric dissections In all the remaining 58 limbs, the origin of EIP was from the and surgical procedures. posterior surface of the distal third of the ulnar shaft. Out of Aim: To observe any variation of Extensor Indicis Proprius (EIP) these 58 limbs, this muscle had a single tendon of insertion in 52 muscle and to document any accessory muscles or tendons limbs, whereas in the remaining six limbs it had two tendinous related to the index finger. slips with different insertions. Materials and Methods: The EIP muscle was dissected in 60 Conclusion: Knowledge of the various normal as well as upper limb specimens. After reflection of the skin and superficial anomalous tendons on the dorsal aspect of the hand is fascia from the back of the forearm and hand, the extensor necessary for evaluating an injured or diseased hand and also at retinaculum was divided longitudinally and the dorsum of the the time of tendon repair or transfer. Awareness of such variants hand was diligently dissected. The extensor tendons were becomes significant in surgeries in order to avoid damage to the delineated and followed to their insertions.
    [Show full text]
  • The Branching and Innervation Pattern of the Radial Nerve in the Forearm: Clarifying the Literature and Understanding Variations and Their Clinical Implications
    diagnostics Article The Branching and Innervation Pattern of the Radial Nerve in the Forearm: Clarifying the Literature and Understanding Variations and Their Clinical Implications F. Kip Sawyer 1,2,* , Joshua J. Stefanik 3 and Rebecca S. Lufler 1 1 Department of Medical Education, Tufts University School of Medicine, Boston, MA 02111, USA; rebecca.lufl[email protected] 2 Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA 94305, USA 3 Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA; [email protected] * Correspondence: [email protected] Received: 20 May 2020; Accepted: 29 May 2020; Published: 2 June 2020 Abstract: Background: This study attempted to clarify the innervation pattern of the muscles of the distal arm and posterior forearm through cadaveric dissection. Methods: Thirty-five cadavers were dissected to expose the radial nerve in the forearm. Each muscular branch of the nerve was identified and their length and distance along the nerve were recorded. These values were used to determine the typical branching and motor entry orders. Results: The typical branching order was brachialis, brachioradialis, extensor carpi radialis longus, extensor carpi radialis brevis, supinator, extensor digitorum, extensor carpi ulnaris, abductor pollicis longus, extensor digiti minimi, extensor pollicis brevis, extensor pollicis longus and extensor indicis. Notably, the radial nerve often innervated brachialis (60%), and its superficial branch often innervated extensor carpi radialis brevis (25.7%). Conclusions: The radial nerve exhibits significant variability in the posterior forearm. However, there is enough consistency to identify an archetypal pattern and order of innervation. These findings may also need to be considered when planning surgical approaches to the distal arm, elbow and proximal forearm to prevent an undue loss of motor function.
    [Show full text]
  • Articulationes Membri Thoracici • 1. Articulatio
    ARTICULATIONES MEMBRI THORACICI • 1. ARTICULATIO HUMERI-art. simplex, art. spheroidea (but functions as a hinge joint) movement: eq, Ru only flexion, extension is possible, in ca: rotation, abduction, adduction also between scapula (cavitas glenoidalis) and humerus (caput) Capsula articularis Recessus: cranial and caudal recesses Labrum glenoidale Ligg. glenohumeralia (eq, ca)- tickened part of the capsule (capsular ligament) in the med. and lat. walls in ca, and cranially in eq Lig. coracohumerale (eq, Ru)- capsular ligament between scapula (tub. supraglenoidale) and humerus (tub. majus, minus) No collateral ligaments! Instead of them: laterally m. infraspinatus (1), medially m. subscapularis (5) ca: part of the joint capsule surrounds the tendon of m. biceps brachii (9) and forms vagina synovialis intertubercularis eq, bo: bursa intertubercularis (=bursa bicipitalis) under the tendor of the m. biceps brachii (may communicate with the joint cavity of the shoulder joint in horse) • 2.ARTICULATIO CUBITI-art. composita, ginglymus (hinge joint) movement: extension and flexion between humerus (condyle), radius (caput), ulna (insisura trochlearis) Articulatio humeroulnaris Articulatio humeroradialis Capsula articularis Recessus: recessus cranialis, large recessus caudalis Lig. collaterale cubiti mediale- from epicondylus med. to radius (in ca also to ulna) Lig. collaterale cubiti laterale- from epicondylus lat. to radius (in ca, Ru also to ulna) Lig. olecrani (ca)- capsular ligament from fossa olecrani of humerus to olecranon •3. ARTICULATIO RADIOULNARIS PROXIMALIS- art. simplex, art. trochoidea movement: ca: rotational movements are possible (pronatio, supinatio) eq, Ru: no movement! between radius (circumferentia articularis radii) and ulna (incisura radialis ulnae) Lig. anulare radii (ca)- encircles the head of the radius, running under the collateral ligaments Membrana interossea antebrachii (ca) (in eq, Ru it is ossified) • 4.
    [Show full text]
  • Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies
    Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies a, b Leo H. Wang, MD, PhD *, Michael D. Weiss, MD KEYWORDS Radial Posterior interosseous Neuropathy Electrodiagnostic study KEY POINTS The radial nerve subserves the extensor compartment of the arm. Radial nerve lesions are common because of the length and winding course of the nerve. The radial nerve is in direct contact with bone at the midpoint and distal third of the humerus, and therefore most vulnerable to compression or contusion from fractures. Electrodiagnostic studies are useful to localize and characterize the injury as axonal or demyelinating. Radial neuropathies at the midhumeral shaft tend to have good prognosis. INTRODUCTION The radial nerve is the principal nerve in the upper extremity that subserves the extensor compartments of the arm. It has a long and winding course rendering it vulnerable to injury. Radial neuropathies are commonly a consequence of acute trau- matic injury and only rarely caused by entrapment in the absence of such an injury. This article reviews the anatomy of the radial nerve, common sites of injury and their presentation, and the electrodiagnostic approach to localizing the lesion. ANATOMY OF THE RADIAL NERVE Course of the Radial Nerve The radial nerve subserves the extensors of the arms and fingers and the sensory nerves of the extensor surface of the arm.1–3 Because it serves the sensory and motor Disclosures: Dr Wang has no relevant disclosures. Dr Weiss is a consultant for CSL-Behring and a speaker for Grifols Inc. and Walgreens. He has research support from the Northeast ALS Consortium and ALS Therapy Alliance.
    [Show full text]
  • Unusual Cubital Fossa Anatomy – Case Report
    Anatomy Journal of Africa 2 (1): 80-83 (2013) Case Report UNUSUAL CUBITAL FOSSA ANATOMY – CASE REPORT Surekha D Shetty, Satheesha Nayak B, Naveen Kumar, Anitha Guru. Correspondence: Dr. Satheesha Nayak B, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Madhav Nagar, Manipal, Karnataka State, India. 576104 Email: [email protected] SUMMARY The median nerve is known to show variations in its origin, course, relations and distribution. But in almost all cases it passes through the cubital fossa. We saw a cubital fossa without a median nerve. The median nerve had a normal course in the upper part of front of the arm but in the distal third of the arm it passed in front of the medial epicondyle of humerus, surrounded by fleshy fibres of pronator teres muscle. Its course and distribution in the forearm was normal. In the same limb, the fleshy fibres of the brachialis muscle directly continued into the forearm as brachioradialis, there being no fibrous septum separating the two muscles from each other. The close relationship of the nerve to the epicondyle might make it vulnerable in the fractures of the epicondyle. The muscle fibres surrounding the nerve might pull up on the nerve and result in altered sensory-motor functions of the hand. Since the brachialis and brachioradialis are two muscles supplied by two different nerves, this continuity of the muscles might result in compression/entrapment of the radial nerve in it. Key words: Median nerve, cubital fossa, brachialis, brachioradialis, entrapment INTRODUCTION The median nerve is the main content of and broad tendon which is inserted into the cubital fossa along with brachial artery and ulnar tuberosity and to a rough surface on the biceps brachii tendon.
    [Show full text]
  • Review Article Entrapment Neuropathies in the Upper and Lower Limbs: Anatomy and MRI Features
    Hindawi Publishing Corporation Radiology Research and Practice Volume 2012, Article ID 230679, 12 pages doi:10.1155/2012/230679 Review Article Entrapment Neuropathies in the Upper and Lower Limbs: Anatomy and MRI Features Qian Dong, Jon A. Jacobson, David A. Jamadar, Girish Gandikota, Catherine Brandon, Yoav Morag, David P. Fessell, and Sung-Moon Kim Division of Musculoskeletal Radiology, Department of Radiology, University of Michigan Health System, 1500 East Medical Center Drive, TC 2910R, Ann Arbor, MI 48109-5326, USA Correspondence should be addressed to Qian Dong, [email protected] Received 20 June 2012; Revised 30 August 2012; Accepted 25 September 2012 Academic Editor: Avneesh Chhabra Copyright © 2012 Qian Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peripheral nerve entrapment occurs at specific anatomic locations. Familiarity with the anatomy and the magnetic resonance imaging (MRI) features of nerve entrapment syndromes is important for accurate diagnosis and early treatment of entrapment neuropathies. The purpose of this paper is to illustrate the normal anatomy of peripheral nerves in the upper and lower limbs and to review the MRI features of common disorders affecting the peripheral nerves, both compressive/entrapment and noncompressive, involving the suprascapular nerve, the axillary nerve, the radial nerve, the ulnar nerve, and the median verve in the upper limb and the sciatic nerve, the common peroneal nerve, the tibial nerve, and the interdigital nerves in the lower limb. 1. Introduction itself and is considered superior in delineating the associated indirect signs related to muscle denervation [2, 4].
    [Show full text]
  • Challenging EDX and Ultrasound Cases History – Case 1
    11/17/2019 6th Annual Scientific Meeting of Thai Neuromuscular and Electrodiagnostic Medicine Society Challenging EDX and Ultrasound Cases David C Preston, MD Bashar Katirji, MD Professor of Neurology Professor of Neurology Neurological Institute University Hospitals – Cleveland Medical Center Cleveland, Ohio History – Case 1 • 44 year-old-lady woman with relapsing remitting Multiple Sclerosis presented with acute right wrist drop. Went to sleep the night before without any problem. Awoke with the inability to extend her wrist or fingers with numbness over the dorsal hand. • Nothing unusual about her sleep. Slept in her own bed. Did not drink alcohol or take any sedating medications. • Prior history of diabetes and presumed diabetic neuropathy affecting her feet. 2 1 11/17/2019 Exam- Case 1 Motor Deltoid 5/5 Triceps 5-/5 Brachioradialis 2/5 Wrist extension 1/5 Finger extension 1/5 All other muscles normal Reflexes RT LF BR 0 0 Biceps 2 2 Triceps 3 2 Sensory: Decreased over the lateral dorsum of the right hand, in the distribution of the superficial radial nerve. 3 Motor NCS 4 2 11/17/2019 Sensory NCS 5 EMG 6 3 11/17/2019 Case 1 Diagnosis: Obvious radial neuropathy at the spiral groove “Must have sleep on it funny” “Probably will get better” “A second year medical student could have figured this out with an EMG” 7 8 4 11/17/2019 What? You ordered a neuromuscular ultrasound! What a waste of money and resources! 9 10 5 11/17/2019 11 12 6 11/17/2019 13 14 7 11/17/2019 15 Case 1 (Real) Diagnosis: Radial neuropathy secondary to compression by a large ganglion cyst arising from the elbow joint that was compressing the deep and superficial branches of the radial nerve and the branch to the brachioradialis.
    [Show full text]
  • Lecture 16 Peripheral Nerve Injury
    Lecture 16 Peripheral Nerve Injury [email protected] Peripheral nerve Peripheral nerve Median nerve Ulnar nerve Radial nerve injuries Posterior Carpel tunnel Cubital tunnel interosseous nerve Neuropraxia syndrome syndrome (PIN) compression Ulnar tunnel Radial tunnel Pronator syndrome Axonotmesis syndrome syndrome anterior Cheiralgia Neurotmesis interosseous nerve paresthetica Compression Neuropathy: It is a Chronic condition with sensory, motor, or mixed involvement. if mixed pathology, sensory function is affected first and then motor is affected “this is because Motor fibers have thick myelin sheath” As a result, first symptom to appear is hypoesthesia and lastly atrophy of the muscles which means severe disease. The sensory functions lost are as follows “in order” - First lost → light touch – pressure – vibration (mild) - Last lost → pain sensation loss – temperature (severe) The pathophysiology of compression neuropathy: Microvascular compression due to any cause neural ischemia paresthesia Intraneural edema more microvascular compression demyelination fibrosis axonal loss. Localized edema caused by compression. It’s NOT a true neuroma "psudoneuroma". pseudoneuroma : is enlargement of the nerve due to compression and edema. Symptoms: “Rule out systemic causes” –any disease that might cause systemic swelling like heart failure ,kidney failure ,diabetes ,RA ,hypothyroidism ,obesity ,pregnancy. Night symptoms “Sign of advanced disease and indication to surgery” Dropping of objects Clumsiness -due to sensory, motor and proprioception loss Weakness Physical examination - grip strength. compare with the other side - Dermatomal distribution - Peripheral nerve distribution (differentiate between radial and median distribution or C5 because it might be upper level problem .) Special tests: Semmes-Weinstein - - Cutaneous pressure threshold → function of large nerve fibers monofilaments: (The best test) which is first to be affected in compression neuropathy.
    [Show full text]
  • Ultrasound-Guided Treatment of Peripheral Entrapment Mononeuropathies John W
    AANEM MONOGRAPH ULTRASOUND-GUIDED TREATMENT OF PERIPHERAL ENTRAPMENT MONONEUROPATHIES JOHN W. NORBURY, MD,1 and LEVON N. NAZARIAN, MD2 1 Department of Physical Medicine and Rehabilitation, The Brody School of Medicine at East Carolina University, 600 Moye Boulevard, Greenville North Carolina 27834, USA 2 Department of Radiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA Accepted 13 May 2019 ABSTRACT: The advent of high-resolution neuromuscular ultrasound high-resolution linear-array transducers has allowed neu- (US) has provided a useful tool for conservative treatment of periph- romuscular US to emerge as a powerful tool for the diag- eral entrapment mononeuropathies. US-guided interventions require 2–6 careful coordination of transducer and needle movement along with a nosis of peripheral entrapment mononeuropathies. detailed understanding of sonoanatomy. Preprocedural planning and US-guided treatment of entrapment mononeuropathies positioning can be helpful in performing these interventions. Cortico- has also greatly expanded in recent years. Technical steroid injections, aspiration of ganglia, hydrodissection, and minimally invasive procedures can be useful nonsurgical treatments for aspects of performing therapeutic US-guided proce- mononeuropathies refractory to conservative care. Technical aspects dures and the current state of the science regarding US- as well as the current understanding of the indications and efficacy of guided treatment for common peripheral entrapment these procedures for common entrapment mononeuropathies are reviewed in this study. mononeuropathies are reviewed and discussed in this Muscle Nerve 60: 222–231, 2019 monograph. The expansion of high-resolution linear-array trans- TYPES OF ULTRASOUND-GUIDED INTERVENTIONS ducers has allowed neuromuscular ultrasound (US) Corticosteroid Injections. Corticosteroids suppress 7–9 to emerge as a powerful tool for the diagnosis and treat- proinflammatory cytokines.
    [Show full text]
  • Endoscopically Assisted Nerve Decompression of Rare Nerve Compression Syndromes at the Upper Extremity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Arch Orthop Trauma Surg (2013) 133:575–582 DOI 10.1007/s00402-012-1668-3 HANDSURGERY Endoscopically assisted nerve decompression of rare nerve compression syndromes at the upper extremity Franck Marie P. Lecle`re • Dietmar Bignion • Torsten Franz • Lukas Mathys • Esther Vo¨gelin Received: 27 September 2012 / Published online: 17 February 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract functional results. This minimally invasive surgical tech- Background Besides carpal tunnel and cubital tunnel nique will likely be further described in future clinical syndrome, other nerve compression or constriction syn- studies. dromes exist at the upper extremity. This study was per- formed to evaluate and summarize our initial experience Keywords Endoscopy Á Pronator teres syndrome Á with endoscopically assisted decompression. Supinator syndrome Á Kiloh–Nevin syndrome Á Nerve Materials and methods Between January 2011 and March compression Á Nerve constrictions Á Hourglass-like 2012, six patients were endoscopically operated for rare constrictions compression or hour-glass-like constriction syndrome. This included eight decompressions: four proximal radial nerve decompressions, and two combined proximal median nerve Introduction and anterior interosseus nerve decompressions. Surgical technique and functional outcomes are presented. Besides carpal tunnel (CTS) and cubital tunnel syndrome, Results There were no intraoperative complications in the other single rare nerve entrapments exist at the upper series. Endoscopy allowed both identifying and removing extremity. These include the compression of the proximal all the compressive structures. In one case, the proximal radial nerve (supinator syndrome), the proximal median radial neuropathy developed for 10 years without therapy nerve (pronator teres syndrome) and the anterior interos- and a massive hour-glass nerve constriction was observed seus nerve (Kiloh–Nevin syndrome).
    [Show full text]
  • Arm and Cubital Fossa
    Two Minute History M1 - Anatomy Dissection: • 300 B.C Arm and Cubital Alexandrian Egypt: King Ptolemy I, its ok Fossa to dissect cadavers of executed, mummies etc… •Herophilus “Father of Anatomy” accused by a rival of DG Simpson, Ph.D. dissecting 600 criminals…..live criminals VCU Department of Anatomy •1300 AD Europe Pope Boniface VIII edict to stop dissection to reduce the flow of bodies “parted out and boiled” from the crusades. Unclear if this is broad ban or very narrow. 1 2 Dissection: Dissection: •1540 parliament passes “The United Company of Barbers and •1700’s with the expansion of medical Surgeons, dissect 4-6 executed schools cadavers are used as tuition criminals/yr (not enough even then) •Competition is very high and medical •1600’s Britain. The executed are schools actively advertise that training includes dissections etc.. dissected in public as punishment • 1628 William Harvey •1828 London had 10 full time (cardiovascular fame). Autopsy & 200 part time body snatchers (“seasonal work” at 312 bodies/yr) of live and dead…. Medicine expands and shortages develop •Inventions to foil grave robbers Harvey dissects father and sister •1828 Robert Knox….and the rest • 1740’s Lots of private medical is amazing history. schools competing for students, William Hogarth The Reward of Cruelty 3 4 market forces develop 1750-1751 Dissection: •Burke was hanged: 25,000 watched. Hare was granted immunity as crowd called “Burke Hare” •1828, knock on the •Burke dissected: 30,000 came to see the open lab door, Knox’s assistant purchases a cadaver
    [Show full text]