Whiplash Associated Disorder: the Pathway from Acute to Chronic Pain (Hours 7-8) James J

Total Page:16

File Type:pdf, Size:1020Kb

Whiplash Associated Disorder: the Pathway from Acute to Chronic Pain (Hours 7-8) James J Whiplash Associated Disorder: The pathway from acute to chronic pain (Hours 7-8) James J. Lehman, DC, FACO Associate Professor of Clinical Sciences Director of Community Health Clinical Education University of Bridgeport Learning Objectives • Able to demonstrate: • Clinical plan to evaluate and manage a post-traumatic, whiplash type injury and past history of a “widow maker,” and numerous nerve compression syndromes • Appropriate interview and differential diagnosis process • Appropriate evaluation process to rule-in and rule-out diagnoses • A differential diagnosis that includes a working diagnosis • A continuum of diagnosis as patient progresses with care • Therapeutic recommendations • Prognosis Patient Presentation • 60 year-old, male, university professor • Chief concern is pain and numbness in the left lower extremity with history of whiplash associated disorder, which started 3 weeks post-stent implant • Past history • Suffered myocardial infarct of the left anterior descending coronary artery 12 months prior to this visit • Several motor vehicle incidents over past 30 years with whiplash associated disorders • Ulnar neuropathy left upper extremity 17 years prior to this visit • Axillary nerve compression left upper extremity 15 years prior to this visit • Cervicobrachial neuropathy right upper extremity 14 years prior to this visit • Radial tunnel syndrome right upper extremity 10 • Wartenberg’s syndrome left upper extremity 5 years prior to this visit • Responds well to chiropractic management What is your list of subjective questions regarding the Chief Concern? Did you consider a list of Differential Diagnoses for Lower Extremity Condition? What tests would you perform to rule-in and rule- out your differential diagnoses of Chief Concern? Did you investigate the post MI care including surgery and medications? Create list of differential diagnoses regarding Chief Concern Rule-in and Rule-out with specific questions Rule-in and rule-out with objective testing and determine working diagnosis Definition of an orthopedic test • Most often, a provocative maneuver that reproduces the patient’s chief concern pain by stretching, compressing and/or contracting of tissues in order to identify the involved tissues. Working diagnosis is “Statin Myopathy with resultant piriformis syndrome • Statin myopathy is a common dilemma that causes persistent myalgia. • Fernandez G, Spatz ES, Jablecki C, and Phillips PS. Statin myopathy: a common dilemma not reflected in clinical trials. Cleveland Clinic Journal of Medicine, Vol 78, Number 6. June 2011. The working diagnosis is statin myopathy with resultant piriformis syndrome Diagnosis and Management of Piriformis Syndrome • Piriformis syndrome is a neuromuscular condition characterized by hip and buttock pain. This syndrome is often overlooked in clinical settings because its presentation may be similar to that of lumbar radiculopathy, primary sacral dysfunction, or innominate dysfunction. • Boyajian LA, et al. Diagnosis and Management of Piriformis Syndrome: An Osteopathic Approach. The Journal of the American Osteopathic Association, November 2008, Vol. 108, 657-664. FAIR Test Flexion, Adduction and Internal Rotation of the affected hip RHABDOMYOLYSIS • Muscle symptoms with a CK level 10 times the upper limit of normal or higher. Evidence of renal dysfunction is not required for the diagnosis, as pre-existing renal disease and hydration status are more closely related to kidney damage than the degree of muscle injury. • Linares LA, Golomb BA, Jaojoco JA, Sikand H, Phillips PS. The modern spectrum of rhabdomyolysis: drug toxicity revealed by creatine kinase screening. Curr Drug Saf. 2009 Sep;4(3):181-7. Epub 2009 Sep 1. Statin Myopathy Syndromes • Statin Myopathy • Any muscle complaint with onset coincident with start of statin therapy • Myalgia with normal CK • Myositis with elevated CK • Rhabdomyolysis • Thompson, PD, Clarkson, P, Karas, RH. Statin-associated myopathy. JAMA. 2003;289:1681-1690. Caveat Emptor • Perhaps more dangerous, statins provide false reassurances that may discourage patients from taking the steps that actually reduce cardiovascular disease. • According to the World Health Organization, 80 percent of cardiovascular disease is caused by smoking, lack of exercise, an unhealthy diet, and other lifestyle factors. • Statins give the illusion of protection to many people, who would be much better served, for example, by simply walking an extra 10 minutes per day. JOHN D. ABRAMSON and RITA F. REDBERG. Don’t Give More Patients Statins. NYT. Published: November 13, 2013. Statin Myopathy • Statins are associated with adverse side effects of skeletal myopathy. Statin Myopathy • Statin treatment reduces ubiquinone levels in the cholesterol synthesis pathway, which may be associated with mitochondrial dysfunction. In addition, reactive oxygen species (ROS) production and apoptosis induced by statins may provide cellular and molecular mechanisms in skeletal myopathy. • Kwak HB. Statin-induced Myopathy in Skeletal Muscle: the Role of Exercise. J Lifestyle Med. 2014 Sep;4(2):71-9. doi: 10.15280/jlm.2014.4.2.71. Epub 2014 Sep 30. Statin Myopathy Symptoms • The myopathies are neuromuscular disorders in which the primary symptom is muscle weakness due to dysfunction of muscle fiber. Statin Myopathy Symptoms • Other symptoms of statin myopathy can include muscle cramps, stiffness, and spasm. Types of Statin Myopathy • Myalgia—muscle weakness, soreness, tenderness, stiffness, cramping, or aching, either at rest or with exertion, without any elevation in CK. • Myositis—elevated CK with or without muscle symptoms. The “-itis” suffix is unfortunate since myositis does not correspond to inflammation on biopsy. • Rhabdomyolysis—muscle symptoms with a CK level 10 times the upper limit of normal or higher. Evidence of renal dysfunction is not required for the diagnosis, as preexisting renal disease and hydration status are more closely related to kidney damage than the degree of muscle injury. • Linares LA, Golomb BA, Jaojoco JA, et al. The modern spectrum of rhabdomyolysis: drug toxicity revealed by creatine kinase screening. Curr Drug Saf 2009; 4:181–187. Physician Denial Eighty-seven percent of patients reportedly spoke to their physician about the possible connection between statin use and their symptom. Golomb BA, McGraw JJ, Evans MA, Dimsdale JE. Physician response to patient reports of adverse drug effects: implications for patient-targeted adverse effect surveillance. Drug Saf. 2007;30(8):669-75. Physician Denial • Patients reported that they and not the doctor most commonly initiated the discussion regarding the possible connection of drug to symptom (98% vs 2% cognition survey, 96% vs 4% neuropathy survey, 86% vs 14% muscle survey; p < 10(-8) for each). • Physicians were reportedly more likely to deny than affirm the possibility of a connection. • Golomb BA, McGraw JJ, Evans MA, Dimsdale JE. Physician response to patient reports of adverse drug effects: implications for patient-targeted adverse effect surveillance. Drug Saf. 2007;30(8):669-75. Physician Denial CONCLUSIONS • Since low reporting rates are considered to contribute to delays in identification of adverse drug reactions (ADRs), findings from this study suggest that additional putative cases may be identified by targeting patients as reporters, potentially speeding recognition of ADRs. • Golomb BA, McGraw JJ, Evans MA, Dimsdale JE. Physician response to patient reports of adverse drug effects: implications for patient-targeted adverse effect surveillance. Drug Saf. 2007;30(8):669-75. Pelvic Obliquity • Pelvic obliquity can be caused by leg length inequality, contractures about the hips, as part of a structural scoliosis, or as a combination of two or more of these causes. Careful physical and radiologic evaluations are necessary to establish the correct diagnosis. • Pelvic obliquity. Its causes and its treatment. – BioMedSearch. www.biomedsearch.com/nih/Pelvic- obliquity-Its-causes-its/3715623.html Pelvic obliquity and Long Sit Test Long Sit Test • https://www.bing.com/videos/search?q=long+sit+test+fo r+leg+length+discrepancy&&view=detail&mid=E649DA15 CBC51E245890E649DA15CBC51E245890&&FORM=VDRV RV • Terry Bemis, et al. Validation of the Long Sitting Test on Subjects with lliosacral Dysfunction. JOSPT January 1987. https://www.jospt.org/doi/pdf/10.2519/jospt.1987.8.7.3 36 Is this patient presenting with a post- traumatic chronic pain syndrome? Why so many neuropathies? Nerve Damage Nerve damage The effects of compression on peripheral nerves can be attributed to alterations of blood circulation to and from the nerve as well as direct injury to the axonal transport systems. Venous blood flow from the peripheral nerves is shown to be reduced at 20 to 30 mm Hg, whereas frank ischemia can occur at pressures of 60 to 80 mm Hg. Neuropraxia The mildest grade is called neuropraxia, a reduction or complete block of conduction across a segment of a nerve with axonal continuity conserved. Neuropraxia • More specifically, it is dysfunction and/or paralysis without loss of nerve sheath continuity and peripheral Wallerian degeneration • Nerve conduction is preserved both proximal and distal to the lesion but not across the lesion. Neuropraxia A person's foot "falling asleep" after her legs have been crossed is an example of a functional loss without abnormal change. Axonotmesis Axonotmesis is a more severe grade of nerve injury compared to neurapraxia. Axonotmesis is a result of damage to the axons with preservation of the neural
Recommended publications
  • Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies
    Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies a, b Leo H. Wang, MD, PhD *, Michael D. Weiss, MD KEYWORDS Radial Posterior interosseous Neuropathy Electrodiagnostic study KEY POINTS The radial nerve subserves the extensor compartment of the arm. Radial nerve lesions are common because of the length and winding course of the nerve. The radial nerve is in direct contact with bone at the midpoint and distal third of the humerus, and therefore most vulnerable to compression or contusion from fractures. Electrodiagnostic studies are useful to localize and characterize the injury as axonal or demyelinating. Radial neuropathies at the midhumeral shaft tend to have good prognosis. INTRODUCTION The radial nerve is the principal nerve in the upper extremity that subserves the extensor compartments of the arm. It has a long and winding course rendering it vulnerable to injury. Radial neuropathies are commonly a consequence of acute trau- matic injury and only rarely caused by entrapment in the absence of such an injury. This article reviews the anatomy of the radial nerve, common sites of injury and their presentation, and the electrodiagnostic approach to localizing the lesion. ANATOMY OF THE RADIAL NERVE Course of the Radial Nerve The radial nerve subserves the extensors of the arms and fingers and the sensory nerves of the extensor surface of the arm.1–3 Because it serves the sensory and motor Disclosures: Dr Wang has no relevant disclosures. Dr Weiss is a consultant for CSL-Behring and a speaker for Grifols Inc. and Walgreens. He has research support from the Northeast ALS Consortium and ALS Therapy Alliance.
    [Show full text]
  • Review Article Entrapment Neuropathies in the Upper and Lower Limbs: Anatomy and MRI Features
    Hindawi Publishing Corporation Radiology Research and Practice Volume 2012, Article ID 230679, 12 pages doi:10.1155/2012/230679 Review Article Entrapment Neuropathies in the Upper and Lower Limbs: Anatomy and MRI Features Qian Dong, Jon A. Jacobson, David A. Jamadar, Girish Gandikota, Catherine Brandon, Yoav Morag, David P. Fessell, and Sung-Moon Kim Division of Musculoskeletal Radiology, Department of Radiology, University of Michigan Health System, 1500 East Medical Center Drive, TC 2910R, Ann Arbor, MI 48109-5326, USA Correspondence should be addressed to Qian Dong, [email protected] Received 20 June 2012; Revised 30 August 2012; Accepted 25 September 2012 Academic Editor: Avneesh Chhabra Copyright © 2012 Qian Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peripheral nerve entrapment occurs at specific anatomic locations. Familiarity with the anatomy and the magnetic resonance imaging (MRI) features of nerve entrapment syndromes is important for accurate diagnosis and early treatment of entrapment neuropathies. The purpose of this paper is to illustrate the normal anatomy of peripheral nerves in the upper and lower limbs and to review the MRI features of common disorders affecting the peripheral nerves, both compressive/entrapment and noncompressive, involving the suprascapular nerve, the axillary nerve, the radial nerve, the ulnar nerve, and the median verve in the upper limb and the sciatic nerve, the common peroneal nerve, the tibial nerve, and the interdigital nerves in the lower limb. 1. Introduction itself and is considered superior in delineating the associated indirect signs related to muscle denervation [2, 4].
    [Show full text]
  • Challenging EDX and Ultrasound Cases History – Case 1
    11/17/2019 6th Annual Scientific Meeting of Thai Neuromuscular and Electrodiagnostic Medicine Society Challenging EDX and Ultrasound Cases David C Preston, MD Bashar Katirji, MD Professor of Neurology Professor of Neurology Neurological Institute University Hospitals – Cleveland Medical Center Cleveland, Ohio History – Case 1 • 44 year-old-lady woman with relapsing remitting Multiple Sclerosis presented with acute right wrist drop. Went to sleep the night before without any problem. Awoke with the inability to extend her wrist or fingers with numbness over the dorsal hand. • Nothing unusual about her sleep. Slept in her own bed. Did not drink alcohol or take any sedating medications. • Prior history of diabetes and presumed diabetic neuropathy affecting her feet. 2 1 11/17/2019 Exam- Case 1 Motor Deltoid 5/5 Triceps 5-/5 Brachioradialis 2/5 Wrist extension 1/5 Finger extension 1/5 All other muscles normal Reflexes RT LF BR 0 0 Biceps 2 2 Triceps 3 2 Sensory: Decreased over the lateral dorsum of the right hand, in the distribution of the superficial radial nerve. 3 Motor NCS 4 2 11/17/2019 Sensory NCS 5 EMG 6 3 11/17/2019 Case 1 Diagnosis: Obvious radial neuropathy at the spiral groove “Must have sleep on it funny” “Probably will get better” “A second year medical student could have figured this out with an EMG” 7 8 4 11/17/2019 What? You ordered a neuromuscular ultrasound! What a waste of money and resources! 9 10 5 11/17/2019 11 12 6 11/17/2019 13 14 7 11/17/2019 15 Case 1 (Real) Diagnosis: Radial neuropathy secondary to compression by a large ganglion cyst arising from the elbow joint that was compressing the deep and superficial branches of the radial nerve and the branch to the brachioradialis.
    [Show full text]
  • Ultrasound-Guided Treatment of Peripheral Entrapment Mononeuropathies John W
    AANEM MONOGRAPH ULTRASOUND-GUIDED TREATMENT OF PERIPHERAL ENTRAPMENT MONONEUROPATHIES JOHN W. NORBURY, MD,1 and LEVON N. NAZARIAN, MD2 1 Department of Physical Medicine and Rehabilitation, The Brody School of Medicine at East Carolina University, 600 Moye Boulevard, Greenville North Carolina 27834, USA 2 Department of Radiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA Accepted 13 May 2019 ABSTRACT: The advent of high-resolution neuromuscular ultrasound high-resolution linear-array transducers has allowed neu- (US) has provided a useful tool for conservative treatment of periph- romuscular US to emerge as a powerful tool for the diag- eral entrapment mononeuropathies. US-guided interventions require 2–6 careful coordination of transducer and needle movement along with a nosis of peripheral entrapment mononeuropathies. detailed understanding of sonoanatomy. Preprocedural planning and US-guided treatment of entrapment mononeuropathies positioning can be helpful in performing these interventions. Cortico- has also greatly expanded in recent years. Technical steroid injections, aspiration of ganglia, hydrodissection, and minimally invasive procedures can be useful nonsurgical treatments for aspects of performing therapeutic US-guided proce- mononeuropathies refractory to conservative care. Technical aspects dures and the current state of the science regarding US- as well as the current understanding of the indications and efficacy of guided treatment for common peripheral entrapment these procedures for common entrapment mononeuropathies are reviewed in this study. mononeuropathies are reviewed and discussed in this Muscle Nerve 60: 222–231, 2019 monograph. The expansion of high-resolution linear-array trans- TYPES OF ULTRASOUND-GUIDED INTERVENTIONS ducers has allowed neuromuscular ultrasound (US) Corticosteroid Injections. Corticosteroids suppress 7–9 to emerge as a powerful tool for the diagnosis and treat- proinflammatory cytokines.
    [Show full text]
  • Endoscopically Assisted Nerve Decompression of Rare Nerve Compression Syndromes at the Upper Extremity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Arch Orthop Trauma Surg (2013) 133:575–582 DOI 10.1007/s00402-012-1668-3 HANDSURGERY Endoscopically assisted nerve decompression of rare nerve compression syndromes at the upper extremity Franck Marie P. Lecle`re • Dietmar Bignion • Torsten Franz • Lukas Mathys • Esther Vo¨gelin Received: 27 September 2012 / Published online: 17 February 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract functional results. This minimally invasive surgical tech- Background Besides carpal tunnel and cubital tunnel nique will likely be further described in future clinical syndrome, other nerve compression or constriction syn- studies. dromes exist at the upper extremity. This study was per- formed to evaluate and summarize our initial experience Keywords Endoscopy Á Pronator teres syndrome Á with endoscopically assisted decompression. Supinator syndrome Á Kiloh–Nevin syndrome Á Nerve Materials and methods Between January 2011 and March compression Á Nerve constrictions Á Hourglass-like 2012, six patients were endoscopically operated for rare constrictions compression or hour-glass-like constriction syndrome. This included eight decompressions: four proximal radial nerve decompressions, and two combined proximal median nerve Introduction and anterior interosseus nerve decompressions. Surgical technique and functional outcomes are presented. Besides carpal tunnel (CTS) and cubital tunnel syndrome, Results There were no intraoperative complications in the other single rare nerve entrapments exist at the upper series. Endoscopy allowed both identifying and removing extremity. These include the compression of the proximal all the compressive structures. In one case, the proximal radial nerve (supinator syndrome), the proximal median radial neuropathy developed for 10 years without therapy nerve (pronator teres syndrome) and the anterior interos- and a massive hour-glass nerve constriction was observed seus nerve (Kiloh–Nevin syndrome).
    [Show full text]
  • Clinical Features of Wrist Drop Caused by Compressive Radial Neuropathy and Its Anatomical Considerations
    www.jkns.or.kr http://dx.doi.org/10.3340/jkns.2014.55.3.148 Print ISSN 2005-3711 On-line ISSN 1598-7876 J Korean Neurosurg Soc 55 (3) : 148-151, 2014 Copyright © 2014 The Korean Neurosurgical Society Clinical Article Clinical Features of Wrist Drop Caused by Compressive Radial Neuropathy and Its Anatomical Considerations Bo Ram Han, M.D., Yong Jun Cho, M.D., Ph.D., Jin Seo Yang, M.D., Suk Hyung Kang, M.D., Ph.D., Hyuk Jai Choi, M.D., Ph.D. Department of Neurosurgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Korea Objective : Posture-induced radial neuropathy, known as Saturday night palsy, occurs because of compression of the radial nerve. The clinical symp- toms of radial neuropathy are similar to stroke or a herniated cervical disk, which makes it difficult to diagnose and sometimes leads to inappropriate evaluations. The purpose of our study was to establish the clinical characteristics and diagnostic assessment of compressive radial neuropathy. Methods : Retrospectively, we reviewed neurophysiologic studies on 25 patients diagnosed with radial nerve palsy, who experienced wrist drop af- ter maintaining a certain posture for an extended period. The neurologic presentations, clinical prognosis, and electrophysiology of the patients were obtained from medical records. Results : Subjects were 19 males and 6 females. The median age at diagnosis was 46 years. The right arm was affected in 13 patients and the left arm in 12 patients. The condition was induced by sleeping with the arms hanging over the armrest of a chair because of drunkenness, sleeping while bending the arm under the pillow, during drinking, and unknown.
    [Show full text]
  • Upper Extremity Compression Neuropathies
    Peripheral Nerve Injury in the Athlete: Upper and Lower Limb Entrapment Neuropathies Greg Moore, MD Sports and Spine Rehabilitation NeuroSpine Institute Outline Review common nerve entrapment and injury syndromes, particularly related to sports Review pertinent anatomy to each nerve Review typical symptoms Discuss pathophysiology Discuss pertinent diagnostic tests and treatment options Neuropathy Mononeuropathies Median Femoral Pronator Teres Intrapelvic Anterior Interosseous Nerve Inguinal Ligament Carpal Tunnel Sciatic Ulnar Piriformis Cubital Tunnel Peroneal Guyon’s Canal Fibular Head Radial Axilla Tibial Spiral Groove Tarsal Tunnel Posterior Interosseous Nerve Sports Medicine Pearls Utilize your athletic trainers Individualize your diagnostic and treatment approach based on multiple factors Age Sport Level of Sport (HS, college, professional) Position Sports Medicine Pearls Time in the season Degree of pain/disability Desire of the patient/parents Coach’s desires/level of concern Cost (rarely discuss with the coach) Danger of a delay in diagnosis Impact to the team Obtaining the History Pain questions- location, duration, type, etc. Presence and location of numbness and paresthesias Exertional fatigue and/or weakness Subjective muscle atrophy Symptom onset- insidious or post-traumatic Exacerbating activities History (continued) Changes in exercise duration, intensity or frequency New techniques or equipment Past medical history and review of systems Diabetes Hypercoaguable state Depression/anxiety
    [Show full text]
  • Treatment of Epicondylalgia and Nerve Entrapments Around the Elbow
    Linköping University Medical Dissertations No. 1262 Treatment of Epicondylalgia and Nerve Entrapments around the Elbow Birgitta Svernlöv Linköping University, Faculty of Health Sciences Department of Clinical and Experimental Medicine Division of Surgery and Clinical Oncology SE-581 85 Linköping, Sweden Linköping 2012 © Birgitta Svernlöv, 2012 Cover: Detail from a painting by Nicolas Poussin (1594-1665) called “Et in Arcadia ego”, the Louvre Museum (Paris, France). Previously published articles have been reprinted with the permission of the copyright holders. Printed in Sweden by LiU-Tryck, Linköping, Sweden 2011 ISBN: 978-91-7393-065-9 ISSN: 0345-0082 To unpathed waters, undreamed shores; A Winter’s Tale (W. Shakespeare 1564‐1616) Our doubts are traitors, and make us lose the good we oft might win, by fearing to attempt; Measure for Measure (W. Shakespeare 1564‐ 1616) CONTENTS CONTENTS ABSTRACT ABBREVIATIONS LIST OF PAPERS INTRODUCTION .........................................................................................................1 HISTORY .............................................................................................................................. 1 BACKGROUND ..........................................................................................................4 ANATOMY ............................................................................................................................ 6 The lateral epicondyle....................................................................................................
    [Show full text]
  • Radial Tunnel Syndrome
    46 Radial Tunnel Syndrome ICD-10 CODE G56.90 extrinsic masses, or a sharp tendinous margin of the extensor carpi radialis brevis. These entrapments may exist alone or in combination. THE CLINICAL SYNDROME SIGNS AND SYMPTOMS Radial tunnel syndrome is an uncommon cause of lateral elbow pain that has the unique distinction among entrapment neurop- Regardless of the mechanism of entrapment of the radial nerve, athies of almost always being initially misdiagnosed. The inci- the common clinical feature of radial tunnel syndrome is pain dence of misdiagnosis of radial tunnel syndrome is so common just below the lateral epicondyle of the humerus. The pain of that it is often incorrectly referred to as resistant tennis elbow radial tunnel syndrome may develop after an acute twisting (Table 46.1). As seen from the following discussion, the only injury or direct trauma to the soft tissues overlying the poste- major similarity that radial tunnel syndrome and tennis elbow rior interosseous branch of the radial nerve, or the onset may share is the fact that both clinical syndromes produce lateral be more insidious, without an obvious inciting factor. The pain elbow pain. is constant and worsens with active supination of the wrist. The lateral elbow pain of radial tunnel syndrome is aching Patients often note the inability to hold a coffee cup or hammer. and localized to the deep extensor muscle mass. The pain may Sleep disturbance is common. On physical examination, elbow radiate proximally and distally into the upper arm and forearm range of motion is normal. Grip strength on the affected side (Fig.
    [Show full text]
  • Nerve Compression Syndromes of the Upper Extremity: Diagnosis, Treatment, and Rehabilitation
    ORTHOPEDICS & REHABILITATION Nerve Compression Syndromes of the Upper Extremity: Diagnosis, Treatment, and Rehabilitation P. KAVEH MANSURIPUR, MD; MATTHEW E. DEREN, MD; ROBIN KAMAL, MD ABSTRACT bution of the affected nerve. It is important to note that the Nerve compression syndromes of the upper extremity, presentation of cervical radiculopathy resembles that of pe- 37 including carpal tunnel syndrome, cubital tunnel syn- ripheral nerve compression, and care must be taken to make 39 drome, posterior interosseous syndrome and radial tun- the correct diagnosis. In some cases, the peripheral nervous nel syndrome, are common in the general population. system is compromised in both areas, a condition known EN Diagnosis is made based on patient complaint and histo- as the double crush syndrome,2 which also complicates the ry as well as specific exam and study findings. Treatment diagnosis and treatment. options include various operative and nonoperative mo- dalities, both of which include aspects of hand therapy Carpal Tunnel Syndrome and rehabilitation. Carpal tunnel syndrome (CTS) is the most common nerve compression syndrome of the upper extremity, with an in- KEYWORDS: Upper extremity, nerve compression, 3 rehabilitation, carpal tunnel, cubital tunnel cidence of 3% to 5% in the general population. It is caused by compression of the median nerve as it crosses through the fibrosseous carpal tunnel at the wrist, along with the nine extrinsic flexor tendons. Most cases are idiopathic and work related, with a significantly proportion coming INTRODUCTION from occupations that involve manual force, repetition, and Upper extremity compression syndromes, including carpal vibratory tools.4 tunnel syndrome, cubital tunnel syndrome, and radial Symptoms include loss of sensation and paresthesias in ]tunnel syndrome, are common in the general population.
    [Show full text]
  • Compressive Neuropathy in the Upper Limb Review Article
    Review Article Compressive neuropathy in the upper limb Mukund R. Thatte, Khushnuma A. Mansukhani1 Departments of Plastic Surgery, 1Electro Physiology, Bombay Hospital Institute of Medical Sciences, India Address for correspondence: Dr. Mukund R. Thatte, Department of Plastic Surgery, 402, Vimal Smruti, 770 Dr. Ghanti Road, Dadar, Mumbai – 400 014, India. E-mail: [email protected] ABSTRACT Entrampment neuropathy or compression neuropathy is a fairly common problem in the upper limb. Carpal tunnel syndrome is the commonest, followed by Cubital tunnel compression or Ulnar Neuropathy at Elbow. There are rarer entities like supinator syndrome and pronator syndrome affecting the Radial and Median nerves respectively. This article seeks to review comprehensively the pathophysiology, Anatomy and treatment of these conditions in a way that is intended for the practicing Hand Surgeon as well as postgraduates in training. It is generally a rewarding exercise to treat these conditions because they generally do well after corrective surgery. Diagnostic guidelines, treatment protocols and surgical technique has been discussed. KEY WORDS Entrapment neuropathy, carpal tunnel, minimal access INTRODUCTION Common conditions The nerves discussed in this article are ompressive neuropathy is one of the most fasci- • Median nerve nating yet most complex aspects of Hand Surgery. • Ulnar nerve CIt is also quite often the most rewarding surgery in • Radial nerve terms of clinical outcomes with some exceptions. Com- presssive or entrapment neuropathy results from com- The common conditions in our practice are pression on a nerve at some point over its course in the • Carpal tunnel syndrome (CTS) upper limb. It can result in altered function and if left un- • Ulnar neuropathy at the elbow (UNE) treated leads to considerable morbidity—some of which can be difficult to reverse, if left too late.
    [Show full text]
  • Peripheral Nerve Entrapment and Their Surgical Treatment
    Chapter 2 Peripheral Nerve Entrapment and their Surgical Treatment Vicente Vanaclocha‐Vanaclocha, Nieves Sáiz‐Sapena, Jose María Ortiz‐Criado and Nieves Vanaclocha Additional information is available at the end of the chapter http://dx.doi.org/10.5772/67946 Abstract Nerves pass from one body area to another through channels made of connective tis‐ sue and/or bone. In these narrow passages, they can get trapped due to anatomic abnor‐ malities, ganglion cysts, muscle or connective tissue hypertrophy, tumours, trauma or iatrogenic mishaps. Nearly all nerves can be affected. The clinical presentation is pain, paraesthesia, sensory and motor power loss. The specific clinical features will depend on the affected nerve and on the chronicity, severity, speed and mechanism of compression. Its incidence is higher under some occupations and is some systemic conditions: dia‐ betes mellitus, hypothyroidism, acromegaly, alcoholism, oedema and inflammatory dis‐ eases. The diagnosis is suspected with the clinical presentation and provocative clinical test, being confirmed with electrodiagnostic and/or ultrasonographic studies. Magnetic Resonance Studies (MRI) rule out ganglion cysts or tumours. Conservative medical treat‐ ment is often sufficient. In refractory ones, surgical decompression should be performed before nerve damage and muscle atrophy are irreversible. The ‘double crash’ syndrome happens when a peripheral nerve is compressed at more than one point along its trajec‐ tory. In cases with marked muscle atrophy, a ‘supercharge end‐to‐side’ nerve transfer can be added to the decompression. After decompression in those few cases with refractory pain, a nerve neurostimulator can be applied. Keywords: entrapment neuropathy, compression neuropathy, carpal tunnel syndrome, cubital tunnel syndrome, meralgia paraesthetica, cheiralgia paraesthetica, peroneal nerve entrapment, ulnar tunnel syndrome, radial tunnel syndrome, tarsal tunnel syndrome © 2017 The Author(s).
    [Show full text]