Catalytic Naphtha Reforming: Science and Technology, Edited by George J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNESCO Kalinga Prize Winner – 1992 Dr. Jorge Flores Valdes
Glossary on Kalinga Prize Laureates UNESCO Kalinga Prize Winner – 1992 Dr. Jorge Flores Valdes Great Science Popularizer of Mexico [ Born: February 1st , 1941 ……….. ] The Physics is wonderful and if at this point of my life they returned to ask to me, like when it was in sixth degree of Primary, what I want to be, it would say that Physical” …Jorge Flores Valdes 1 Glossary on Kalinga Prize Laureates 2 Glossary on Kalinga Prize Laureates BIOGRAPHICAL DATA DR. JORGE FLORES June, 2007 Jorge Flores was born in Mexico City, Mexico, on used the mathematical techniques they had February 1st, 1941. He obtained a bachelor’s degree developed to analyze quantum systems to formulate in 1962 and a Ph. D. degree in Physics in 1965, a model for the seismic response of sedimentary both degrees from the Universidad Nacional basins. The paper was published in 1987 in the Autónoma de México, UNAM (National University prestigious journal Nature; the front page of the of Mexico). From 1965 to 1967 he was a corresponding issue was dedicated to this article. postdoctoral fellow at Princeton University; in 1969 Dr. Flores went on publishing on seismology, using he worked at the International Centre for Theoretical his model, which up to the present seems to be the Physics in Trieste and in 1970 he was visiting only plausible explanation of this disastrous effect. professor at the Université de Paris (Orsay). In the year 2000 he established a laboratory to study He published his first paper in the journal Nuclear the vibration of elastic systems. Together with a Physics A in 1963. -
Deloitte Legal Experience the Future of Law, Today
Deloitte Legal Experience the future of law, today Latin America 2021 Deloitte Legal—Experience the future of law, today | Latin America 2021 Deloitte Legal—Experience the future of law, today | Latin America 2021 About Deloitte Legal 04 Deloitte Legal global coverage 06 Pioneering and pragmatic solutions 08 Argentina 11 Brazil 12 Chile 13 Colombia 14 Costa Rica 15 Dominican Republic 16 Ecuador 17 El Salvador 18 Guatemala 19 Honduras 20 Mexico 21 Nicaragua 22 Paraguay 23 Peru 24 Uruguay 25 Venezuela 26 Deloitte Legal services 28 02 03 Deloitte Legal—Experience the future of law, today | Latin America 2021 Deloitte Legal—Experience the future of law, today | Latin America 2021 Experience the future of law, today Deloitte Legal What we deliver More than operating in over For family-owned small and medium-sized companies, listed stock corporations, or international groups of companies, Deloitte Legal helps our clients face the challenges of an ever-changing regulatory and 2,500 80 economic environment. legal professionals countries Perspective that is global, yet grounded Deloitte Legal works with clients globally to help them resolve their present challenges and plan for the future. Our industry knowledge, global footprint, and multidisciplinary service model result in a strategic perspective that enables and empowers our clients to meet their local responsibilities and collaborating seamlessly thrive in the global marketplace. across borders and with other Deloitte business lines Cross-border coordination and a single point of contact It can be enormously challenging to manage numerous legal services providers around the world and issues can slip through the cracks. As one of the global leaders in legal services, Deloitte Legal works with you to As part of the global Deloitte professional services network, Deloitte Legal collaborates with colleagues in an array of understand your needs and your vision, and to coordinate delivery around the globally integrated services to deliver multinational legal solutions that are: world to help you achieve your business goals. -
(HDS) Unit for Petroleum Naphtha at 3500 Barrels Per Day
Available online at www.worldscientificnews.com WSN 9 (2015) 88-100 EISSN 2392-2192 Design Parameters for a Hydro desulfurization (HDS) Unit for Petroleum Naphtha at 3500 Barrels per Day Debajyoti Bose University of Petroleum & Energy Studies, College of Engineering Studies, P.O. Bidholi via- Prem Nagar, Dehradun 248007, India E-mail address: [email protected] ABSTRACT The present work reviews the setting up of a hydrodesulphurization unit for petroleum naphtha. Estimating all the properties of the given petroleum fraction including its density, viscosity and other parameters. The process flow sheet which gives the idea of necessary equipment to be installed, then performing all material and energy balance calculations along with chemical and mechanical design for the entire setup taking into account every instrument considered. The purpose of this review paper takes involves an industrial process, a catalytic chemical process widely used to remove sulfur (S) from naphtha. Keywords: hydro desulfurization, naphtha, petroleum, sulfur Relevance to Design Practice - The purpose of removing the sulfur is to reduce the sulfur dioxide emissions that result from using those fuels in automotive vehicles, aircraft, railroad locomotives, gas or oil burning power plants, residential and industrial furnaces, and other forms of fuel combustion. World Scientific News 9 (2015) 88-100 1. INTRODUCTION Hydrodesulphurization (HDS) is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of removing the sulfur is to reduce the sulfur dioxide (SO2) emissions that result from various combustion practices. -
BENZENE Disclaimer
United States Office of Air Quality EPA-454/R-98-011 Environmental Protection Planning And Standards June 1998 Agency Research Triangle Park, NC 27711 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF BENZENE Disclaimer This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation of use. EPA-454/R-98-011 ii TABLE OF CONTENTS Section Page LIST OF TABLES.....................................................x LIST OF FIGURES.................................................. xvi EXECUTIVE SUMMARY.............................................xx 1.0 PURPOSE OF DOCUMENT .......................................... 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS.............................. 2-1 3.0 BACKGROUND INFORMATION ...................................... 3-1 3.1 NATURE OF POLLUTANT..................................... 3-1 3.2 OVERVIEW OF PRODUCTION AND USE ......................... 3-4 3.3 OVERVIEW OF EMISSIONS.................................... 3-8 4.0 EMISSIONS FROM BENZENE PRODUCTION ........................... 4-1 4.1 CATALYTIC REFORMING/SEPARATION PROCESS................ 4-7 4.1.1 Process Description for Catalytic Reforming/Separation........... 4-7 4.1.2 Benzene Emissions from Catalytic Reforming/Separation .......... 4-9 4.2 TOLUENE DEALKYLATION AND TOLUENE DISPROPORTIONATION PROCESS ............................ 4-11 4.2.1 Toluene Dealkylation -
Converting Visbreakers to Delayed Cokers - an Opportunity for European Refiners
Converting Visbreakers to Delayed Cokers - An Opportunity for European Refiners European Coking.com Conference Sept. 30 - Oct. 2, 2008 Alex Broerse Lummus Technology a CB&I company © Lummus Technology Overview Introduction Delayed Coking Delayed Coking vs. Visbreaking Case Study Conclusions © Lummus Technology Converting Visbreakers to Delayed Cokers - 2 Fuel Oil Market General trend: reduction of sulfur content in fuel oil Typically 1.0-1.5 wt% S International Maritime Organization introduced SOx Emission Control Areas: . Sulfur content of fuel oil on board ships < 1.5 wt% . 1st SECA: Baltic Sea (effective 2006) . North Sea end of 2007 . More to follow Similar trend in other fuel oil application areas End of bunker fuel oil as sulfur sink? © Lummus Technology Converting Visbreakers to Delayed Cokers - 3 European Fuels Market Increased demand for ULS diesel Gradually decreasing fuel oil market Price gap between low sulfur crudes and opportunity crudes Re-evaluation of bottom-of-the-barrel strategy maximize diesel and minimize/eliminate fuel oil production What are the options? © Lummus Technology Converting Visbreakers to Delayed Cokers - 4 Bottom-of-the-Barrel Conversion Technologies Non Catalytic Catalytic Delayed coking Atm. / vac. resid hydrotreating Fluid / flexicoking Ebullated bed hydrocracking Gasification Resid FCC © Lummus Technology Converting Visbreakers to Delayed Cokers - 5 Lummus Capabilities for Bottom-of-the-Barrel Lummus Technology – Houston Delayed coking Resid FCC Chevron Lummus Global JV – Bloomfield Atmospheric/vacuum residue hydrotreating LC-FINING ebullated bed hydrocracking Lummus Technology – Bloomfield / The Hague Refinery planning studies (e.g., grassroots, revamps, processing of opportunity crudes) © Lummus TechnologyExtensive experience in heavy crude upgrade Converting Visbreakers to Delayed Cokers - 6 scenarios Overview Introduction Delayed Coking Delayed Coking vs. -
Visbreaking: a Technology of the Past and the Future
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Scientia Iranica C (2012) 19 (3), 569–573 Sharif University of Technology Scientia Iranica Transactions C: Chemistry and Chemical Engineering www.sciencedirect.com Visbreaking: A technology of the past and the future J.G. Speight ∗ CD&W Inc., 2476 Overland Road, Laramie, WY 82070, USA Received 18 August 2011; revised 1 December 2011; accepted 28 December 2011 KEYWORDS Abstract Because of their relative simplicity of design and straightforward thermal approach, visbreaking Petroleum refining; processes will not be ignored or absent from the refinery of the future. However, new and improved Visbreaking; approaches are important for the production of petroleum products. These will include advances in current Fouling. methods, minimization of process energy losses, and improved conversion efficiency. In addition, the use of additives to encourage the preliminary deposition of coke-forming constituents is also an option. Depending upon the additive, disposal of the process sediment can be achieved by a choice of methods. ' 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license. 1. Introduction variables are (1) feedstock type, (2) temperature, (3) pressure, and residence time, which need to be considered to control the extent of cracking. Balancing product yield and market demand, without the manufacture of large quantities of fractions having low com- 2. The visbreaking process mercial value, has long required processes for the conversion of hydrocarbons of one molecular weight range and/or struc- Visbreaking (viscosity reduction, viscosity breaking), a mild ture into some other molecular weight ranges and/or struc- form of thermal cracking, insofar as thermal reactions are tures. -
Optimize Refinery Hydrotreating & Catalytic Reforming Using Fast On
— ABB MEASUREMENT & ANALYTICS | APPlicatiON NOte Optimize refinery hydrotreating & catalytic reforming Using fast on-line simulated distillation GCs PGC5009 fast gas chromatograph The advantage of on-line fast simulated distillation. Measurement made easy — The challenge Catalytic reforming is a major conversion process in Industry | Refining Improve your control Improving profitability requires refiners to reduce petroleum refinery and petrochemical industries. strategies. the impact of market price volatility and product The process converts low octane naphthas into environmental compliance requirements by higher octane reformate products for gasoline adopting better control strategies. Better control blending and aromatic rich reformate for aromatic strategies enable refiners to handle a wide range of production. Hydrotreating is an important step to feedstocks while maintaining smooth operations remove unwanted sulfur from streams that are used and intermediate product qualities, both key to as feeds to some refinery units. Catalytic reforming sustainable margins and reliable operation. Most and isomerization are examples of refining traditional process and lab gas chromatographs as processes that require low sulfur feeds. The catalyst well as D86 distillation devices do not provide the in these processes are platinum based and sulfur required fast and reliable measurement feedback compounds are catalyst poisons. Controlling the due to long cycle times and poor repeatability. feed distillation properties enable control on not only the product properties but also the monitoring The ABB PGC5009 fast on-line gas chromatograph of the sulfur compounds. Intermediate streams used answers the challenge by providing superior process to feed hydrotreater do not have a uniform amount chromatography for simulate distillation in less than of sulfur compounds across their boiling point range 5 minutes. -
Environmental, Health, and Safety Guidelines for Petroleum Refining
ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES PETROLEUM REFINING November 17, 2016 ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES FOR PETROLEUM REFINING INTRODUCTION 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS Guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry sector guidelines may be necessary. A complete list of industry sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment in which site-specific variables— such as host country context, assimilative capacity of the environment, and other project factors—are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. 4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever is more stringent. -
Simulation and Modeling of Catalytic Reforming Process
Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 54 (1) 76-84, 2012 SIMULATION AND MODELING OF CATALYTIC REFORMING PROCESS Aboalfazl Askari*, Hajir Karimi, M.Reza Rahimi, Mehdi Ghanbari Chemical engineering department, School of engineering,Yasouj University,Yasouj 75918-74831, Iran; [email protected] Received July 26, 2011, Accepted January 5, 2012 Abstract One of the most important processes in oil refineries is catalytic reforming unit in which high octane gasoline is produced. The catalytic reforming unit by using Hysys-refinery software was simulated. The results are validated by operating data, which is taken from the Esfahan oil refinery catalytic reforming unit. Usually, in oil refineries, flow instability in composition of feedstock can affect the product quality. The attention of this paper was focused on changes of the final product flow rate and product’s octane number with respect to the changes in the feedstock composition. Also, the effects of temperature and pressure on the mentioned parameters was evaluated. Furthermore, in this study, Smith kinetic model was evaluated. The accuracy of this model was compared with the actual data and Hysys-refinery’s results. The results showed that if the feed stream of catalytic reforming unit supplied with the Heavy Isomax Naphtha can be increased, more than 20% of the current value, the flow rate and octane number of the final product will be increased. Also, we found that the variations of temperature and pressure, under operating condition of the reactors of this unit, has no effect on octane number and final product flow rate. -
Reforming for Btx
PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California Abstract Process Economics Program Report No. 129 REFORMING FOR BTX (June 1980) This report reviews the reforming of naphtha to produce benzene, toluene, and xylenes. The fundamentals of the reforming operations are discussed in detail. The economics were developed for reforming of two naphthas; a paraffinic and a naphthenic. Also, the effect of reforming severity on the economics is studied. LAC SF PEP'77 WS Fw Report No. 129 REFORMING FOR BTX by FRANK B. WEST Contributions by LESLIE A. CARMICHAEL STANFORD FIELD KOON LING RING WALTER SEDRIKS May 1980 A private report by the PROCESS ECONOMICS PROGRAM Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing-in marketing research. The CHEMICAL ECONOMICS UANDROOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS Program covers major hydrocarbons and their derivatives on a worldwide basis. In addition, the SRI DIRECTCRY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, prod- uct, and plant for the United States and Western Europe. ii CONTENTS 1 INTRODUCTION . 1 2 SUMMARY . 3 3 INDUSTRY STATUS . : .................... 9 Production Capacity .................... 9 4 GENERAL PROCESS CONSIDERATIONS ............... 17 Introduction. ....................... 17 Chemistry ......................... 18 General ......................... 18 Feed Pretreating Reactions ................ 20 Reforming Reactions ................... 21 Isomerization and Dehydrogenation of Naphthenes ..... 22 Isomerization and Dehydrocyclization of Paraffins .... 23 Isomerization, Dealkylation, and Disproportionation of Aromatics ...................... 27 Isomerization ...................... 27 0 Dealkylation ....................... 27 Disproportionation and Transalkylation .......... 28 Hydrocracking of Paraffins and Naphthenes ........ 29 Coke Formation on the Catalyst ............. -
5.1 Petroleum Refining1
5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations and terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery's processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3.Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4.Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5.Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d. -
Experience the Future of Law, Today | Deloitte Legal
Deloitte Legal Experience the future of law, today Latin America 2020 Deloitte Legal—Experience the future of law, today | Latin America 2020 Deloitte Legal—Experience the future of law, today | Latin America 2020 About Deloitte Legal 04 Deloitte Legal global coverage 06 Pioneering and pragmatic solutions 08 Argentina 11 Brazil 12 Chile 13 Colombia 14 Costa Rica 15 Dominican Republic 16 Ecuador 17 El Salvador 18 Guatemala 19 Honduras 20 Mexico 21 Nicaragua 22 Paraguay 23 Peru 24 Uruguay 25 Venezuela 26 Deloitte Legal services 28 02 03 Deloitte Legal—Experience the future of law, today | Latin America 2020 Deloitte Legal—Experience the future of law, today | Latin America 2020 Experience the future of law, today Deloitte Legal What we deliver More than operating in over For family-owned small and medium-sized companies, listed stock corporations, or international groups of companies, Deloitte Legal helps our clients face the challenges of an ever-changing regulatory and 2,500 80 economic environment. legal professionals countries Perspective that is global, yet grounded Deloitte Legal works with clients globally to help them resolve their present challenges and plan for the future. Our industry knowledge, global footprint, and multidisciplinary service model result in a strategic perspective that enables and empowers our clients to meet their local responsibilities and collaborating seamlessly thrive in the global marketplace. across borders and with other Deloitte business lines Cross-border coordination and a single point of contact It can be enormously challenging to manage numerous legal services providers around the world and issues can slip through the cracks. As one of the global leaders in legal services, Deloitte Legal works with you to As part of the global Deloitte professional services network, Deloitte Legal collaborates with colleagues in an array of understand your needs and your vision, and to coordinate delivery around the globally integrated services to deliver multinational legal solutions that are: world to help you achieve your business goals.